University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Biochemistry -- Faculty Publications

Biochemistry, Department of

7-2001

Reversible Phosphorylation of Photosynthetic PEP Carboxylase: Studies on C4-Leaf PP2A and Recombinant PEPC-Kinase from CAM-Induced *Mesembryanthemum crystallinum*

L. Dong University of Nebraska - Lincoln

N. V. Ermolova University of Nebraska - Lincoln

M. A. Cushman University of Nevada, Reno, NV

T. Taybi University of Newcastle, Newcastle-upon- Tyne NE1 7RU, UK

J. C. Cushman University of Nevada, Reno, NV

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/biochemfacpub Part of the <u>Biochemistry, Biophysics, and Structural Biology Commons</u>

Dong, L.; Ermolova, N. V.; Cushman, M. A.; Taybi, T.; Cushman, J. C.; and Chollet, Raymond, "Reversible Phosphorylation of Photosynthetic PEP Carboxylase: Studies on C4-Leaf PP2A and Recombinant PEPC-Kinase from CAM-Induced *Mesembryanthemum crystallinum*" (2001). *Biochemistry -- Faculty Publications*. 32. http://digitalcommons.unl.edu/biochemfacpub/32

This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

L. Dong, N. V. Ermolova, M. A. Cushman, T. Taybi, J. C. Cushman, and Raymond Chollet

From: Abstracts of the 12th International Congress on Photosynthesis (Brisbane, Australia, August 18–23, 2001), published in *Photosynthesis Research* **69**:1-3 (July, 2001), p. 149. Copyright © Elsevier B.V. Used by permission.

Symposium 17. C₄

Paper S17-011:

Reversible phosphorylation of photosynthetic PEP carboxylase: Studies on C4-leaf PP2A and recombinant PEPC-kinase from CAM-induced *Mesembryanthemum crystallinum*

L. Dong,¹ N. V. Ermolova,¹ M. A. Cushman,² T. Taybi,³ J. C. Cushman,² and R. Chollet ¹

- 1 Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA. Fax: 1-402-472-7842; email: <u>RCHOLLET1@unl.edu</u>
- 2 Department of Biochemistry, University of Nevada, Reno, NV 89557-0014, USA.

3 Department of Agricultural & Environmental Science, University of Newcastle, Newcastle-upon-Tyne NE1 7RU, UK.

Keywords: PEP carboxylase (PEPC), protein phosphatase 2A (PP2A), PEPC-kinase (PpcK), regulatory phosphorylation, C_4 and CAM photosynthesis

The activity and allosteric properties of plant PEPC are controlled posttranslationally by specific reversible phosphorylation of a strictly conserved Ser residue near the Nterminus. This up/down-modulation is catalyzed by a transcriptionally regulated, seemingly dedicated Ser/Thr kinase (PpcK) and an opposing Ser/Thr phosphatase (PP2A). We have now partially purified and characterized the native form of this largely "neglected" PP2A from maize leaves using various chromatographic and affinity matrices, and C₄ [³²P]PEPC as substrate (Dong et al., 2001, Planta [in press]). The results indicate that the C_4 -leaf holoenzyme is analogous to yeast and mammalian PP2As in regards to its heterotrimeric structure (~170 kDa), comprised of a ~103-kDa core PP2Ac-A heterodimer complexed with a ~74-kDa B-type subunit, and its sensitivity to free Me²⁺ and various inhibitors, activators and anionic metabolites. Notably, this native PP2A (a) lacks any strict phosphoprotein specificity in that it dephosphorylates C_4 PEPC, mammalian phosphorylase a, and casein in vitro, and (b) displays, at best, only modest light/dark effects in vivo on its apparent M_r , component core subunits, and activity against C_4 PEPC-SerP. In addition, we will also report new findings on a recombinant form of CAM PpcK from M. crystallinum (Taybi et al., 2000, Plant Physiol.) produced as a highly soluble, active fusion with the ~55-kDa NusA carrier protein in E. coli. This NusA – PpcK fusion protein has been purified by sequential IMAC and FPLC, used for detailed analysis of its target-protein specificity and other kinetic properties, and cleaved "on-bead" by thrombin to yield free PpcK for antibody production.