








vi 

(Green) (c) Further progression of core polygon detection belonging to the same 

cluster (d) Final result – All polygons belong to the same cluster ............................... 60 

Figure 19: Census Tract Polygons in Nebraska dataset ................................................................. 61 

Figure 20: Results of clustering using DBSCAN (a)                 (b) 

                (c)                 (d)                .............. 61 

Figure 21: Results of clustering using P-DBSCAN (a)                   (b)   
                (c)                   (d)                 (e) 

                 (f)                   ..................................................... 62 

Figure 22:  Compactness Ratio for clusters formed using DBSCAN and P-DBSCAN ................ 62 

Figure 23:  Census Tract Polygons in South Dakota dataset ......................................................... 63 

Figure 24: Result of clustering using DBSCAN  (a)                 (b) 

                                    (d)                 ................ 63 

Figure 25: Results of clustering using P-DBSCAN (a)                   (b)   
                (c)                   (d)                  ............. 64 

Figure 26:  Compactness Ratio for clusters formed using DBSCAN and P-DBSCAN. ............... 65 

Figure 27:      Radial spatial partitions of a polygon‘s neighborhood.  Note that here the first 

sector is    as shown, and the ordering is clockwise.  This is arbitrary for illustration 

purpose. ........................................................................................................................ 75 

Figure 28: Synthetic set of polygons (Red – Core Polygon, Green -  -neighborhood of the core 

polygons) ..................................................................................................................... 76 

Figure 29: Sample visibility graph for a single polygon.  O1 and O2 are obstacles while the lines 

constitute the visibility graph. ...................................................................................... 78 

Figure 30: Sample visibility graph for a set of polygons in the presence of obstacles.  The purple-

outlined rectangles are polygons, the red polygons are obstacles with yellow-

highlighted zones of influence, and the blue lines constitute the visibility graph. ...... 79 

Figure 31: Polygons A & B are completely visible to each other .................................................. 80 

Figure 32: Polygon A and Polygon B are partially visible to each other under Type A partial 

visibility ....................................................................................................................... 81 

Figure 33: Polygon A and Polygon B are partially visible to each other under Type B partial 

visibility ....................................................................................................................... 81 

Figure 34: Polygon A and Polygon B are invisible to each other .................................................. 81 

Figure 35: Pre-PDBSCAN+ algorithm. ......................................................................................... 86 

Figure 36: P-DBSCAN+ clustering algorithm. .............................................................................. 86 

Figure 37: (a) Lincoln, NE census tracts – 55 polygons with 1211 vertices. (b) Simplified 

Lincoln, NE census tracts using the Douglas-Peucker algorithm – 55 polygons with 

408 vertices. ................................................................................................................. 88 

Figure 38: Synthetic dataset with 110 polygons and 5 obstacles ................................................... 90 



viii 

Figure 62: (a) Point representation of drought counties of Nebraska - Dataset for the MC and 

CMC algorithms (b) Counties of the state of Nebraska – Dataset for the STPC 

algorithm. The discrete time scale for both the datasets is weekly. ........................... 158 

Figure 63: Sample drought monitor maps from http://drought.unl.edu/dm/archive.html showing 

the three drought clusters. .......................................................................................... 158 

Figure 64: Result of the STPC algorithm – The three smaller clusters are the drought clusters . 160 

Figure 65: Cluster densities across space and time as discovered by the MC, CMC, VCoDA, 

STPC, and COT Algorithms for the NE drought dataset ........................................... 161 

Figure 66: Clusters discovered by STPC with           ,        ,          . ....... 163 

Figure 67: Clusters discovered by STPC with            ,        ,          ...... 164 

Figure 68: Clusters discovered by STPC with           ,    ,              . ....... 164 

Figure 69: (a) Census block groups in the city of Lincoln, NE (b) Crime locations for the years of 

2005 – 2009 in the city of Lincoln, NE. ..................................................................... 165 

Figure 70: Selected assault spatio-temporal clusters discovered by STPC using the parameter 

values:                                    with space shown as one-

dimension along the x-axis, and time along the y-axis. ............................................. 168 

Figure 71: The spatio-temporal Cluster 6 in Figure 14 spanning from September 28, 2006 until 

October 6, 2006 .......................................................................................................... 169 

Figure 72:  (a) A simplistic spatio-temporal cluster (b) ST-slices of the spatio-temporal cluster (c) 

TS-slices of the spatio-temporal cluster ..................................................................... 173 

Figure 73: Primitive events for polygons ..................................................................................... 176 

Figure 74: Movement patterns for polygons ................................................................................ 177 

Figure 75: Comparison of ST-slices ............................................................................................ 178 

Figure 76: The number of connected-components      Algorithm ............................................ 180 

Figure 77: Different types of movements that a polygonal spatio-temporal cluster may undergo

 ................................................................................................................................... 181 

Figure 78: The Detecting Movements in ST-Clusters (DMSTC)Algorithm ............................... 183 

Figure 79: Swine flu clusters for the state of California .............................................................. 184 

Figure 80: Cardinality change for selected swine flu clusters for the state of California ............ 187 

Figure 81: Area change for selected swine flu clusters for the state of California ...................... 187 

Figure 82: Segmentation change for selected swine flu clusters for the state of California ........ 187 

Figure 83:Centroid movement of four different drought clusters across space with time. Two 

clusters denoted as triangles are static drought clusters, i.e. they do not move across 

space in time. The red dots and the blue dots respectively show the movement of the 

other two clusters across space during their respective lifetimes as shown. .............. 190 

Figure 84: Comparison of TS-slices ............................................................................................ 192 

  



4 

Structural complexity of the polygons and their distribution in space also induces addi-

tional challenges.  For example, the size of the polygons in a dataset may be unbalanced, i.e. half 

are small, and the other half much bigger.  The question is then: should the small and big poly-

gons be treated equally?  Another scenario may involve two or more polygons sharing one or 

more spatial object, for example, two or more counties sharing the same river.  How should the 

relationship be defined among these polygons that share the same spatial object?  Yet another 

example of such an issue is when two polygons are divided by a linear spatial object, such as a 

river or a mountain range.  Does the presence of the linear spatial object decrease or increase the 

similarity between the two polygons?  Finally, while in general, point datasets may contain noise 

or outliers, they are relatively uncommon in the polygon datasets.  Therefore, most of the times, 

all the polygons present in a dataset need to be accurately clustered.   

Furthermore, the problem of district and zone formation is particularly a difficult problem 

to solve.  This problem, in the past, has been deemed as computationally too expensive to be au-

tomated (Altman, 2001).  This problem and other regionalization problems can be formulated as 

polygonal clustering where the clusters must be spatially contiguous and compact.  Representing 

polygons as points and applying the point-based clustering algorithms may result in clusters that 

are spatially disjoint, or clusters that meander all across space. 

Finally, the temporal domain is ever present in any real-life application.  Everything 

changes with time.  Animals migrate from one place to another with changing weather condi-

tions; people move from under-developed to developed places in the world; with the increased 

global warming, there are climatic shifts happening around the world (Ravelo, Andreasen, Lyle, 

Olivarez Lyle, & Wara, 2004).  As a result, polygons that define most of these things also do not 

remain constant in space across time (Robertson, Nelson, Boots, & Wulder, 2007).  Thus, it is 

natural that the polygonal clusters would also change their shape and location across time.  There-

fore, it is not only important to develop techniques to identify static spatial clusters, but also clus-
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ters that are dynamic in nature.  Representing time as a first-class citizen in the spatio-temporal 

clustering problem is an important challenge that has been a struggle in geospatial research.  Most 

of the past research performs spatial clustering at different snapshots in time and then compares 

the resulting clusters (Kalnis, Mamoulis, & Bakiras, 2005).  Performing true 3-dimensional clus-

tering in space and time is a challenge that needs to be addressed. 

Thus the problem of polygonal clustering can be defined as: given a set of geospatial po-

lygons defined in both space and time, group the polygons into a set of clusters such that the po-

lygons within the same cluster are similar to each other with respect to their spatial and non-

spatial properties.  

1.3 Proposed Approach 

In this research we have addressed several fundamental problems in polygonal spatial clustering.  

The basic principles used to solving these problems are:  

1. Spatial Extent: Represent a polygon as a two dimensional entity with a set of vertices ra-

ther than only the centroid of the polygon in order to accurately represent the location of 

a polygon.  Using the centroid representation of the polygon may lead to inaccurate dis-

tance computation between two polygons. 

2. Spatial Attributes: Integrate the spatial attributes and structure of polygons into the clus-

tering process. Spatial attributes include area, perimeter, minimum bounding rectangle, 

ratio of the principal axes, shared boundary length, neighboring polygons, etc.  Another 

level of spatial attributes includes other spatial objects embedded within the polygons.  

For example in a county, other spatial objects (e.g. lakes) may be present that can be 

represented as polygons themselves.   

3. Spatial Relationships: Take into consideration the binary relationships that may exist 

within the polygonal datasets.  For example, two polygons sharing a linear feature such as 
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a river may exhibit similar properties, and thus be related to each other with respect to the 

river.   

4. Spatial Autocorrelation: Guide the clustering process according to the principles that re-

flect the nature of the geographic space, e.g.  spatial autocorrelation, spatial heterogenei-

ty, and Tobler‘s First Law of Geography. 

5. Density Connectivity: Extend the density-based connectivity concepts from points to po-

lygons in order to perform density-based polygonal clustering. 

6. Spatial Constraints: Improve the clustering process further by the addition of different 

types of user-defined constraints, e.g.  hard or soft constraints, instance-level constraints 

or cluster-level constraints (Davidson & Ravi, Towards efficient and improved 

hierarchical clustering with instance and cluster level constraints, 2004).   

7. Time as a First Class Citizen: Treat both space and time as equals in the clustering 

process in order to bridge the gap between the spatial and temporal dimensions, and 

detect dynamic clusters and their movement patterns across space and time.  

1.4 Research Contributions 

In this research, we have made four significant contributions to the state of the art in polygonal 

clustering.  They are briefly summarized below. 

1. Dissimilarity of Geospatial Polygons: We have developed a polygonal dissimilarity function 

(Joshi, Samal, & Soh, A Dissimilarity Function for Clustering Geospatial Polygons, 2009a), 

(Joshi, Samal, & Soh, A Dissimilarity Function for Complex Spatial Polygons, Under 

Review) that accurately computes the dissimilarity between two polygons by integrating both 

non-spatial attributes and spatial structure and context of the polygons.   

2. Density-Based Polygonal Clustering: We have developed a density-based clustering algo-

rithm for polygons known as P-DBSCAN (Joshi, Samal, & Soh, Density-Based Clustering of 

Polygons, 2009b).  P-DBSCAN extends DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), the 
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state-of-the-art density based clustering algorithm for point datasets to polygonal datasets. 

We have further extended the algorithm to cluster polygons in the presence of obstacles (P-

DBSCAN+) (Joshi, Samal, & Soh, Polygonal Spatial clustering in the Presence of Obstacles , 

Under Preparation).   

3. Polygonal Clustering with Constraints: We have developed a suite of constraint-based poly-

gonal spatial clustering (CPSC) algorithms (Joshi, Soh, & Samal, Redistricting Using 

Heuristic-Based Polygonal Clustering, 2009c), (Joshi, Soh, & Samal, Redistricting using 

Constrained Polygonal Clustering, Under Review) for clustering polygons under a given set 

of user-defined constraints.  These algorithms provide a systematic approach for incorporat-

ing both hard and soft constraints, and holistically integrating them in the clustering process.   

4. Spatio-Temporal Polygonal Clustering: We have developed a spatio-temporal polygonal 

clustering (STPC) algorithm (Joshi, Samal, & Soh, Detecting Spatio-Temporal Polygonal 

Clusters Treating Space and Time as First Class Citizens, Under Review) that uniquely treats 

both space and time as first-class citizens.  Using this algorithm we are able to bridge the gap 

between the spatial and temporal dimensions, and overcome the bottleneck of snapshot ap-

proaches.  Furthermore, in order to detect the dynamic changes that a cluster goes through in 

its lifetime, we have developed an algorithm known as Detecting Movements in Spatio-

Temporal Clusters (DMSTC) (Joshi, Samal, & Soh, Analysis of Movement Patterns in 

Spatio-Temporal Polygonal Clusters, Under Preparation) that analyzes the movement patterns 

in spatio-temporal polygonal clusters.  

1.5 Dissertation Overview 

The structure of this dissertation is as follows.  Chapter 2 describes the details of the polygonal 

dissimilarity function. We also present the results obtained by applying our dissimilarity function 

on a watershed dataset and county dataset.  Chapter 3 presents the density-based clustering algo-

rithm for polygons known as P-DBSCAN.   We also show the application of P-DBSCAN on a 
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county dataset in order to detect density-connected clusters of polygons.  Chapter 4 details the 

density-based clustering algorithm for polygons in the presence of obstacles known as P-

DBSCAN+. Followed by which we show the application of P-DBSCAN+ on a census tract data-

set in the presence of obstacles such as rail-road tracks and rivers.  Chapter 5 describes the suite 

of constraint-based clustering algorithms for polygons known as CPSC, CPSC* and CPSC*-PS. 

In this chapter we show the results for the congressional redistricting and school district forma-

tion applications.  Chapter 6 presents the spatio-temporal polygonal clustering (STPC) algorithm. 

We show the results of the application of STPC for drought analysis, spatial epidemiology, and 

crime mapping applications. Chapter 7 presents the DMSTC algorithm that analyses the move-

ment patterns of spatio-temporal clusters as they move from one time stamp to another.  This 

chapter also shows the results of the analysis of the movement patterns of drought clusters, flu 

clusters, and crime clusters.  Finally, in Chapter 8 we present a summary of our work, along with 

directions for future research.    
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Chapter 2: A Dissimilarity Function for Geospatial Polygons 

2.1 Introduction  

Explosive growth and widespread use of spatial datasets by organizations such as the space agen-

cies worldwide, the census bureau, and healthcare agencies have led to the need of developing 

efficient and scalable algorithms to extract knowledge from these huge datasets (Shekhar & 

Zhang, 2004).  Spatial datasets are unique in that they store the spatial information in the form of 

the longitude and latitude of every object.  As a result, the complexity of the datasets increases.  

Unlike transactional data, principles such as Tobler‘s first law of geography – ‗All things are re-

lated, but nearby things are more related than distant things (Tobler, 1979),‘ and spatial autocor-

relation play significant role (Zhang et al, 2003) within the spatial datasets.   As a result, the nor-

mal principles of independence that are assumed in the machine learning algorithms are not ap-

plicable to the spatial datasets.   

Spatial data can further be divided into three different categories – point spatial datasets, 

linear spatial datasets, and polygonal spatial datasets.  While points datasets are easily represented 

using their latitude and longitude, linear and polygonal datasets are much more complicated in 

nature (Pease note that the polygons referred to here are the same as regions (Cliff et al, 1975) or 

tessellations in space.) For example, the length of boundary shared between two polygons—

which may be used to determine spatial proximity of the two polygons—is lost when polygons 

are represented as points.  Moreover, for a concave shaped polygon, the centroid of the polygon 

may lie outside the boundary of the polygon. Thus, if one tries to spatially analyze polygons 

simply by representing them as points (typically their centroids) the result may not be accurate, 

and the underlying spatial structure is lost.  Furthermore, when considering spatial polygons, 

there may be other spatial objects that lie within the polygons or may be shared by two or more 

polygons.  For example, lakes, rivers, and even manmade structures such as highways lie within 
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geospatial polygons such as counties and watersheds.  There is no appropriate representation of 

this type of information when using the current state-of-the-art in spatial analysis.  For example, 

if one were to perform watershed analysis – where watersheds are naturally formed polygons 

within the river basins – based on their relationship with a set of rivers, say, cutting through the 

watersheds, there is no current spatial analysis technique that would allow us to do so. 

In this chapter we propose a new dissimilarity function called the Polygonal Dissimilarity 

Function (PDF) that comprehensively integrates both the spatial and the non-spatial attributes of 

a polygon to specifically consider the spatial structure and organization of the polygons.  This is 

based on our earlier work presented in (Joshi et al. 2009b). We hypothesize that, in order to accu-

rately represent polygons in the geospatial domain, the attributes of the polygons should accurate-

ly capture both its spatial structure (intrinsic to the polygon) and its spatial organization (extrinsic 

to the polygon) along with the non-spatial attributes of the polygons.  The spatial structure of a 

polygon represented using a set of intrinsic attributes refers to the area covered by polygon, its 

location, its shape, etc.  By taking the intrinsic attributes of the polygon into account we can find 

out, for example, the extent of the boundary shared by two polygons, the information as men-

tioned before that is lost by representing the polygon as a point.  On the other hand, the spatial 

organization of a polygon represented using a set of extrinsic attributes refers to the topological 

relationship between the polygon and its neighboring polygons within the dataset as well as other 

spatial objects present within a polygon itself.  Measuring the extrinsic attributes of the polygons 

would thus allow us to take into account for example the spatial distributedness of other spatial 

objects present within the polygons, giving us another perspective on the similarity between po-

lygons.  Using this representation of the polygons, we define PDF as a weighted function of the 

distance between two polygons in the different attribute spaces.  In other words, PDF is a combi-

nation of a number of distance functions each pertaining to a different class of attributes describ-

ing a polygon.  Furthermore, the weights in the dissimilarity function allow the users to customize 
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their use of PDF based on the significance of the attributes in their application domain. For ex-

ample, in order to find the similar lakes based on their topological relationship—such as ―adja-

cent to‖— with watersheds, one would assign a greater weight to the spatial distance that meas-

ures topological relationships.  On the other hand, in order to discover the lakes high in nitrogen 

content, a higher weight must be assigned to the non-spatial attributes.  In Section 2.3 we describe 

the distance functions for the underlying attributes of the polygons along with the guidelines for 

combining them effectively.   

Our novel dissimilarity function can be used in a variety of problems where distance or 

similarity plays a central role.  Examples of such application areas include – clustering of geospa-

tial polygons, training of an instance-based learning system, prediction and trend analysis, etc.  

Clustering, a common data mining task is a prime application for a dissimilarity function since it 

is based on separation of dissimilar objects, and grouping of similar objects.  Other applications, 

such as region growing in which objects are ranked based on degree of similarity to their neigh-

boring polygon, require a function that orders polygons in increasing similarity.  Most distance 

functions used in polygonal clustering or regionalization fail to comprehensively treat all the spa-

tial attributes (see Section 2.2 for an overview of the most commonly used distance functions for 

polygons) due to the inadequate representation of structural (intrinsic) and topological (extrinsic) 

information contained in the polygons.  This leads to inaccuracy in the computed results.  It is our 

hypothesis that the use of PDF will lead to more accurate comparison of polygons.  

In order to evaluate our dissimilarity function we first compare and contrast it with other 

distance functions proposed in literature that also use both spatial and non-spatial attributes.  In 

particular, we compare our algorithms to the distance functions proposed by Webster and Bur-

rough (1972), Cliff et al. (1975), and Perruchet (1983).  These distance functions have been de-

scribed in Section 2.2, and the comparative analysis has been presented in Section 2.4.  Next, we 

specifically investigate the effectiveness of our dissimilarity function in spatial clustering since 
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distance based functions play a central role in this application. We have applied our dissimilarity 

function to the k-medoids clustering algorithm to cluster geospatial regions represented as poly-

gons in two different domains with diverse characteristics – namely, environmental analysis using 

watersheds and political applications using counties.  Our results show that PDF outperforms oth-

er distance functions in ranking the similarity between polygons, and results in the maximum 

range between the pair-wise distances computed.  Furthermore, our results for the clustering ap-

plication show that with the use of the intrinsic and extrinsic spatial attributes of the polygons 

along with the non-spatial attributes results in more cohesive clusters.   

Finally, we use the term ―dissimilarity‖ instead of ―distance‖ because our dissimilarity 

function does not satisfy the symmetry and triangular inequality properties of distance metric 

(Arkhangel'skii & Pontryagin, 1990).  

2.2 Related Work 

In this section we present an overview of the various distance functions proposed in literature for 

measuring the distance between two polygons along with the problems associated with their use. 

Polygons in general can be concave or convex, small or large, elongated or compact.  Further-

more, completely disjoint polygons can have overlapping bounding boxes; adjacent polygons can 

share a single point, a segment on the boundary or even multiple segments.  Based on these prop-

erties of the polygons the following distance functions have been proposed.   

Centroid Distance. One way to approximate polygon objects is to represent each object 

by a representative point, such as the centroid of each object, and then find the distance between 

the centroids of the polygons.  However, this approach is generally not effective since the objects 

may have very different sizes and shapes.  For instance, a rectangular building may have a size of 

500 square meters, whereas a lake may have a size of 300,000 square meters with irregular elon-

gated shape.  Simply representing each of these objects by its centroid, or any single point, does 

not take into the account the extents of the polygons.  Another problem with this approach is that 
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the centroid may not be inside the polygon (e.g., for some concave objects) and may indeed be 

inside another object. 

Minimum Bounding Rectangle Distance. There is a large body of work in shape analy-

sis (e.g., Gardoll 2000; Shapiro & Stockman, 2001).  For example, the minimum bounding rec-

tangle (MBR) of a polygon can be used as a first-order approximation of the shape and orienta-

tion of the polygon: it is the smallest rectangle that encloses an object.  Distance of two polygons 

can be measured by finding the distance between the centers of their respective MBRs.  However, 

many of the same problems described for centroid-based distances remain. For example, the cen-

ter of the MBR of a polygon may not fall within the polygon, or the MBRs of two polygons may 

overlap. 

Separation distance. The distance between a point P and a line L is defined by the per-

pendicular distance, between the point and the line, i.e., min{d(P,Q)|Q is a point on L}. Thus, 

given two polygons A and B, we can define the distance between these two polygons to be the 

minimum distance between any pair of points in A and B, i.e., min{d(P,Q)|P,Q are points in A,B 

respectively}.  This distance is called the separation distance (e.g., distance between polygons P1 

and P3 as shown in Figure 1 and is exactly the same as the minimum distance between any pair of 

points on the boundaries of A and B (Dobkin & Kirkpatrick, 1985).  

However, if two polygons intersect or share boundaries or even a point, their separation 

distance is zero. This definition of distance is quite unsatisfactory for geospatial applications, e.g., 

the distances between P1 and P2 and between P2 and P3 , as shown in Figure 1.  The separation 

distance between two adjacent polygons will always be zero and is an inappropriate measure 

since all polygons will have shared boundaries with their neighbors.  The transitive relationship in 

terms of separation distance does not hold: in Figure 1, for example, the separation distance be-

tween P1 and P3 is non-zero, even though each has a zero separation distance with P2. 
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Figure 1: Separation distance where the transitive relation does not hold. 

Min-Max Distance. Another way to measure the distance between polygons is to find 

the minimum or maximum distance between each pair of vertices of the polygons. However, this 

method either overestimates or underestimates the true distance between two polygons as shown 

in Figure 2(a). It shows the separation distance (a), the minimum distance between vertices (b), 

the maximum distance between vertices (c), and the distance between the centroids (d). It is clear 

that both b and c do not match the intuitive notion of the distance between the two polygons. If 

we only consider the minimum or the maximum distance between vertices, we overlook the shape 

of the polygons as shown in Figure 2(b), where the shortest and longest distances between any 

pair of vertices are shown in red and blue, respectively.  Clearly, these distances are independent 

of the shape of the polygons, i.e. many polygons with different shapes can have the same distance 

as long as we maintain the two extreme (minimum or maximum) points in the two polygons. 

Hence these are inappropriate as distance measures. 

  

(a)                                                                   (b) 

Figure 2: Minimum and maximum distance between vertices. 
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Hausdorff distance. The Hausdorff distance between two sets of points (Rote, 1991) is 

defined as the maximum distance of points in one set to the nearest point in the other set.  Formal-

ly, the Hausdorff distance from set A to set B is defined as: 

 ),(minmax),( badBAh
BbAa 

  

where a and b are points of sets A and B, respectively, and d(a, b) is any distance metric 

between the two points a and b; for simplicity, we can take d(a, b) as the Euclidian distance be-

tween a and b .  If the boundaries of the polygons Pi and Pj are represented by two sets of points 

A and B, respectively, we can use this as a distance measure between two polygons.  

   ),(),,(max, ABhBAhPPD jih   

Figure 3 presents a comparison between the Centroid distance and Hausdorff distance of 

two polygons. For convex polygons the Hausdorff distance, defined on the set of vertices of po-

lygons, usually gives as good an estimate of distance as the Centroid distance. However, using the 

centroids to measure the distance between two polygons may not give us the ―true‖ distance for 

concave polygons.  As shown in Figure 3, the Centroid distance Dc may underestimate or overes-

timate the exact distance when the centroid of a concave polygon falls outside the polygon.  The 

Hausdorff distance, Dh, defined on the two sets of vertices of polygons, gives a more accurate 

measurement.   

 

Figure 3: Comparison of Hausdorff distance with centroid distance. 
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Fréchet Distance. In order to measure the distance between polygons based on their 

shape, Fréchet distance (Buchin, Buchin, & Wenk, 2006) is considered to be more appropriate 

than Hausdorff distance (Rote, 1991).  An intuitive definition of the Fréchet distance is to im-

agine that a dog and its handler are walking on their respective polygon boundaries. Both can 

control their speed but can only go forward. The Fréchet distance of these two polygon bounda-

ries is the minimal length of any leash necessary for the dog and the handler to move from the 

starting points of the two curves to their respective endpoints.  It is formally defined below: 

Let f, g be parameterizations of curves or polygons, i.e., continuous functions 

kdkRgf dk  },2,1{,]1,0[:,  

Then their Fréchet distance (DF) is 

))(()(maxinf),(
]1,0[]1,0[:

tgtfgfD kk tF 





 

where the re-parameterization σ ranges over all orientation preserving homeomorphisms. 

It is important to note that Fréchet distance is used only for shape matching.  It does not 

measure the geographic distance between two polygons in the geospatial applications for in-

stance.  For such purposes Hausdorff distance is more appropriate as shown in Figure 3.   

In addition to the distance functions defined above, several ways to combine geographi-

cal distances and non-geographical dissimilarities into a single pair-wise similarity value have 

been proposed in literature. Webster and Burrough (1972), Cliff et al. (1975), and Perruchet 

(1983) proposed different multiplicative and additive forms to combine such elements. These are 

defined below: 

WB Distance. Webster and Burrough (1972) proposed to compute the dissimilarity be-

tween pairs of polygons using the ‗Canberra metric‘. The Canberra metric between the i
th
 and the 

j
th
 sites is computed as follows: 
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Where 
ijD is the Canberra metric between polygons i and j, 

ijd is the geographic distance 

between the polygons i and j, 
maxd is the distance between the most distant pair of polygons, and 

w is a weighting factor. 

CXY Distance. Cliff et al. (1975) propose a combined distance metric )( cliffD  to measure 

the distance between two polygons i and j as: 

ijijcliff tdD )1(    

where 
ijd is some distance metric that measures the spatial separation between the i

th
 and 

j
th
 regions, 

ijt  is the distance metric that measures the distance between the non-spatial attributes 

of the two regions, and  represents a weighing constant )10(   . 0 , represents a purely 

non-spatial strategy, and 1 represents a purely spatial strategy. 33.0 and 66.0 signify a 

mixed strategy which has been shown by the authors to yield intermediate results with an average 

efficiency about twenty percent greater than that of the extremes. 

PXY Distance. Perruchet (1983) defines the aggregation index of dissimilarity, 
PD ,  be-

tween two polygons i and j as follows: 

)),(),,((),( jidjifjiDP   
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where xyyxf ),( , ),( jid is the geographic distance between the two polygons and is 

computed using the Euclidean distance function, and ),( ji is the aggregation index defined as 

the dissimilarity between the polygons based on their non-spatial attributes. An example of ),( ji

is given as: 

2

),( ji

ji

ji
vvji 







  

where 
i  is the mass of i, and iv  is the representation of i in the descriptor space. 

In summary, all the distance functions defined above focus on one or two aspects (dis-

tance and/or shape) of polygons. Our representation of a polygon includes their structural and 

organizational properties which are fundamentally different, and thus need to be treated different-

ly.  These properties are not incorporated in any of the functions proposed in literature in a com-

prehensive manner. This serves as the motivation of our  work to define a comprehensive dissimi-

larity function that effectively unifies the distance functions for each type of attribute of a poly-

gon.  

2.3 Dissimilarity Function for Geospatial Polygons 

Consider a set of polygons },...,,{ 21 nPPPP  where each polygon 
iP  is defined by a set of spatial 

and non-spatial attributes.  

The non-spatial attributes of a polygon include all the attributes of the polygon that are 

independent of the spatial location of the polygon. Examples of non-spatial attributes are – popu-

lation, average income, number of hospitals, number of major cities, etc.  

The spatial attributes of a polygon can be further divided into two categories: 1) intrinsic 

and 2) extrinsic. The intrinsic attributes describe the geometric properties of the polygon without 

any contextual information in a domain independent way. Examples of intrinsic attributes include 
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location, shape, area, aspect ratio, etc. The location of the polygon is represented as a set of ver-

tices, specified in some spatial coordinate frame.  

The extrinsic attributes encompass the various spatial objects that may exist within a po-

lygon, or may be shared by two or more polygons, which may however be defined independent of 

the polygon. Thus, the extrinsic attributes represent the elements that are either embedded into or 

intersect with the polygon.  These elements exist independently of the polygon, but share the 

geographic space with it in some fashion. There can be three classes of spatial objects: point, li-

near and areal. Examples of point spatial objects include buildings, shopping complexes, etc. Ex-

amples of linear spatial objects include rivers, roads, and mountain ranges. Examples of areal ob-

jects include reservoirs, crop areas, forests, and large lakes.  

Given two polygons, 
iP and 

jP , the Polygonal Dissimilarity Function (PDF) that meas-

ures the distance between two polygons in all the attribute spaces described above is defined as 

follows:  

)),(),,((),( jisjinsjiPDF PPdPPdfPPD     (1) 

where nsd is a function that computes the distance between two polygons based on the 

non-spatial attributes – see Equation 3, and sd is a function that computes the distance based on 

the spatial attributes – see Equation 4.  

The function f in Equation 1 can be any non-spatial function that combines the two dis-

tances.  We use a weighted sum that can easily adjust the contribution (i.e., the weight) of both 

the distances.  

),(),(),( jissjinsnsjiPDF PPdwPPdwPPD     (2) 

where 1 sns ww .  
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The weights nsw  and sw  are domain dependent, i.e. they should be tuned for the applica-

tions using experiential or expert knowledge. Therefore, we cannot explicitly assign them any 

fixed values. These weights play an important role in defining the contribution of the different 

types of attributes. For example in a clustering application of our dissimilarity function, if we are 

interested in clustering regions based on the density of population, and do not care that the re-

gions should be spatially contiguous, a higher weight may be assigned to the non-spatial 

attributes. On the other hand, if we want the clusters to be spatially contiguous, a higher weight 

must be assigned to the spatial attributes. 

2.3.1 Distance between Non-Spatial Attributes 

The distance between the polygons in the non-spatial attribute space )( nsd , can be defined using 

any distance measure such as the Euclidean distance function or the Manhattan distance function. 

We use the standard Euclidean distance as our distance measure as shown in Equation 3.  





m

k

jkikjins ggPPd
1

2)(),(      (3) 

where 
ikg  and 

jkg represent the k
th
 non-spatial attribute of polygons 

iP and 
jP  respec-

tively, and m  is the total number of non-spatial attributes. Please note that all the non-spatial 

attributes must be represented as ordered numerical attributes so that they can be integrated to-

gether.  Furthermore, all the attributes must be normalized before the computation of the distance.  

The normalization can be performed by dividing all the values in the dataset by the largest value 

in the dataset (Han & Kamber, 2006).  We assign an equal weight to all the non-spatial attributes.  

However, if desired, different weights may be assigned to the various non-spatial attributes. In 

this case, the equation for the distance function for non-spatial attributes will be as follows: 





m

k

jkikkjins ggwPPd
1

2)(),(      (3-1) 
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2.3.2 Distance between Spatial Attributes  

The distance between the polygons based on their spatial attributes (
sd ) is defined as a function 

of the distance between their intrinsic spatial attributes (
insd ) and their extrinsic spatial attributes (

exsd ) as reflected in Equation 4.  The function 
insd  is defined in Equation 6, and the function 

exsd  is 

defined in Equation 15.  

),(),(),( jiexsexsjiinsinsjis PPdwPPdwPPd     (4) 

where 1 exsins ww .  

2.3.2.1 Distance between Intrinsic Attributes  

Among the intrinsic attributes of polygons, location is the most important.  The location of a po-

lygon is defined as a vector of its vertices.  Intuitively, we expect the distance between two poly-

gons with shared boundaries to be shorter than the distance between two polygons that do not 

have a common border.  This is based on the assumption that two regions that share a boundary 

are closer than two regions—with everything else being equal—that do not, an assumption that 

has been used in domains dealing with spatial data such as image processing and structural organ-

ization (Jiao & Liu, 2008). The importance of geographic distance and the shared boundary 

length between two regions in various political applications have been demonstrated in (Furlong 

& Gleditsch, 2003).  

The Hausdorff distance function as defined in Section 2.1 is a suitable distance function 

to measure the distance between the vertices of two polygons as it neither under-estimates nor 

over-estimates the distance between two polygons.  However, the standard Hausdorff distance is 

defined on the set of points and does not incorporate any shared boundary. In order to incorporate 

this, we define a new distance measure, called boundary adjusted Hausdorff distance that is in-

versely proportional to the length of the shared boundary between two polygons iP and 
jP  as 

follows: 
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where hd  is the original standard Hausdorff distance, is and 
js are the perimeter lengths 

of polygons iP and jP , respectively, and 
ijs is the length of their shared boundary.  This dis-

tance, hsd , is smaller than the standard Hausdorff distance when two polygons have shared 

boundary, and becomes the standard Hausdorff distance when two polygons have no shared 

boundary, i.e., when 
ijs = 0.  We use twice the shared distance in the definition to balance the 

effect of the denominator. 

Other than location, for the other intrinsic attributes, we compute the Euclidean distance 

between the individual attributes of the polygons in order to measure the distance between the 

polygons. Finally, the distance between polygons 
iP and 

jP  based on their intrinsic attributes 

 insd  is defined as: 
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jkikstjihshsjiins ttwPPdwPPd
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where ikt  and 
jkt  represent the k

th
 structural attribute of polygons 

iP and 
jP  respectively, 

and r  is the total number of structural attributes, hsw  represents the weight assigned to the mod-

ified Hausdorff distance function, 
stw  is the weight assigned to the remaining intrinsic spatial 

attributes, and 1 sths ww .  

2.3.2.2 Distance between Extrinsic Attributes  

Extrinsic attributes incorporate the spatial objects present within the polygons or shared by two or 

more polygons.  Given below is a framework that is used for defining the distance between two 

polygons based on their extrinsic attributes. The distance is based on the following properties of 
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the various spatial objects with respect to the polygon – 1) density, 2) extent (the area covered by 

the object within the polygon), 3) spatial distribution, 4) topology and 5) direction.  

The density, extent and distribution of a spatial object within a polygon are indicative of 

the underlying forces (e.g. climate or other biological or geophysical or chemical) which influ-

ence the polygon.  In the geospatial domain for example, the presence of clusters of oak trees in 

two polygons is indicative of similar soil and/or climate regime, and therefore both the polygons 

are likely to be more similar to each other.  Therefore two polygons with similar object density 

and distribution are more likely to be similar. The topology of spatial objects, on the other hand, 

especially of linear spatial objects, is important as it captures the binary relationship between the 

polygons with respect to other spatial objects. For example, a physical barrier between the poly-

gons (e.g., a mountain range) can potentially increase the physical distance between the polygons, 

and hence discourage the polygons to be clustered together.  

Due the wide differences in their construction, e.g. an areal object extends over a large 

area, whereas a point object is simply a single point within the polygon, not all the different as-

pects mentioned above are applicable to every type of spatial object. Table 1 lists the different 

types of characteristics applicable to the different types of spatial objects. 

In Table 1, n  is the number of times the spatial object occurs within the polygon, A  is 

the total area of the polygon, 
ia  is the total extent of the areal object i  within the polygon, and 

iz  is the test statistic obtained from the Mean Nearest Neighbor test for complete spatial random-

ness (CSR)  ( Donnelly 1978), and N/A stands for not applicable.  Next, we define the functions 

that are used to find the distance between two polygons on the basis of the above mentioned 

properties of the spatial objects present within the polygons. 
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Table 1: Different characteristics of spatial object attributes 

 Density Extent Distribution Topology Direction 

Linear Object 
A

n
dn   N/A iz  Defined below Defined below 

Areal Object 
A

n
dn   

A

a
e i  

iz  Defined below Defined below 

Point Object 
A

n
dn   N/A iz  N/A N/A 

 

Density and Extent.  Density is the number of times an object occurs within a polygon 

divided by the area of the polygon. Extent is the total area covered by the object within the poly-

gon. We measure the distance between two polygons on the basis of the density of the objects 

using Equation 7, and on the basis of extent using Equation 8. 

),max( ji

ji

density
dndn

dndn
d


       (7) 

where idn  is the density of point object m in polygon iP , 
jdn is the density of point ob-

ject m in polygon 
jP . 

),max( ji

ji

extent
ee

ee
d


       (8) 

where ie is the total extent of an areal object within polygon iP , 
je is the total extent of 

the areal object within polygon 
jP . 

Distribution.  The spatial distribution of an object is measured using the Mean Nearest 

Neighbor test for complete spatial randomness (CSR) (Donnelly 1978 ). The statistic produced as 

the output of this test is a fair indicator of the presence of aggregation, regularity or randomness 

of events located within a polygon. This information about the polygons helps us in identifying 

the polygons that have a similar underlying structure. 
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Please note that the spatial distribution test is only applicable for point data set.  There-

fore, in order to measure the distribution of areal objects, some methodology needs to be followed 

to represent areal objects as a set of points.  While more complicated methods can be devised for 

this purpose, as the areal objects present within the polygons are an order smaller in magnitude, 

for simplification purposes we represent each areal object by its centroid.  To measure the distri-

bution of linear objects, we take a fixed number of points from each linear object, and use these 

points for the spatial randomness test. We measure the distance between two polygons on the ba-

sis of the distribution of the spatial objects using equation 9. 

),max( ji

ji

ondistributi
zz

zz
d


      (9) 

where iz is the distribution of the point object m in polygon iP , and 
jz is the distribution 

of the point object m in polygon 
jP . 

Topology.  Relationships between a pair of spatial objects (points, lines, and regions) can 

be characterized as topological relations that describe how two such objects interact in a 2D 

space. The 4-intersection model, and the 9-intersection model (Egenhofer & Franzosa, 1994) de-

scribe an object as its interior, boundary, and exterior. The relationship between two objects is 

then based on the intersection of their interior, exterior or boundary. The topological relationship 

between two objects helps us in computing the distance function in between the two objects – two 

objects with similar topology are more likely to be similar than two objects with different topolo-

gy.  Here we provide an extension of the framework proposed by Egenhofer and his colleagues  

(Egenhofer & Franzosa, 1994), (Egenhofer & Mark, 1995), (Egenhofer, Clementini, & Felice, 

1994) so that the topological relationship between two spatial objects can be defined with refer-

ence to a third spatial object. The topology of a polygon with respect to the linear objects is de-

fined as follows.  
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A polygon ( A ) can be divided into three segments – boundary ( A ), interior ( A ), and 

exterior ( A ). A linear feature )(l  may intersect the boundary, the interior, or the exterior of the 

polygon. Furthermore, the polygons may lie either on the same side of the linear feature, or they 

may be on opposite sides of the linear feature. Table 2 illustrates the different scenarios that may 

arise and define the topological relationships between the two polygons based on a linear feature. 

These scenarios are also demonstrated in Figure 4.  Once the relationship between two polygons 

with respect to a linear feature is determined, the distance between the two polygons is computed 

on the basis of the following two rules: 1) If the linear feature intersects the interior of both the 

polygons, then the distance between them is the smallest. 2) If the linear feature intersects only 

the exterior of both the polygons, then the distance is the largest. 

Table 2: Different possible scenarios based on topological relationship of a linear feature (l) with two polygons (A 

and B)  

  A  A  
A  B  B  

B  
Figure 

Scenario 1 l  
X   X   Figure 4(a) & 4(b) 

Scenario 2 l  
X    X  Figure 4(c) 

Scenario 3 l  
X     X Figure 4(d) & 4(e) 

Scenario 4 l  
 X  X   Figure 4(c) 

Scenario 5 l  
 X   X  Figure 4(f) 

Scenario 6 l  
 X    X Figure 4(g) 

Scenario 7 l  
  X X   Figure 4(d) & 4(e) 

Scenario 8 l  
  X  X  Figure 4(g) 

Scenario 9 l  
  X   X Figure 4(h) & 4(i) 

 

 

Figure 4: Topological relationship between two polygons based on a linear feature – linear feature may intersect 

the interior, exterior or the boundary of a polygon. 
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We generalize the distance function between a polygon and the linear feature based on 

the topological relationship as follows.  
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where 
iP  is any polygon, and l  is any linear feature, 10    , and ),( lPf i

 = 

Nearest distance of 
iP  to l . Here   is defined as the constant minimum distance that any poly-

gon will have to a linear feature that intersects its interior and   is defined as the constant dis-

tance that any polygon will have to a linear feature that intersects its boundary.   

The topology of a polygon with respect to an areal object will follow the same design as 

presented for the linear object. The scenarios illustrated in Table 2 and Figure 5 can be extended 

for areal objects by replacing the linear feature with an areal object. For example, if we take into 

consideration underground aquifers which are shared by two watersheds, then the areal object 

(underground aquifers) intersects the interior of both the polygons iP  and jP  (the two water-

sheds). The distance, based on the topology of the polygon with respect to the areal object, be-

tween the areal object iP  will be equal to   and the distance of polygon jP  to the areal object 

will also be  . Similarly, the rest of the cases can be extended from the linear objects to the areal 

spatial objects.  

Direction.  The linear and areal spatial objects may also impose directional constraints on 

the polygons, i.e. the polygons may be on the same side of the linear feature, or on opposite sides. 

Furthermore, a linear or an areal feature present between two polygons may increase or decrease 

the distance between the polygons. Based on these two factors, the distance between two poly-

gons iP  and jP  based on the linear feature l, is given by the following function: 

         lPPoppslPPoppglPPd jijiji ,,,,|,   (11) 
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where  lPPoppg ji ,,  is 1 if the linear feature l is defined to be opposing (i.e. the pres-

ence of the linear feature makes the polygons dissimilar), and 0 otherwise;  is defined as a con-

stant that ensures that the linear feature which is opposing in nature increases the distance be-

tween two polygons to an extent so that they are not categorized as similar polygons; and 

 lPPopps ji ,,  is an indicator of the location of the polygons with respect to the linear feature. 

It has a value of 1 if the polygons are on the opposite sides of the linear feature, or 0 if the poly-

gons are on the same side.  

It should be noted that these values are also domain dependent. If the domain is such 

where the polygons are considered to be closer to each other if they are on opposite sides of the 

linear feature rather than on the same side, then the values defined for  lPPopps ji ,,  can be 

reversed. This same argument also applies to  lPPoppg ji ,, . Similarly, we can apply the above 

equation for an areal object when it is shared by two polygons. 

Due to the difference in the characteristics of the three types of spatial objects, we treat 

them separately, and define three different functions, d , d  and d  to compute the distance for 

point, linear, and areal objects defined in Equations 12, 13 and 14 respectively.  

The distance based on spatial point objects is: 
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where k  is the total number of different point objects present within both polygons iP and 
jP  ,   

The distance based on spatial linear objects is: 
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where l  is the total number of different linear objects present within both polygons iP and 
jP  , 

Note: There may exist a scenario where the linear feature m  is exterior to both the polygons, and 
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computation of pair-wise boundary adjusted obstructed Hausdorff distance for the polygons in the 

dataset – require O(n
2
) number of computations, where n is the number of vertices of the poly-

gons.  In order to reduce the computational complexity it is important to reduce the vertices of the 

polygons.  In many practical applications, the number of vertices of polygons can be greatly re-

duced without compromise in the quality of data using the Douglas-Peucker polygon simplifica-

tion algorithm (Peucker & Douglas, 1975) is used. For example, Figure 37(a) shows the census 

tracts for the city of Lincoln, Nebraska. Originally, the dataset has 55 polygons and the total 

number of vertices of all the polygons is 1211. After the application of the Douglas-Peucker algo-

rithm the polygons are simplified and have only 408 vertices. The simplified polygons are pre-

sented in Figure 37(b).  Furthermore, an optimized version of the Dijkstra‘s algorithm can be 

used.  

With the pair-wise boundary adjusted obstructed Hausdorff distance for the polygons pre-

computed, and with the use of an indexing structure such as a R*-tree, the computational com-

plexity of P-DBSCAN+ will be the same as that of DBSCAN, i.e. O(n log n). 

4.3.6 P-DBSCAN++  

In this section we propose an alternate version of the P-DBSCAN+ algorithm that allows the user 

to detect strong clusters first, i.e. clusters with degree of visibility 1.0, followed by the detection 

of weak clusters, i.e. clusters with degree of visibility between 0 and 1. The core algorithm re-

mains the same as P-DBSCAN+ (Figure 36). The idea is to first apply P-DBSCAN+ with  = 1.0. 

The user is not given an option here to select an alternate . Once the results are obtained for the 

first application of P-DBSCAN+, the user is now allowed to select any , and re-apply P-

DBSCAN+ on the polygons that were not assigned to any cluster previously.  Thus the second 

iteration of P-DBSCAN+ with a weaker   will allow the user to detect weaker clusters.  Using 



88 

this approach we give the user the freedom to detect the maximum number of clusters while still 

retaining some clusters with visibility 1.0.  

 

(a) 

 

(b) 

Figure 37: (a) Lincoln, NE census tracts – 55 polygons with 1211 vertices. (b) Simplified Lincoln, NE census tracts 

using the Douglas-Peucker algorithm – 55 polygons with 408 vertices. 

4.4 Experimental Analysis 

In this section we describe the performance of our algorithm P-DBSCAN+ on a synthetic dataset 

for 110 polygons and on a real dataset comprising of the census tracts of Lincoln, NE. Obstacles 

have been added to both the datasets. We also compare the results obtained by P-DBSCAN+ with 

the results of P-DBSCAN and DBCLuC. P-DBSCAN is the parent algorithm of P-DBSCAN+ in 

the sense that it does not handle obstacles as constraints.  The reason for this comparison is to 

show the importance of taking the obstacles into consideration while forming clusters of spatial 



90 

Finally, if we are to apply P-DBSCAN++ to the synthetic dataset where the first iteration 

is done with  = 1.0 and the second iteration is done with  = 0.5, we find that three clusters are 

detected (Figure 42).  While the two clusters detected in the first iteration are the same as the ones 

detected previously with overall degree of visibility of 1.0, the third cluster detected is composed 

of the polygons that share the linear obstacle and were previously classified as outliers.  

 

Figure 38: Synthetic dataset with 110 polygons and 5 obstacles 

 

Figure 39: Result of clustering using P-DBSCAN, i.e. without taking the obstacles into consideration  = 200 

 

Figure 40: Result of clustering using DBCLuC with  = 200. 

 

Figure 41: Result of clustering using P-DBSCAN+ with  = 200 and.  = 1.0 
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Figure 46: Result of clustering using P-DBSCAN+ with  = 1.0 

 

Figure 47: Result of clustering using P-DBSCAN++ with   = 1.0, 0.5 

4.5 Conclusion and Future Work 

In this chapter, we have proposed our research and investigation into spatial clustering of poly-

gons in the presence of obstacles.  First, we have defined there types of visibility relationship be-

tween two polygons:  complete visibility, partially visibility, or invisibility.  We have also defined 

the degree of visibility between two polygons that quantifies the visibility relationship in the 

presence of obstacles.  Using the visibility relationship, we have extended the P-DBSCAN algo-

rithm to the P-DBSCAN+ algorithm that clusters polygons in the presence of obstacles.  We have 

also proposed a variant P-DBSCAN++ that allows clusters of complete visibility and partial visi-

bility to be detected.  Our experiments compared our algorithms with the point-based, density-
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based DBCLuC algorithm in a synthetic dataset and a real-world census tract dataset.  We have 

demonstrated that, from the results, both P-DBSCAN+ and its variant are able to handle obstacles 

well while the variant P-DBSCAN++ is able to provide a more ―complete‖ clustering by also de-

tecting weaker clusters.  Both algorithms are also better than DBCLuC, while more studies will 

need to be conducted to ascertain the validity of our results with full confidence.    

So far we have applied our algorithm to a set of spatially contiguous polygons.  The algo-

rithm and the pre-processing of the data may easily be extended to a set of non-contiguous poly-

gons by drawing the visibility graph for each individual polygon, and in order to find the distance 

in between the polygons, we simply find the Euclidean distance between the vertices. 

We have treated obstacles as impassable zones in this chapter unless there is a facilitator 

present that allows one to define a path through the obstacle.  However, in many cases one may 

cross through an obstacle such as a mountain or a lake with additional cost.  As part of our future 

work, we will define a new distance function that takes into consideration this cost function for 

the various obstacles.  Furthermore, based on the different types of obstacles the weight of the 

cost function will be varied as it may be easier to go through one type of obstacle as compared to 

another.  We will also take into account the gradation in the degree of ―obstruction‖ as one moves 

away from the center of the zone of influence.  And as a result, that would also imply the visibili-

ty, between two polygons through this zone, can have different values depending on where the s-t  

path cuts across the zone.   

In addition to obstacles, another category of objects may be present within the dataset 

that may influence the result of the proximity-based or density-based clustering algorithms.  

These are known as facilitators.  Facilitators are objects that help in reducing the distance be-

tween two spatial objects, and therefore making them closer to each other.  Examples of facilita-

tors include highways, bridges, etc. Thus while the obstacles may split a cluster into two or more 

smaller clusters, the presence of facilitators may lead to the unification of two or more smaller 
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clusters into a single unified cluster.  For example, if there is no path between two polygons be-

cause of the presence of a river between them, both the polygons will belong to different clusters.  

However, if a bridge is present on the river connecting the two polygons together, they may now 

belong to the same cluster. We also plan to include the facilitators within our framework.  

Publications 

This chapter appears in the following: 

1. Joshi, D., Samal, A., & Soh, L-. K. (under preparation). Polygonal Spatial clustering in the 

Presence of Obstacles and Facilitators, to be submitted to Transactions in GIS.  
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Chapter 5: Constraint-Based Clustering of Polygons 

5.1 Introduction 

Redistricting is the process of dividing a geographic space or region of spatial units often 

represented as polygons into smaller subregions or districts.  In other words, it can be viewed as a 

set partitioning problem, i.e. the problem is to cluster the entire set of spatial polygons into groups 

such that a value function is maximized (Altman, 2001). Because of the spatial properties in-

volved, redistricting is akin to spatial clustering.  At the same time, as the most common use of 

these districts is to facilitate some form of jurisdiction, redistricting often involves satisfying or 

conforming to constraints that represent policies, laws and regulations.  Typical spatially-flavored 

constraints are spatial contiguity and compactness, while an example of domain-specific con-

straint is uniform population (or resource) distribution.   

Spatial clustering deals with spatial data that is generally organized in the form of a set of 

points or polygons.  Most spatial clustering algorithms proposed in the literature focus on cluster-

ing point data (Han, Kamber, & Tung, Spatial clustering methods in data mining: A Survey, 

2001).  However, when applying these algorithms to cluster polygons instead of points, these al-

gorithms fall short of giving accurate results (Joshi, Samal, & Soh, Density-Based Clustering of 

Polygons, 2009b).  The main cause of the inadequacy is that in comparison to polygons, points 

are relatively simpler geographic objects.  Polygons, especially in the geographic space, share 

spatial and topological relationships and cannot be accurately represented as points.  For example, 

two polygons may share boundaries with each other, or may cover different amounts of area.  

None of these conditions can be captured in point datasets.  Redistricting is thus a polygonal spa-

tial clustering problem as most of the space around us is divided into polygons, e.g. states, coun-

ties, census tracts, blocks, etc.   

Furthermore, while clustering is a form of unsupervised learning, redistricting requires 

the use of some form of domain knowledge.  Efficient use of this available information during the 
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process of clustering can significantly enhance the quality of the clusters.  Use of constraints in 

clustering is widely examined in data mining.  Examples of constraint-based clustering algo-

rithms are COP-KMEANS (Wagstaff, Cardie, Rogers, & Schroedl, 2001), C-DBSCAN (Ruiz, 

Spiliopoulou, & Ruiz, 2007), etc.  However, these algorithms are all point-based. Constraints ap-

plied during the process of clustering can be of two types – instance-level constraints and cluster-

level constraints. Instance-level constraints are applied to individual objects being clustered.  Ex-

amples of instance-level constraints are must-link and cannot-link constraints (Davidson & Ravi, 

2005).  Cluster-level constraints on the other hand, are applied to the cluster as a whole.  Exam-

ples of cluster-level constraints are averaging or summation constraints (Davidson & Ravi, 2004).  

For example, the sum of the population of a cluster must be less than or equal to  .  It has been 

proven that satisfying such cluster-level constraints in the clustering process is NP-hard (Altman, 

2001).  

In this chapter we present a suite of clustering algorithms for clustering spatial polygons 

in the presence of constraints.  The core algorithm, called the Constrained Polygonal Spatial Clus-

tering (CPSC) algorithm, is designed to solve the problem when the constraints are hard and in-

violable.  We further propose two extensions of CPSC, namely, CPSC* and CPSC*-PS (i.e. 

CPSC* with Polygon Split). CPSC* is designed to handle soft constraints, while  CPSC*-PS is a 

further extension to allow a polygon to be split during the clustering process using an underlying 

tessellation in order to improve the quality of the clustering results.  The uniqueness of these al-

gorithms is that they make use of the spatial and topological relationships between the polygons 

as well as the domain knowledge present in the form of constraints to cluster polygons using an 

A* search-like underlying process.  Briefly, the core algorithm CPSC is divided into three main 

steps: 1) select seeds, 2) decide the best cluster to grow, and 3) select the best polygon to be add-

ed to the best cluster.  Several novel strategies of the algorithm include: 
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 Use of heuristic functions to apply the constraints during clustering.  A heuristic function     

has two components: (1) the distance function     that measures the distance of the current 

state of the cluster from the desired goal, and (2) the cost function     that measures the re-

duction in the flexibility of the growth of all the other clusters.  The use of these heuristic 

functions facilitates efficient use of agglomerative type cluster-level constraints.   

 Integration of constraints in seed selection. Instance-level and cluster-level constraints from 

the domain are used from the outset in seed selection.  By applying the constraints and select-

ing the seeds using the heuristic functions we make the algorithm more robust to order de-

pendency and poor initial seeding.  

 Selection of the best cluster to grow. At the beginning of each iteration CPSC selects the best 

cluster to grow based on the heuristic function ( ) that approximates the level of ―need-to-

grow‖ for each cluster; that is, the cluster with the greatest need is selected to be grown next.  

 Selection of the best polygon to be added to the best polygon. Once the best cluster has been 

selected to grow, the best polygon in terms of the level of ―reduction of flexibility‖ is selected 

using the heuristic function   ; that is, the polygon with minimal impact on the growth of sur-

rounding clusters is chosen to be added to the best cluster.  

 The polygons are allowed to move from one cluster to another. As the growth process of a 

cluster follows a greedy approach, every cluster selects the polygon that minimizes its need at 

that stage. A cluster may decide that the polygon which has already been assigned to another 

polygon is the best polygon that meets its need. The move of the polygon from its original 

cluster to the new cluster is allowed by CPSC in the special case when a new cluster has no 

unassigned polygon present in its neighborhood. 

Based on the same underlying process as CPSC, CPSC* finds a solution by allowing the 

user to prioritize the constraints.  Further, it relaxes the constraints to allow un-clustered polygons 

to be assigned to clusters even though they would have violated the original constraints.  CPSC* 
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also has a deadlock detection and breaking mechanism that ensures convergence of the algorithm. 

CPSC*-PS (i.e., with polygon split) further improves the quality of the clusters produced by 

CPSC*.  It uses the underlying structure within each polygon to split it into smaller polygons, 

which can then be assigned to different clusters, thus taking the clusters produced by CPSC* a 

step closer to the desired target state.  

For our comparative and validation study, we apply the CPSC suite to two widely used 

redistricting problems: congressional redistricting and formation of school districts. We compare 

the results of CPSC for the congressional redistricting problem with three other techniques based 

on graph partitioning (Bodin, 1973), simulated annealing (Macmillan, 2001), and genetic-based 

algorithms (Bacao, Lobo, & Painho, 2005).  Congressional redistricting has been inflicted tradi-

tionally with issues such as Gerrymandering (Hayes, 1996) and unequal population distribution.  

In our study, we find that our algorithm outperforms the other three algorithms by producing dis-

tricts that have almost equal population and are spatially compact. We then applied CPSC* to the 

problem of school districting which is a task that is frequently performed to assess the distribution 

of resources and delegation of authority. Finally, in order to validate the CPSC*-PS algorithm, we 

have applied it to a sample dataset. 

The chapter is organized as follows.  5. 2 discusses other redistricting algorithms.  Sec-

tion 5.3 presents the CPSC algorithm, and its two extensions.  Section 5.4 describes the applica-

tion domains and implementation of the CPSC algorithm suite in each domain.  Section 5.5 cov-

ers the experimental analysis of our algorithms.  Finally Section 5.6 gives our conclusions and the 

directions for future work. 

5.2 Related Work 

Redistricting is essentially an optimization problem where the global optimum solution is difficult 

to find.  This is because the size of the solution space can be enormous.  A simple brute force 

search through all the possible solutions is impractical especially when the dataset size increases.  
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As a result, the problem of redistricting has been considered to be difficult to solve precisely and 

efficiently.  Moreover, due to the size of the real datasets, most of the current techniques used for 

automated redistricting resort to unproven guesswork (Altman, 2001) and random selection, and 

are therefore inefficient and may not be accurate. 

Several meta-heuristic approaches have been proposed in the past to solve this problem.  

These meta-heuristic approaches are often based on genetic algorithms, simulated annealing, or 

graph partitioning techniques.  While all of these algorithms work with polygonal datasets, they 

do not exploit either the spatial properties of the polygons themselves or the nature of the geo-

graphic space. In this section we give an overview of different approaches that have been imple-

mented to solve redistricting problems. The different approaches discussed here are graph parti-

tioning, simulated annealing and genetic algorithm based redistricting methods. The implementa-

tion of these methods shown here is for the congressional redistricting problem. We have hig-

hlighted their advantages and disadvantages. The results of these algorithms are compared with 

CPSC in Section 5.5.1.  

5.2.1 Graph Partitioning 

The problem of partitioning a geographic area into a collection of contiguous, approximately 

equal population districts can be viewed as a graph partitioning problem.  The graph is formed by 

representing each polygon within the dataset as a node, and the polygons that share boundaries 

are connected by an edge. Furthermore, each node is assigned a weight which is equal to the pop-

ulation of the polygon.  The problem is now to divide the graph into a fixed number of sub-graphs 

or clusters such that the sum of the weights of the nodes within each cluster is equal, and each 

cluster is connected.  The outline of the graph partitioning algorithm for congressional redistrict-

ing proposed by (Bodin, 1973) is as follows. 

A label is assigned to each node in the graph.  This label has three components: the clus-

ter number to which the node belongs    , the weight of the cluster   , and the predecessor of the 
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node in the graph    .  The weight of the cluster is the sum of the populations of the nodes as-

signed to that cluster. Initially every node is assigned the label –        , indicating that the 

     ,              , and the      . The seeds of the clusters are selected randomly.  Each 

seed is assigned to a separate cluster, and its label is changed to          where   is the cluster 

number (     ) and   is the population of the seed (     ). And, as each seed forms the root of 

a cluster, it does not have any predecessor. Therefore        .  Subsequently a pass is made 

through all the nodes in the graph and each node is assigned to a cluster based on the weight of 

the cluster, where the weight of the cluster is equal to the total population of the cluster, and the 

predecessor of the node.  

Step 2 of the algorithm takes the clusters produced in Step 1 and improves them by ex-

changing nodes between clusters.  Spatial contiguity is preserved during the exchange process. 

The advantages of this approach are that it is computationally fast, and it presents the user 

with several potentially useful plans.  However, there are several disadvantages with this ap-

proach.  1) While this procedure is extremely fast computationally, it does not always terminate at 

an optimal solution.  2) The random selection of seeds may lead to the development of poor 

plans.  3) There are no guidelines provided in this methodology to select the best plan.  4) This 

method does not work well when the number of seeds is large as the total number of plans that 

may be produced scales up very fast. 5) There is no intuitive way to incorporate intra-cluster con-

straints during the clustering process. 

5.2.2 Simulated Annealing 

Simulated Annealing is a general purpose optimization procedure based on the thermodynamic 

process of annealing of metals by slow cooling. In the redistricting problem the goal is to draw a 

plan such that the user defined constraints, such as equal population, are satisfied.  An example of 

an algorithm that applies simulated annealing to solve the problem of congressional redistricting 
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is Simulated Annealing Redistricting Algorithm (SARA) (Macmillan, 2001).  An outline of the 

algorithm is as follows: 

1. Select an over-populated cluster as the donor cluster.  

2. Choose, among the member polygons of the donor cluster, a polygon to be removed from the 

donor cluster. 

3. If contiguity of the donor cluster (i.e., the connectedness of all its member polygons) would 

be lost by this removal, return to step 2. 

4. Select a recipient cluster for the chosen polygon from amongst the neighboring clusters.  

5. (a) If the transfer of the selected polygon from the donor cluster to the recipient cluster would 

decrease the combined population deviation of the donor and recipient clusters then accept it; 

(b) if the transfer would increase the combined population deviation of the donor and reci-

pient clusters then accept it with a probability governed by the size of the deviation and the 

value of the temperature parameter. 

6. If the transfer is accepted, calculate the new population deviations of the clusters and add one 

to the count of successful transfers. 

7. If the aggregate population deviation of all clusters is within the target range then stop; oth-

erwise if the numbers of successful and unsuccessful swaps have not been exceeded a thre-

shold then go to Step 1; if the thresholds have been exceeded then reduce the value of the 

temperature parameter then go to Step 1. 

While simulated annealing based methods perform better than informal or manual me-

thods, they have several disadvantages.  1) An initial solution needs to be provided to the algo-

rithm.  2) The final solution produced is therefore heavily dependent on the initial plan provided 

to the algorithm.  3) More than one spatial constraint cannot be easily incorporated in algorithms 

such as SARA.  4) There are no guarantees that a global optimum will be found.  


