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Structural complexity of the polygons and their distribution in space also induces addi-
tional challenges. For example, the size of the polygons in a dataset may be unbalanced, i.e. half
are small, and the other half much bigger. The question is then: should the small and big poly-
gons be treated equally? Another scenario may involve two or more polygons sharing one or
more spatial object, for example, two or more counties sharing the same river. How should the
relationship be defined among these polygons that share the same spatial object? Yet another
example of such an issue is when two polygons are divided by a linear spatial object, such as a
river or a mountain range. Does the presence of the linear spatial object decrease or increase the
similarity between the two polygons? Finally, while in general, point datasets may contain noise
or outliers, they are relatively uncommon in the polygon datasets. Therefore, most of the times,
all the polygons present in a dataset need to be accurately clustered.

Furthermore, the problem of district and zone formation is particularly a difficult problem
to solve. This problem, in the past, has been deemed as computationally too expensive to be au-
tomated (Altman, 2001). This problem and other regionalization problems can be formulated as
polygonal clustering where the clusters must be spatially contiguous and compact. Representing
polygons as points and applying the point-based clustering algorithms may result in clusters that
are spatially disjoint, or clusters that meander all across space.

Finally, the temporal domain is ever present in any real-life application. Everything
changes with time. Animals migrate from one place to another with changing weather condi-
tions; people move from under-developed to developed places in the world; with the increased
global warming, there are climatic shifts happening around the world (Ravelo, Andreasen, Lyle,
Olivarez Lyle, & Wara, 2004). As a result, polygons that define most of these things also do not
remain constant in space across time (Robertson, Nelson, Boots, & Wulder, 2007). Thus, it is
natural that the polygonal clusters would also change their shape and location across time. There-

fore, it is not only important to develop techniques to identify static spatial clusters, but also clus-



ters that are dynamic in nature. Representing time as a first-class citizen in the spatio-temporal
clustering problem is an important challenge that has been a struggle in geospatial research. Most
of the past research performs spatial clustering at different snapshots in time and then compares
the resulting clusters (Kalnis, Mamoulis, & Bakiras, 2005). Performing true 3-dimensional clus-
tering in space and time is a challenge that needs to be addressed.

Thus the problem of polygonal clustering can be defined as: given a set of geospatial po-
lygons defined in both space and time, group the polygons into a set of clusters such that the po-
lygons within the same cluster are similar to each other with respect to their spatial and non-

spatial properties.

1.3 Proposed Approach

In this research we have addressed several fundamental problems in polygonal spatial clustering.
The basic principles used to solving these problems are:

1. Spatial Extent: Represent a polygon as a two dimensional entity with a set of vertices ra-
ther than only the centroid of the polygon in order to accurately represent the location of
a polygon. Using the centroid representation of the polygon may lead to inaccurate dis-
tance computation between two polygons.

2. Spatial Attributes: Integrate the spatial attributes and structure of polygons into the clus-
tering process. Spatial attributes include area, perimeter, minimum bounding rectangle,
ratio of the principal axes, shared boundary length, neighboring polygons, etc. Another
level of spatial attributes includes other spatial objects embedded within the polygons.
For example in a county, other spatial objects (e.g. lakes) may be present that can be
represented as polygons themselves.

3. Spatial Relationships: Take into consideration the binary relationships that may exist

within the polygonal datasets. For example, two polygons sharing a linear feature such as



a river may exhibit similar properties, and thus be related to each other with respect to the
river.

4. Spatial Autocorrelation: Guide the clustering process according to the principles that re-
flect the nature of the geographic space, e.g. spatial autocorrelation, spatial heterogenei-
ty, and Tobler’s First Law of Geography.

5. Density Connectivity: Extend the density-based connectivity concepts from points to po-
lygons in order to perform density-based polygonal clustering.

6. Spatial Constraints: Improve the clustering process further by the addition of different
types of user-defined constraints, e.g. hard or soft constraints, instance-level constraints
or cluster-level constraints (Davidson & Ravi, Towards efficient and improved
hierarchical clustering with instance and cluster level constraints, 2004).

7. Time as a First Class Citizen: Treat both space and time as equals in the clustering
process in order to bridge the gap between the spatial and temporal dimensions, and

detect dynamic clusters and their movement patterns across space and time.

1.4 Research Contributions

In this research, we have made four significant contributions to the state of the art in polygonal

clustering. They are briefly summarized below.

1. Dissimilarity of Geospatial Polygons: We have developed a polygonal dissimilarity function
(Joshi, Samal, & Soh, A Dissimilarity Function for Clustering Geospatial Polygons, 2009a),
(Joshi, Samal, & Soh, A Dissimilarity Function for Complex Spatial Polygons, Under
Review) that accurately computes the dissimilarity between two polygons by integrating both
non-spatial attributes and spatial structure and context of the polygons.

2. Density-Based Polygonal Clustering: We have developed a density-based clustering algo-
rithm for polygons known as P-DBSCAN (Joshi, Samal, & Soh, Density-Based Clustering of

Polygons, 2009b). P-DBSCAN extends DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), the



state-of-the-art density based clustering algorithm for point datasets to polygonal datasets.
We have further extended the algorithm to cluster polygons in the presence of obstacles (P-
DBSCAN-+) (Joshi, Samal, & Soh, Polygonal Spatial clustering in the Presence of Obstacles ,
Under Preparation).

3. Polygonal Clustering with Constraints: We have developed a suite of constraint-based poly-
gonal spatial clustering (CPSC) algorithms (Joshi, Soh, & Samal, Redistricting Using
Heuristic-Based Polygonal Clustering, 2009c), (Joshi, Soh, & Samal, Redistricting using
Constrained Polygonal Clustering, Under Review) for clustering polygons under a given set
of user-defined constraints. These algorithms provide a systematic approach for incorporat-
ing both hard and soft constraints, and holistically integrating them in the clustering process.

4. Spatio-Temporal Polygonal Clustering: We have developed a spatio-temporal polygonal
clustering (STPC) algorithm (Joshi, Samal, & Soh, Detecting Spatio-Temporal Polygonal
Clusters Treating Space and Time as First Class Citizens, Under Review) that uniquely treats
both space and time as first-class citizens. Using this algorithm we are able to bridge the gap
between the spatial and temporal dimensions, and overcome the bottleneck of snapshot ap-
proaches. Furthermore, in order to detect the dynamic changes that a cluster goes through in
its lifetime, we have developed an algorithm known as Detecting Movements in Spatio-
Temporal Clusters (DMSTC) (Joshi, Samal, & Soh, Analysis of Movement Patterns in
Spatio-Temporal Polygonal Clusters, Under Preparation) that analyzes the movement patterns

in spatio-temporal polygonal clusters.

1.5 Dissertation Overview

The structure of this dissertation is as follows. Chapter 2 describes the details of the polygonal
dissimilarity function. We also present the results obtained by applying our dissimilarity function
on a watershed dataset and county dataset. Chapter 3 presents the density-based clustering algo-

rithm for polygons known as P-DBSCAN. We also show the application of P-DBSCAN on a



county dataset in order to detect density-connected clusters of polygons. Chapter 4 details the
density-based clustering algorithm for polygons in the presence of obstacles known as P-
DBSCAN-+. Followed by which we show the application of P-DBSCAN+ on a census tract data-
set in the presence of obstacles such as rail-road tracks and rivers. Chapter 5 describes the suite
of constraint-based clustering algorithms for polygons known as CPSC, CPSC* and CPSC*-PS.
In this chapter we show the results for the congressional redistricting and school district forma-
tion applications. Chapter 6 presents the spatio-temporal polygonal clustering (STPC) algorithm.
We show the results of the application of STPC for drought analysis, spatial epidemiology, and
crime mapping applications. Chapter 7 presents the DMSTC algorithm that analyses the move-
ment patterns of spatio-temporal clusters as they move from one time stamp to another. This
chapter also shows the results of the analysis of the movement patterns of drought clusters, flu
clusters, and crime clusters. Finally, in Chapter 8 we present a summary of our work, along with

directions for future research.



Chapter 2: A Dissimilarity Function for Geospatial Polygons

2.1 Introduction

Explosive growth and widespread use of spatial datasets by organizations such as the space agen-
cies worldwide, the census bureau, and healthcare agencies have led to the need of developing
efficient and scalable algorithms to extract knowledge from these huge datasets (Shekhar &
Zhang, 2004). Spatial datasets are unique in that they store the spatial information in the form of
the longitude and latitude of every object. As a result, the complexity of the datasets increases.
Unlike transactional data, principles such as Tobler’s first law of geography — ‘All things are re-
lated, but nearby things are more related than distant things (Tobler, 1979),” and spatial autocor-
relation play significant role (Zhang et al, 2003) within the spatial datasets. As a result, the nor-
mal principles of independence that are assumed in the machine learning algorithms are not ap-
plicable to the spatial datasets.

Spatial data can further be divided into three different categories — point spatial datasets,
linear spatial datasets, and polygonal spatial datasets. While points datasets are easily represented
using their latitude and longitude, linear and polygonal datasets are much more complicated in
nature (Pease note that the polygons referred to here are the same as regions (CIiff et al, 1975) or
tessellations in space.) For example, the length of boundary shared between two polygons—
which may be used to determine spatial proximity of the two polygons—is lost when polygons
are represented as points. Moreover, for a concave shaped polygon, the centroid of the polygon
may lie outside the boundary of the polygon. Thus, if one tries to spatially analyze polygons
simply by representing them as points (typically their centroids) the result may not be accurate,
and the underlying spatial structure is lost. Furthermore, when considering spatial polygons,
there may be other spatial objects that lie within the polygons or may be shared by two or more

polygons. For example, lakes, rivers, and even manmade structures such as highways lie within
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geospatial polygons such as counties and watersheds. There is no appropriate representation of
this type of information when using the current state-of-the-art in spatial analysis. For example,
if one were to perform watershed analysis — where watersheds are naturally formed polygons
within the river basins — based on their relationship with a set of rivers, say, cutting through the
watersheds, there is no current spatial analysis technique that would allow us to do so.

In this chapter we propose a new dissimilarity function called the Polygonal Dissimilarity
Function (PDF) that comprehensively integrates both the spatial and the non-spatial attributes of
a polygon to specifically consider the spatial structure and organization of the polygons. This is
based on our earlier work presented in (Joshi et al. 2009b). We hypothesize that, in order to accu-
rately represent polygons in the geospatial domain, the attributes of the polygons should accurate-
ly capture both its spatial structure (intrinsic to the polygon) and its spatial organization (extrinsic
to the polygon) along with the non-spatial attributes of the polygons. The spatial structure of a
polygon represented using a set of intrinsic attributes refers to the area covered by polygon, its
location, its shape, etc. By taking the intrinsic attributes of the polygon into account we can find
out, for example, the extent of the boundary shared by two polygons, the information as men-
tioned before that is lost by representing the polygon as a point. On the other hand, the spatial
organization of a polygon represented using a set of extrinsic attributes refers to the topological
relationship between the polygon and its neighboring polygons within the dataset as well as other
spatial objects present within a polygon itself. Measuring the extrinsic attributes of the polygons
would thus allow us to take into account for example the spatial distributedness of other spatial
objects present within the polygons, giving us another perspective on the similarity between po-
lygons. Using this representation of the polygons, we define PDF as a weighted function of the
distance between two polygons in the different attribute spaces. In other words, PDF is a combi-
nation of a number of distance functions each pertaining to a different class of attributes describ-

ing a polygon. Furthermore, the weights in the dissimilarity function allow the users to customize
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their use of PDF based on the significance of the attributes in their application domain. For ex-
ample, in order to find the similar lakes based on their topological relationship—such as “adja-
cent to”— with watersheds, one would assign a greater weight to the spatial distance that meas-
ures topological relationships. On the other hand, in order to discover the lakes high in nitrogen
content, a higher weight must be assigned to the non-spatial attributes. In Section 2.3 we describe
the distance functions for the underlying attributes of the polygons along with the guidelines for
combining them effectively.

Our novel dissimilarity function can be used in a variety of problems where distance or
similarity plays a central role. Examples of such application areas include — clustering of geospa-
tial polygons, training of an instance-based learning system, prediction and trend analysis, etc.
Clustering, a common data mining task is a prime application for a dissimilarity function since it
is based on separation of dissimilar objects, and grouping of similar objects. Other applications,
such as region growing in which objects are ranked based on degree of similarity to their neigh-
boring polygon, require a function that orders polygons in increasing similarity. Most distance
functions used in polygonal clustering or regionalization fail to comprehensively treat all the spa-
tial attributes (see Section 2.2 for an overview of the most commonly used distance functions for
polygons) due to the inadequate representation of structural (intrinsic) and topological (extrinsic)
information contained in the polygons. This leads to inaccuracy in the computed results. It is our
hypothesis that the use of PDF will lead to more accurate comparison of polygons.

In order to evaluate our dissimilarity function we first compare and contrast it with other
distance functions proposed in literature that also use both spatial and non-spatial attributes. In
particular, we compare our algorithms to the distance functions proposed by Webster and Bur-
rough (1972), CIiff et al. (1975), and Perruchet (1983). These distance functions have been de-
scribed in Section 2.2, and the comparative analysis has been presented in Section 2.4. Next, we

specifically investigate the effectiveness of our dissimilarity function in spatial clustering since
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distance based functions play a central role in this application. We have applied our dissimilarity
function to the k-medoids clustering algorithm to cluster geospatial regions represented as poly-
gons in two different domains with diverse characteristics — namely, environmental analysis using
watersheds and political applications using counties. Our results show that PDF outperforms oth-
er distance functions in ranking the similarity between polygons, and results in the maximum
range between the pair-wise distances computed. Furthermore, our results for the clustering ap-
plication show that with the use of the intrinsic and extrinsic spatial attributes of the polygons
along with the non-spatial attributes results in more cohesive clusters.

Finally, we use the term “dissimilarity” instead of “distance” because our dissimilarity
function does not satisfy the symmetry and triangular inequality properties of distance metric

(Arkhangel'skii & Pontryagin, 1990).

2.2 Related Work

In this section we present an overview of the various distance functions proposed in literature for
measuring the distance between two polygons along with the problems associated with their use.
Polygons in general can be concave or convex, small or large, elongated or compact. Further-
more, completely disjoint polygons can have overlapping bounding boxes; adjacent polygons can
share a single point, a segment on the boundary or even multiple segments. Based on these prop-
erties of the polygons the following distance functions have been proposed.

Centroid Distance. One way to approximate polygon objects is to represent each object
by a representative point, such as the centroid of each object, and then find the distance between
the centroids of the polygons. However, this approach is generally not effective since the objects
may have very different sizes and shapes. For instance, a rectangular building may have a size of
500 square meters, whereas a lake may have a size of 300,000 square meters with irregular elon-
gated shape. Simply representing each of these objects by its centroid, or any single point, does

not take into the account the extents of the polygons. Another problem with this approach is that
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the centroid may not be inside the polygon (e.g., for some concave objects) and may indeed be
inside another object.

Minimum Bounding Rectangle Distance. There is a large body of work in shape analy-
sis (e.g., Gardoll 2000; Shapiro & Stockman, 2001). For example, the minimum bounding rec-
tangle (MBR) of a polygon can be used as a first-order approximation of the shape and orienta-
tion of the polygon: it is the smallest rectangle that encloses an object. Distance of two polygons
can be measured by finding the distance between the centers of their respective MBRs. However,
many of the same problems described for centroid-based distances remain. For example, the cen-
ter of the MBR of a polygon may not fall within the polygon, or the MBRs of two polygons may
overlap.

Separation distance. The distance between a point P and a line L is defined by the per-
pendicular distance, between the point and the line, i.e., min{d(P,Q)|Q is a point on L}. Thus,
given two polygons A and B, we can define the distance between these two polygons to be the
minimum distance between any pair of points in A and B, i.e., min{d(P,Q)|P,Q are points in A,B
respectively}. This distance is called the separation distance (e.g., distance between polygons Py
and Pz as shown in Figure 1 and is exactly the same as the minimum distance between any pair of
points on the boundaries of A and B (Dobkin & Kirkpatrick, 1985).

However, if two polygons intersect or share boundaries or even a point, their separation
distance is zero. This definition of distance is quite unsatisfactory for geospatial applications, e.g.,
the distances between P;and P, and between P,and Ps , as shown in Figure 1. The separation
distance between two adjacent polygons will always be zero and is an inappropriate measure
since all polygons will have shared boundaries with their neighbors. The transitive relationship in
terms of separation distance does not hold: in Figure 1, for example, the separation distance be-

tween P, and Ps is non-zero, even though each has a zero separation distance with P,.
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Ds=0

Figure 1: Separation distance where the transitive relation does not hold.

Min-Max Distance. Another way to measure the distance between polygons is to find
the minimum or maximum distance between each pair of vertices of the polygons. However, this
method either overestimates or underestimates the true distance between two polygons as shown
in Figure 2(a). It shows the separation distance (a), the minimum distance between vertices (b),
the maximum distance between vertices (c), and the distance between the centroids (d). It is clear
that both b and ¢ do not match the intuitive notion of the distance between the two polygons. If
we only consider the minimum or the maximum distance between vertices, we overlook the shape
of the polygons as shown in Figure 2(b), where the shortest and longest distances between any
pair of vertices are shown in red and blue, respectively. Clearly, these distances are independent
of the shape of the polygons, i.e. many polygons with different shapes can have the same distance
as long as we maintain the two extreme (minimum or maximum) points in the two polygons.

Hence these are inappropriate as distance measures.

@ (b)

Figure 2: Minimum and maximum distance between vertices.
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Hausdorff distance. The Hausdorff distance between two sets of points (Rote, 1991) is
defined as the maximum distance of points in one set to the nearest point in the other set. Formal-

ly, the Hausdorff distance from set A to set B is defined as:

h(A, B) = TSZ((QEQ d(a,b))

where a and b are points of sets A and B, respectively, and d(a, b) is any distance metric
between the two points a and b; for simplicity, we can take d(a, b) as the Euclidian distance be-
tween a and b . If the boundaries of the polygons P; and P; are represented by two sets of points
A and B, respectively, we can use this as a distance measure between two polygons.

D, (P, P;)=max(h(A, B), h(B, A))

Figure 3 presents a comparison between the Centroid distance and Hausdorff distance of
two polygons. For convex polygons the Hausdorff distance, defined on the set of vertices of po-
lygons, usually gives as good an estimate of distance as the Centroid distance. However, using the
centroids to measure the distance between two polygons may not give us the “true” distance for
concave polygons. As shown in Figure 3, the Centroid distance D, may underestimate or overes-
timate the exact distance when the centroid of a concave polygon falls outside the polygon. The

Hausdorff distance, Dy, defined on the two sets of vertices of polygons, gives a more accurate

measurement.
Dy ol
bl - D, / . « 3 :
le- 7 5- B A \ /
d y 'j
Both distancesare fine Underestimated Centroid Overestimated Centroid
Distance Distance

Figure 3: Comparison of Hausdorff distance with centroid distance.
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Fréchet Distance. In order to measure the distance between polygons based on their
shape, Fréchet distance (Buchin, Buchin, & Wenk, 2006) is considered to be more appropriate
than Hausdorff distance (Rote, 1991). An intuitive definition of the Fréchet distance is to im-
agine that a dog and its handler are walking on their respective polygon boundaries. Both can
control their speed but can only go forward. The Fréchet distance of these two polygon bounda-
ries is the minimal length of any leash necessary for the dog and the handler to move from the
starting points of the two curves to their respective endpoints. It is formally defined below:

Let f, g be parameterizations of curves or polygons, i.e., continuous functions

f,g:[01]* >R ke{l,2},d <k

Then their Fréchet distance (Dg) is

De(f.9)=inf_ o ooy max|| f (t) — g(c(1))]

where the re-parameterization o ranges over all orientation preserving homeomorphisms.

It is important to note that Fréchet distance is used only for shape matching. It does not
measure the geographic distance between two polygons in the geospatial applications for in-
stance. For such purposes Hausdorff distance is more appropriate as shown in Figure 3.

In addition to the distance functions defined above, several ways to combine geographi-
cal distances and non-geographical dissimilarities into a single pair-wise similarity value have
been proposed in literature. Webster and Burrough (1972), CIiff et al. (1975), and Perruchet
(1983) proposed different multiplicative and additive forms to combine such elements. These are
defined below:

WB Distance. Webster and Burrough (1972) proposed to compute the dissimilarity be-
tween pairs of polygons using the ‘Canberra metric’. The Canberra metric between the i" and the

j™ sites is computed as follows:
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Where g, and g, are the values of the k" property for the i and j*" polygons respective-

ly and pis the number of properties. They further proposed to add the geographic distance be-

tween the sites to the Canberra metric coefficient as follows:

dij
Dij +——XW

D — max
we 1+w

Where D, is the Canberra metric between polygons i and j, d; is the geographic distance
between the polygons i and j, d__ is the distance between the most distant pair of polygons, and
w is a weighting factor.

CXY Distance. Cliff et al. (1975) propose a combined distance metric (D,,, ) to measure
the distance between two polygons i and j as:

D = Ad;; + (-

where d; is some distance metric that measures the spatial separation between the i" and
j™ regions, t; is the distance metric that measures the distance between the non-spatial attributes

of the two regions, and A represents a weighing constant (0 <A <1). 2 =0, represents a purely

non-spatial strategy, and A = 1represents a purely spatial strategy. 1 =0.33and 1 = 0.66 signify a
mixed strategy which has been shown by the authors to yield intermediate results with an average
efficiency about twenty percent greater than that of the extremes.

PXY Distance. Perruchet (1983) defines the aggregation index of dissimilarity, D,, be-

p

tween two polygons i and j as follows:

D: (i, J) = (50, ),d(i, 1))
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where f(x,y) = xy, d(i, j)is the geographic distance between the two polygons and is
computed using the Euclidean distance function, and (i, j) is the aggregation index defined as
the dissimilarity between the polygons based on their non-spatial attributes. An example of (i, j)

is given as:

i —V;

5, j)zﬂ v
M 1

[

where 4 is the mass of i, and v; is the representation of i in the descriptor space.

In summary, all the distance functions defined above focus on one or two aspects (dis-
tance and/or shape) of polygons. Our representation of a polygon includes their structural and
organizational properties which are fundamentally different, and thus need to be treated different-
ly. These properties are not incorporated in any of the functions proposed in literature in a com-
prehensive manner. This serves as the motivation of our work to define a comprehensive dissimi-
larity function that effectively unifies the distance functions for each type of attribute of a poly-

gon.

2.3 Dissimilarity Function for Geospatial Polygons

Consider a set of polygons p = {R,, P,,..., P,}Where each polygon p, is defined by a set of spatial

and non-spatial attributes.

The non-spatial attributes of a polygon include all the attributes of the polygon that are
independent of the spatial location of the polygon. Examples of non-spatial attributes are — popu-
lation, average income, number of hospitals, number of major cities, etc.

The spatial attributes of a polygon can be further divided into two categories: 1) intrinsic
and 2) extrinsic. The intrinsic attributes describe the geometric properties of the polygon without

any contextual information in a domain independent way. Examples of intrinsic attributes include
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location, shape, area, aspect ratio, etc. The location of the polygon is represented as a set of ver-
tices, specified in some spatial coordinate frame.

The extrinsic attributes encompass the various spatial objects that may exist within a po-
lygon, or may be shared by two or more polygons, which may however be defined independent of
the polygon. Thus, the extrinsic attributes represent the elements that are either embedded into or
intersect with the polygon. These elements exist independently of the polygon, but share the
geographic space with it in some fashion. There can be three classes of spatial objects: point, li-
near and areal. Examples of point spatial objects include buildings, shopping complexes, etc. Ex-
amples of linear spatial objects include rivers, roads, and mountain ranges. Examples of areal ob-
jects include reservoirs, crop areas, forests, and large lakes.

Given two polygons, P, and P the Polygonal Dissimilarity Function (PDF) that meas-

ures the distance between two polygons in all the attribute spaces described above is defined as
follows:

DPDF(Pi!Pj) = f(dns(Pi’Pj)’ds(Pi’Pj)) (1)
where d,is a function that computes the distance between two polygons based on the

non-spatial attributes — see Equation 3, and dis a function that computes the distance based on
the spatial attributes — see Equation 4.
The function f in Equation 1 can be any non-spatial function that combines the two dis-

tances. We use a weighted sum that can easily adjust the contribution (i.e., the weight) of both
the distances.
DPDF(PHPj):Wnsdns(PUPj)"'Wsds(Pi’Pj) (2)

where w,_ +w, =1.
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The weights w,, and w, are domain dependent, i.e. they should be tuned for the applica-

tions using experiential or expert knowledge. Therefore, we cannot explicitly assign them any
fixed values. These weights play an important role in defining the contribution of the different
types of attributes. For example in a clustering application of our dissimilarity function, if we are
interested in clustering regions based on the density of population, and do not care that the re-
gions should be spatially contiguous, a higher weight may be assigned to the non-spatial
attributes. On the other hand, if we want the clusters to be spatially contiguous, a higher weight

must be assigned to the spatial attributes.

2.3.1 Distance between Non-Spatial Attributes

The distance between the polygons in the non-spatial attribute space (d_ ), can be defined using

any distance measure such as the Euclidean distance function or the Manhattan distance function.

We use the standard Euclidean distance as our distance measure as shown in Equation 3.

6P = S0 -0, ®

where g, and g, represent the k™ non-spatial attribute of polygons Pand P; respec-

tively, and m is the total number of non-spatial attributes. Please note that all the non-spatial
attributes must be represented as ordered numerical attributes so that they can be integrated to-
gether. Furthermore, all the attributes must be normalized before the computation of the distance.
The normalization can be performed by dividing all the values in the dataset by the largest value
in the dataset (Han & Kamber, 2006). We assign an equal weight to all the non-spatial attributes.
However, if desired, different weights may be assigned to the various non-spatial attributes. In

this case, the equation for the distance function for non-spatial attributes will be as follows:

dns(Pij):\/Zm:Wk(gik _gjk)2 (3'1)
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2.3.2 Distance between Spatial Attributes

The distance between the polygons based on their spatial attributes (d. ) is defined as a function
of the distance between their intrinsic spatial attributes (d, ) and their extrinsic spatial attributes (
d,. ) as reflected in Equation 4. The function 4, is defined in Equation 6, and the function d__ is

defined in Equation 15.
ds(Pi7Pj) :Vvinsdins(Pi’Pj)+Wexsdexs(Pi1Pj) (4)

Where Vvins +Wexs =1.

2.3.2.1 Distance between Intrinsic Attributes

Among the intrinsic attributes of polygons, location is the most important. The location of a po-
lygon is defined as a vector of its vertices. Intuitively, we expect the distance between two poly-
gons with shared boundaries to be shorter than the distance between two polygons that do not
have a common border. This is based on the assumption that two regions that share a boundary
are closer than two regions—with everything else being equal—that do not, an assumption that
has been used in domains dealing with spatial data such as image processing and structural organ-
ization (Jiao & Liu, 2008). The importance of geographic distance and the shared boundary
length between two regions in various political applications have been demonstrated in (Furlong
& Gleditsch, 2003).

The Hausdorff distance function as defined in Section 2.1 is a suitable distance function
to measure the distance between the vertices of two polygons as it neither under-estimates nor
over-estimates the distance between two polygons. However, the standard Hausdorff distance is
defined on the set of points and does not incorporate any shared boundary. In order to incorporate

this, we define a new distance measure, called boundary adjusted Hausdorff distance that is in-

versely proportional to the length of the shared boundary between two polygons P, and P; as

follows:



22

dhs(Pi,P,-)=(1— 2% deh(Pi,Pj) (5)

where d, is the original standard Hausdorff distance, s, and s ;are the perimeter lengths
of polygons P, and PJ-, respectively, and s;; is the length of their shared boundary. This dis-

tance, d,,, is smaller than the standard Hausdorff distance when two polygons have shared
boundary, and becomes the standard Hausdorff distance when two polygons have no shared

boundary, i.e., when S = 0. We use twice the shared distance in the definition to balance the

effect of the denominator.
Other than location, for the other intrinsic attributes, we compute the Euclidean distance
between the individual attributes of the polygons in order to measure the distance between the

polygons. Finally, the distance between polygons P and P; based on their intrinsic attributes

(d,,,) is defined as:

dins(Pi’ I:)j ): thdhs(Pi’ P )+ Wst i(tik _tjk)2 (6)

! k=1
where t, and t, represent the k™ structural attribute of polygons Pand P, respectively,
and r is the total number of structural attributes, w,, represents the weight assigned to the mod-
ified Hausdorff distance function, w, is the weight assigned to the remaining intrinsic spatial

attributes, and w,, +w, =1.

2.3.2.2 Distance between Extrinsic Attributes

Extrinsic attributes incorporate the spatial objects present within the polygons or shared by two or
more polygons. Given below is a framework that is used for defining the distance between two

polygons based on their extrinsic attributes. The distance is based on the following properties of
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the various spatial objects with respect to the polygon — 1) density, 2) extent (the area covered by
the object within the polygon), 3) spatial distribution, 4) topology and 5) direction.

The density, extent and distribution of a spatial object within a polygon are indicative of
the underlying forces (e.g. climate or other biological or geophysical or chemical) which influ-
ence the polygon. In the geospatial domain for example, the presence of clusters of oak trees in
two polygons is indicative of similar soil and/or climate regime, and therefore both the polygons
are likely to be more similar to each other. Therefore two polygons with similar object density
and distribution are more likely to be similar. The topology of spatial objects, on the other hand,

especially of linear spatial objects, is important as it captures the binary relationship between the

polygons with respect to other spatial objects. For example, a physical barrier between the poly-

gons (e.g., a mountain range) can potentially increase the physical distance between the polygons,
and hence discourage the polygons to be clustered together.

Due the wide differences in their construction, e.g. an areal object extends over a large
area, whereas a point object is simply a single point within the polygon, not all the different as-
pects mentioned above are applicable to every type of spatial object. Table 1 lists the different
types of characteristics applicable to the different types of spatial objects.

In Table 1, n is the number of times the spatial object occurs within the polygon,

A\ is

the total area of the polygon, |a | is the total extent of the areal object I within the polygon, and

Z; is the test statistic obtained from the Mean Nearest Neighbor test for complete spatial random-

ness (CSR) ( Donnelly 1978), and N/A stands for not applicable. Next, we define the functions
that are used to find the distance between two polygons on the basis of the above mentioned

properties of the spatial objects present within the polygons.
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Table 1: Different characteristics of spatial object attributes

Density Extent Distribution Topology Direction
n
Linear Object dn = m N/A Z Defined below  Defined below
: dn=1 _|ai . .
Areal Object n= A €= Z Defined below Defined below
A A
n
Point Object dN = m N/A z N/A N/A

Density and Extent. Density is the number of times an object occurs within a polygon
divided by the area of the polygon. Extent is the total area covered by the object within the poly-
gon. We measure the distance between two polygons on the basis of the density of the objects

using Equation 7, and on the basis of extent using Equation 8.

dn; —dn;|
max(dn;,dn;)

(")

density =

where dn, is the density of point object m in polygon P, dn; is the density of point ob-

jectmin polygon P;.

e e @®)

- max(e;, e;)

extent

where €, is the total extent of an areal object within polygon P, e;is the total extent of
the areal object within polygon P, .

Distribution. The spatial distribution of an object is measured using the Mean Nearest
Neighbor test for complete spatial randomness (CSR) (Donnelly 1978 ). The statistic produced as
the output of this test is a fair indicator of the presence of aggregation, regularity or randomness
of events located within a polygon. This information about the polygons helps us in identifying

the polygons that have a similar underlying structure.



25

Please note that the spatial distribution test is only applicable for point data set. There-
fore, in order to measure the distribution of areal objects, some methodology needs to be followed
to represent areal objects as a set of points. While more complicated methods can be devised for
this purpose, as the areal objects present within the polygons are an order smaller in magnitude,
for simplification purposes we represent each areal object by its centroid. To measure the distri-
bution of linear objects, we take a fixed number of points from each linear object, and use these
points for the spatial randomness test. We measure the distance between two polygons on the ba-

sis of the distribution of the spatial objects using equation 9.

P i ©

distributon maX( Zi , Zj)

where z,is the distribution of the point object m in polygon P, and z; is the distribution
of the point object m in polygon P;.

Topology. Relationships between a pair of spatial objects (points, lines, and regions) can
be characterized as topological relations that describe how two such objects interact in a 2D
space. The 4-intersection model, and the 9-intersection model (Egenhofer & Franzosa, 1994) de-
scribe an object as its interior, boundary, and exterior. The relationship between two objects is
then based on the intersection of their interior, exterior or boundary. The topological relationship
between two objects helps us in computing the distance function in between the two objects — two
objects with similar topology are more likely to be similar than two objects with different topolo-
gy. Here we provide an extension of the framework proposed by Egenhofer and his colleagues
(Egenhofer & Franzosa, 1994), (Egenhofer & Mark, 1995), (Egenhofer, Clementini, & Felice,
1994) so that the topological relationship between two spatial objects can be defined with refer-
ence to a third spatial object. The topology of a polygon with respect to the linear objects is de-

fined as follows.
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A polygon ( A) can be divided into three segments — boundary (0A), interior ( A°), and
exterior (A™). A linear feature (1) may intersect the boundary, the interior, or the exterior of the

polygon. Furthermore, the polygons may lie either on the same side of the linear feature, or they
may be on opposite sides of the linear feature. Table 2 illustrates the different scenarios that may
arise and define the topological relationships between the two polygons based on a linear feature.
These scenarios are also demonstrated in Figure 4. Once the relationship between two polygons
with respect to a linear feature is determined, the distance between the two polygons is computed
on the basis of the following two rules: 1) If the linear feature intersects the interior of both the
polygons, then the distance between them is the smallest. 2) If the linear feature intersects only

the exterior of both the polygons, then the distance is the largest.

Table 2: Different possible scenarios based on topological relationship of a linear feature (1) with two polygons (A
and B)

oA | A°| A | B | B°| B Figure

Scenario 1 | X X Figure 4(a) & 4(b)
Scenario 2 | X X Figure 4(c)
Scenario 3 | X X Figure 4(d) & 4(e)
Scenario 4 | X X Figure 4(c)
Scenario 5 | X X Figure 4(f)
Scenario 6 | X X Figure 4(g)
Scenario 7 | X X Figure 4(d) & 4(e)
Scenario 8 | X X Figure 4(g)
Scenario 9 | X X Figure 4(h) & 4(i)
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Figure 4: Topological relationship between two polygons based on a linear feature — linear feature may intersect
the interior, exterior or the boundary of a polyg