
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

1-1-2000

DISEC: A Distributed Framework for Scalable
Secure Many-to-Many Communication
Lakshminath R. Dondeti
University of Nebraska - Lincoln

Sarit Mukherjee
Panasonic Information & Networking Technology Lab

Ashok Samal
University of Nebraska - Lincoln, asamal1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Dondeti, Lakshminath R.; Mukherjee, Sarit; and Samal, Ashok, "DISEC: A Distributed Framework for Scalable Secure Many-to-Many
Communication" (2000). CSE Conference and Workshop Papers. Paper 31.
http://digitalcommons.unl.edu/cseconfwork/31

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/31?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages

DISEC: A Distributed Framework for Scalable Secure Many-to-many
- Communication

Lakshminath R. Dondeti
Carrier IP Evolution Group, Nortel Networks
600 Technology Park Drive, MS E65-60-202

Billerica, MA 01 821

Sari t Mukherjee
Panasonic Information &

Networking Technology Lab
2 Research Way, Princeton, NJ 08540

ldondeti@nortelnetworks.com s a d @ research.panasonic.com

Ashok Samal
University of Nebraska-Lincoln

I I5 Ferguson Hall, Lincoln, NE 68588-01 I5
samal@cse.unl.edu

Abstract

Secure one-to-many multicasting has been a popular re-
search area in the recent past. Secure many-to-many mul-
ticasting is becoming popular with applications such as
private conferencing and distributed interactive simulation.
Most of the existing secure multicasting protocols use a cen-
tralized group manager to enforce access control and for
key distribution. In the presence of multiple senders it is de-
sirable to delegate group management responsibility to all
the senders. We propose a distributed group key manage-
ment scheme to support secure many-to-many communica-
tion. We divide key distribution overhead evenly among the
senders. Our protocol is scalable and places equal trust in
all the senders.

1. Introduction

Secure multicasting in the Internet has several applica-
tions such as stock quote distribution, private conferencing
and distributed interactive simulation. Some of these ap-
plications have a single sender distributing secret data to a
large number of users while the others have a large number
of users communicating privately with each other. Several
protocols [l , 2 ,4 ,3 ,8 , 10, 11,121 have been proposed in the
recent past to support group communication between one
sender and several members. Most of them use a centralized
entity for group management. In the presence of multiple
senders, distributed group management is desirable. Exist-
ing solutions advocate distributed group management, but
delegate key distribution overhead unevenly [9, 101. We
present a scalable group key management scheme for se-

0-7695-0722-O/OO $10.00 0 2000 IEEE

cure many-to-many communication that distributes over-
head evenly among the members of a multicast group.

Although it presents a single point of attack and failure,
using a centralized entity for group management is natural
for one-to-many secure multicasting. However, in the pres-
ence of multiple senders, it is desirable that the multicast
group be operational as long as at least one sender is oper-
ational. In other words, many-to-many secure multicasting
calls for decentralized control of the group. Key distribution
and dynamic group management tasks must be delegated to
all the senders. It is desirable to evenly distribute protocol
processing overhead among all the senders in the group.

Only a few distributed group management protocols for
scalable secure many-to-many communication exist in the
literature [8, 9, 101. Iolus [SI can support for multiple
senders. However, it exposes secret keys to third party en-
tities which assist in key distribution and it also uses a cen-
tralized “group security controller (GSC)” for group man-
agement. The distributed flat key management (DFKM)
scheme presented by Waldvogel et. al [101 suggests the idea
of placing equal trust in all the group members. Members
joining early generate the keys and distribute them to the
members joining late. While DFKM works in principle, it
is susceptible to collusions. It is also possible to have a very
small subset of members controlling the group in DFKM,
allowing uneven distribution of group control and key distri-
bution overhead. Rodeh et. a1 [9] also advocate distributed
group management for efficiency. However, their protocol
assigns group control and management to a subset of the
members rather than to all of them.

We present DISEC, a distributed framework for scalable
secure many-to-many communication. In this paper, we de-

693

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on March 11,2010 at 21:06:54 EST from IEEE Xplore. Restrictions apply.

mailto:ldondeti@nortelnetworks.com
http://research.panasonic.com
mailto:samal@cse.unl.edu

scribe the key distribution mechanism in DISEC. We as-
sign binary IDS to members and define a key association
for each member based on its ID. Members forward secret
keys through their key association groups during rekeying.
Prospective members may contact any active member to
join the group. Active members verify new members’ cre-
dentials and assign them a unique ID. The ID assignment is
done locally without any need to lookup a global space of
IDS. The ID assignment process illustrates the distributed
nature of our protocol. The new member initiates the rekey-
ing process. Note that rekeying is done to ensure perfect
forward secrecy [7]. When a member leaves, its neigh-
bor (neighbor of a member is also determined based on the
member’s ID) notices the departure and initiate the rekey-
ing process. Key associations help delegate key distribution
overhead evenly among all the members of the group.

We use a virtual binary key distribution tree to better ex-
plain our scheme. The leaves of the tree represent members
of a multicast group. Each member generates a unique se-
cret key for itself. Each internal node key is a function of the
secret keys of its two children. All secret keys are associ-
ated with their blinded versions, which are computed using
a one-way function [l, 5 , 61. Each member holds all the
unblinded keys of nodes that are in its path to the root and
the blinded keys of nodes that are siblings of the nodes in
its path to the root. Contribution of a unique secret toward
the computation of the root key gives each member partial
control over the group. A joidleave requires only the keys
in the path to the root from the joining/departing host to be
changed. Thus, each membership change necessitates only
O(1ogn) messages where n is the number of members in the
group. Thus our protocol is scalable as well.

Sec-
tion 2 provides a description of DISEC. Section 3 compares
DISEC to existing secure multicast protocols that support
multiple senders. We list our conclusions in Section 4.

We organize the rest of the paper as follows.

2. A dissection of DISEC

We propose a distributed group key management scheme
for scalable secure many-to-many communication. All of
the members are senders. Therefore, in the rest of this
discussion, we use the terms members and senders inter-
changeably. DISEC delegates group control responsibilities
and key distribution tasks evenly to all the members. Our
protocol is scalable and it trusts all members equally. In the
following, we concentrate on the key distribution mecha-
nism of DISEC. Details of group access control are out of
the scope of this paper.

For better explanation of our protocol, we represent the
members of a multicast group by leaf nodes of a virtual bi-
nary key distribution tree (see Figure’ 1). The key distri-

I!-? is the blinded counterpart of the secret key, k .

bution tree is strictly binary, i.e., each internal node has ex-
actly two children. Each member generates a unique secret
key which is the member’s contribution towards the gener-
ation of the internal node keys including the root key. Inter-
nal nodes represent secret keys and they are computed as a
function of their children’s keys. The root key is computed
similarly and is used for data encryption. For each secret
key there is a blinded version, which is computed by apply-
ing a given one-way function [1,5] to the secret key. Given
a blinded key, it is computationally infeasible to compute its
unblinded counterpart. Each member knows all the keys of
the nodes in its path to the root of the tree and the blinded
keys of siblings of the nodes in its path to the root of the tree
and no other blinded or unblinded keys [l]. The blinded
keys are distributed by members that are owners and autho-
rized distributors of those keys. Each member computes the
unblinded keys of the internal nodes of the tree in its path to
the root and the root key itself, using the blinded keys it re-
ceives and its own secret key. We use a mixing function [13
to compute internal node keys from the blinded keys of the
node’s children.

The limited distribution of unblinded and blinded keys
is to ensure that DISEC is immune to collusions. It can be
proven that no proper subset of the senders can gain access
to all the keys in the multicast group. Collusion analysis
and proof are out of the scope of this paper.

I , Root Key = m(KO. k‘,)
n

Figure 1. An example key distribution tree: we
use a one-way function to compute k’ from k
and m is a mixing function.

Each member has a binary ID and is responsible for
generating a secret key. It also computes the blinded ver-
sion of its key and shares it with its immediate neighbor in
the key distribution tree. The FindNeighborO algorithm2
(Algorithm 1) takes a binary ID X = bhbh-1.. . bl, where
bi, 1 5 i 5 h is a binary digit, as its input and returns the
binary ID of X’s neighbor, X ’ .

*We use several simple functions in the algorithms presented in this
paper. They are self explanatory.

694

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on March 11,2010 at 21:06:54 EST from IEEE Xplore. Restrictions apply.

Following Algorithm 1, H(11 10)’s neighbor is I(1 11 l),
and G(1 10)’s neighbor is H(1 1 10) in Figure 1. Neighbors
with IDS of same length (H and I in Figure 1) are referred to
as immediate neighbors and they exchange blinded versions
of their secret keys with each other. If a pair of neighbors
have different ID lengths (G and H in Figure l), the member
with the smaller ID size, sends the blinded version of its
secret key and receives the blinded key of the corresponding
internal node of same ID length from the member with the
larger ID length (G receives k’, from H). Using the new
keys received, the members compute their parent’s secret
key. We use a mixing function (typically XOR function) [11
to compute internal node keys. For example in Figure 1, C
and D apply the mixing function m, to the blinded keys kb
and kb, I to compute the internal node key kol .

, end

Algorithm 1: Discovering the neighbor
Find_Neighbor(X = bhbh-I . . . bl)
begin -

XI= bhbh-1 ... bl;
if (leaf-node(X’) == “true”)

else if (internal-node(X’) == “true”)
return X’;

do

while (leaf-node(X’) == “false”);
return X‘;

X’ = X’O;

end

2.1. Key association groups

Algorithm 2: Finding members of a key association group
Find-KeyAssociation(X = bhbh-1.. . bl, i)
begin

Xi = bhbh-1.. . bi+l&bi-l . . . b2bl;
_. ki = kbhhh-l...bi+lbi’

if (leafxode(Xi) == “true”)

else if (internal-node(Xi) == “true”)
return (Xi, ki) ;

do
xi = xio;

while (leaf-node(Xi) == “false”);
return (Xi, kj) ;

do

while (leafxode(Xi) == “false”);
return(Xi,ki);

else

Xi = right-shift(Xi,l));

To help delegate the task of key distribution evenly
among all the members, we define key association groups.
Members of a key association group exchange keys in
DISEC. Each member needs as many blinded keys as the

length of its ID, to compute the root key. For each bit posi-
tion in a member’s ID, there exists a member that supplies
the corresponding blinded key. We call the set of members
that supplies blinded keys to a member, a key association
group. The Find-Key AssociationO algorithm returns the
ID of the member and the secret key it supplies, correspond-
ing to a given bit position in a member’s ID.

We illustrate the key association algorithm applied to
H(1 1 10) in Figure 1. Complementing the corresponding
bit positions 1, 2, 3 and 4, we get I (1 11 l), 1100, 1010,
01 10. Since nodes with the last three IDS do not exist, we
right-shift them by one bit position to get G(l lo), F(101)
and D(011) as the rest of the members in H’s key associa-
tion group. I, G, F and D supply the keys k’, k’, kio, kb
respectively, to H.

Next, we demonstrate the root key computation process
for C(O10). First, C generates the key kola and sends its
blinded version kb,o (computed using the given one-way
function) to D(011). Similarly, D sends kblI to C. Both C
and D can then individually compute kol by applying the
given mixing function to kblo and kb, Next, C sends kb, to
A(000) and receives kb, in return. After the key exchange,
both A and C can compute ko. After this step, C and G
exchange kb and k’, with each other. We compute the root
key from the keys kb and k;. Following similar steps, each
member of the multicast group acquires or computes kb and
k; and then computes the root key. Note that C receives
only the blinded keys of the siblings of the nodes in its path
to the root. Using those keys, it can compute the unblinded
keys of the nodes in its path to the root.

2.2. Join protocol

f-4 Root Key

Figure 2. Join protocol

A prospective member may join at any node of the key
distribution tree. It is desirable to keep the key tree bal-
anced for efficiency. However, that is only possible if one
or more entities keep a snap shot of key distribution tree. To

695

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on March 11,2010 at 21:06:54 EST from IEEE Xplore. Restrictions apply.

keep track of all members of the group and their positions
in the key tree, we need either member status report mes-
sages broadcast to the whole group or a centralized entity
that keeps track of all joins and leaves. The first approach
creates excessive network traffic and the second has a single
point of failure. Our protocol attempts to locally balance the
tree by choosing members in the tree that are within an ad-
ministratively or Time-to-Live (TTL) scoped area, during
joins. Prospective members join at a local member of the
multicast group with the smallest ID length.

Algorithm 3: Joining the multicast group
Join(X, Y = bhbh-1. . . bl) /* Y is the existing member */
begin

Y = bhbh-1.. .b10;
x = bhbh-1 . . . bl1;
k, = generatenewkey();
i = 1;
while (i 5 length(X))
begin

(M, d) = Find-KeyAssociation(X, i) ;

sendkeyfrom-to(outgoingkey, X, M);
scoped-securemulticast(outgoingkey, M, IC);
sendkeyfrom-to(d, M, X);
i = i+ I ;

Outgoingkey = kiight-shift(x,i- 1);

krightshift(x,i- 1) = m(outgoingkey, d);
end

end

In Figure 2, J is a new member which joins at C. To
include J into the group, C splits its ID 010 (shown in
Figure I), keeps 0100 for itself and assigns 0101 to J. C
also changes its secret key and sends the blinded version
of its new key to J. J generates a secret key of its own and
transmits the blinded version to C. Note that all keys corre-
sponding to the internal nodes in the path to the root from
J, change due to the join. J needs all the unblinded keys
of the nodes shown in black and the blinded keys of the
nodes show in gray, in Figure 2. Notice that none of the
blinded keys known to C have changed and thus it can com-
pute all the new keys corresponding to nodes 010, 01 and
0 and the root key once it receives k[I. Now J needs the
blinded keys corresponding to 01 1, 00 and 1. Using the
Find-KeyAssociation() algorithm presented earlier, it de-
termines that nodes with IDS Oll(D), 000(A) and llO(G)
are the members of its key association group. Note that
these nodes and their neighbors also need the blinded keys
that J knows or can compute. To elaborate, J sends kb,, to
D and receives kb, , from D. It then computes kb, and sends
it to A and receives kb in return. A is also required to lo-
cally multicast kb, encrypted with kw, which can only be
decrypted by A and B. J can now compute kb which it sends
to G , receives k’, in return and computes the root key for

itself. G multicasts kb encrypted with k l , to be decrypted
by E, F, G, H and I only. After the above key exchanges all
authorized members will have the keys they need to com-
pute the new root key. In all, there will be O(1ogn) unicast
messages and O(1og n) subgroup multicast messages during
a join. Note that the multicast messages will be limited to
a TTL-scoped or administratively scoped region, since they
only need to be sent to selected subgroups within the multi-
cast group. We generalize the join process in Algorithm 3.
It takes the new member and an existing member’s ID as
arguments. In the algorithm, K‘ indicates the key sent by M
to x.
2.3. Leave protocol

When a member leaves, its neighbor initiates the rekey-
ing process. If the neighbor is the departing member’s sib-
ling, it assumes its parent’s position in the key distribution
tree. Otherwise it notifies the descendants of the departing
member’s sibling to change their IDS. In either case, the
neighbor changes its secret key and initiates the rekeying
process. It sends the new keys to the members of its key as-
sociation group and they are responsible for propagating the
new keys to the appropriate members in their subgroups. In
the rest of this section, we describe the ID update process
followed by the rekeying process.

d Root Key

@ ,.

Figure 3. Leave protocol

Assuming that X is the departing node and Y (= Neigh-
bor(X)) is its neighbor. If Y has the same ID length as
X, Y right shifts its ID by one bit position to get its new
ID. If Y’s ID is longer than that of X, X’s sibling and
its descendants change their IDS as follows. Notice that
each descendant Z of X’s sibling shares a key with X. If
Z = bhbh- 1 . . . bi+l bibi-1 . . . bzbl, then Z ’ s ID after the de-
parture would be bhbh-l. . . bi+l bi- i . . . bzbi, where i is the
difference in the length of Z’s and X’s IDS plus one. In
both cases, Y generates the new secret key and initiates the
rekeying. In Figure 3, if E leaves, F gets the ID 10 and gen-

696

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on March 11,2010 at 21:06:54 EST from IEEE Xplore. Restrictions apply.

erates a new secret key; if G leaves, H and I get the IDS 110,
11 1 respectively and H generates the new secret key.

In Figure 3, C leaves the multicast group. J notices the
departure and changes its ID from 0101 to 010, and gen-
erates a new secret key for itself. Consequently, internal
node keys on J’s path to the root change and J is responsible
for initiating key exchanges with its counterparts, 01 l(D),
000(A) and 110(G) as defined earlier in this section. J sends
the blinded key kklo to D. Both J and D can now compute
kol . J then sends kb, to A, which is responsible for sharing
it with all members who have kw. Finally, J sends kb to G
which in turn sends kb to all the members that have kl . No-
tice that J does not need any keys in return from D, A or
G. It already has the blinded keys it needs to compute the
root key. While the departing member C knows all those
blinded keys as well, it does not know any unblinded keys
it needs and thus cannot compute or acquire the root key. A
departure results in O(logn) unicast messages and O(1ogn)
multicast messages, each message carrying one encrypted
secret key. In the following, we provide a generalization of
the rekeying process after a member departs from the group.

Algorithm 4: Leaving the multicast group
Leave(X)
begin

Y = FindlVeighbor(X);
foreach Z in {descendants(sibling(X))} U {Y}

k? = generatemewkey();
computeinternalmodelceys(Y);
i = 1;
while (i 5 length(Y))
begin

2 = delete_i‘h-bit(Z, length(2)-length(X)+ 1);

(M, K‘) = Find-KeyAssociation(Y, i);

sendkeyfrom-to(outgoingkey, Y, M);
scoped..securemulticast(outgoingkey, M, K);
I* M already has K *I
i = i + l ;

Outgoingkey = kiightshift(y,i-l);

end
end

2.4. Secure data communication

All members in the multicast group can compute the root
key with the given keys. A member with data to send, en-
crypts it with the root key and sends it via traditional mul-
ticast channels (eg: MBONE). Other members can decrypt
the data without any further key exchanges. Our protocol
allows secure subgroup communication also. A sender may
send secret data to a subgroup of members by encrypting
the key it shares with the subgroup.

3. DISEC compared to existing solutions for se-
cure many-to-many group communication

Secure one-to-many multicast protocols [l, 3, 10, 11, 121
that pre-distribute the session key may claim that they sup-
port multiple senders as well. However, they use a central-
ized group controller which is a single point of failure and
attack. In the presence of multiple senders, it is desirable
to have the group operational as long as at least one of the
senders is operational. Group control and key management
tasks should be evenly distributed among all the senders.

Only a few distributed group management protocols for
secure many-to-many communication exist in the litera-
ture [8, 9, IO]. Iolus [8] uses hierarchical subgrouping to
delegate group control authority as well as key distribution
overhead. A group security controller, a centralized entity,
is assigned the responsibility of the security and operation
of the group. Also, Iolus exposes secret keys to “trusted”
third parties, which is a liability to the security of the sys-
tem. Waldvogel et. al. proposed a distributed flat key
management scheme (DFKM) which trusts all the members
equally. In principle it conforms to the desirable character-
istics of distributed group management. However, it is pos-
sible in this protocol to have only a few senders controlling
the operation of the group. Also, this scheme cannot avoid
collusions and it is hard to detect them as well. Eliminat-
ing colluding senders could require re-initiation of the en-
tire group. Recently, Rodeh et. a1 [9] proposed a distributed
group key management scheme using a logical hierarchy
of keys (DLKH). This protocol assigns group control and
management to a subset of the members, to avoid a single
point of failure and attack.

Table 1 compares the protocols that support many-to-
many communication. In the table, CKM represents the
centralized key distribution schemes. Note that while the
flat schemes use less keys, they cannot avoid, detect or elim-
inate collusions efficiently.

4. Conclusion

We propose a distributed key management scheme for
many-to-many secure group communication. We use one-
way function trees for key distribution and management.
One-way function trees have been used in the cryptogra-
phy literature for various purposes. Recently McGrew and
Sherman [6] proposed the idea of using bottom-up one-way
function trees (OFT) for secret key distribution in large dy-
namic groups. DISEC uses one-way functions, but proposes
a distributed solution to group key management. In the fol-
lowing we summarize our contributions.

0 Distributed ID assignment: DISEC proposes a local-
ized ID assignment scheme thereby eliminating the

697

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on March 11,2010 at 21:06:54 EST from IEEE Xplore. Restrictions apply.

Criterion CKM lolus DFKM DLKH

Group control Centralized

Single point of failure Group Manager GSC No No

Yes No Vulnerable to collusions

Uses trusted third party entities No Yes No No
Even distribution of control No No Not always No

Distributed GSAs Distributed Distributed
GSC Centralized

Tree-based No No Flat Yes

DISEC

Distributed

No

No

No
Yes

ob) Tree-based O(n)
Flat O(logn) No. of keys in the group

need for a centralized group controller. We introduce
the idea of key associations, which facilitates the del-
egation of group management functions as well as key
distribution overhead to all the senders.

O(logn) O(n) ob)

Distributed group management: Each member gener-
ates its own key thereby contributing a secret towards
the computation of the root key. This property gives
each member equal control over the group. It also en-
sures that no proper subset of the group members can
gain control of all the blinded and unblinded keys in
the group. In OFT, the group manager needs to mon-
itor all members of the group to detect unscheduled
departures. In DISEC, neighbors monitor each other
thereby avoiding global flooding of control traffic (ex-
ample: heart-beat messages).

No. of keys at a member

No. of messages during a join

No. of messages during a leave

Scalable

0 Scalability: DISEC supports secure group communica-
tion between a large number of senders in a scal-
able fashion. Key distribution overhead is distributed
evenly among all the senders. Key associations ensure
that each sender serves only O(1ogn) other senders
which contributes to the scalability of the protocol.

O(logn) O(1) O(logn) O(logn) (W o g n)

O(logn) (4 1) O(logn) O(logn) O(1ogn)

O(logn) subgroup) O(logn) O(1ogn) O(1ogn)

Yes Yes Yes Yes Yes

O(Average size of a

DISEC is a structured protocol in that each sender can
determine the other senders it serves and the keys they need
without having to exchange any control information.

References

[l] D. Balenson, D. McGrew, and A. Sherman. Key Manage-
ment for Large Dynamic Groups: One-way Function Trees
and Amortized Initialization. IETF Draft: draft-balenson-
groupkeymgmt-oft-OO.txt, Feb 1999.

[2] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas. Multicast Security: A Taxonomy and Efficient
Constructions. In IEEE INFOCOM, New York, March 1999.

[3] I . Chang, R. Engel, D. Kandlur, D. Pendarakis, and
D. Saha. Key Management for Secure Intemet Multicast
using Boolean Function Minimization Techniques. In IEEE
INFOCOM, New York, March 1999.

[4] L. R. Dondeti, S. Mukherjee, and A. Samal. A Dual Encryp-
tion Protocol for Scalable Secure Multicasting. In Fourth
IEEE Symposium on Computers and Communications, Red
Sea, Egypt, July 1999.

[5] A. Fiat and M. Naor. Broadcast Encryption. In Advances in
Cryptology: Proceedings of Crypto 1993, pages 480-491,
1993. LNCS 773.

[6] D. A. McGrew and A. T. Sherman. Key Establishment
in Large Dynamic Groups Using One-way Function Trees.
Submitted to IEEE Transactions on Software Engineering,
May 1998.

[7] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of
Applied Cryptography. CRC Press series on discrete math-
ematics and its applications. CRC Press, 1997.

[8] S. Mittra. Iolus: A Framework for Scalable Secure Multi-
casting. In Proc. ACM SICCOMM, pages 277-288, Cannes,
France, September 1997.

[9] 0. Rodeh, K. Birman, and D. Dolev. Optimized group rekey
for group communication systems. In Network and Dis-
tributed System Security Symposium, San Diego, CA, Febru-
ary 3-4 2000.

[101 M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plat-
tner. The VersaKey Framework: Versatile Group Key Man-
agement. JSAC Special Issue on Service Enabling Platforms
For Networked Multimedia Systems, August 1999.

[111 D. Wallner, E. Harder, and R. Agee. Key Management for
Multicast: Issues and Architecture. IETF Draft, July 1997.

[12] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group Com-
munications Using Key Graphs. In Proc. ACM SIGCOMM,
August 1998.

698

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on March 11,2010 at 21:06:54 EST from IEEE Xplore. Restrictions apply.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2000

	DISEC: A Distributed Framework for Scalable Secure Many-to-Many Communication
	Lakshminath R. Dondeti
	Sarit Mukherjee
	Ashok Samal

