Cloning and Characterization of the Galactokinase Gene from *Streptococcus thermophilus*

Azlin Mustapha
University of Nebraska - Lincoln

Robert W. Hutkins
University of Nebraska - Lincoln, rhutkins1@unl.edu

Gerald W. Hirnstein
University of Nebraska - Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/foodsciefacpub
Part of the [Food Science Commons](http://digitalcommons.unl.edu/foodsciefacpub)

Mustapha, Azlin; Hutkins, Robert W.; and Hirnstein, Gerald W., 'Cloning and Characterization of the Galactokinase Gene from *Streptococcus thermophilus*' (1995). Faculty Publications in Food Science and Technology. 31.
http://digitalcommons.unl.edu/foodsciefacpub/31
Cloning and Characterization of the Galactokinase Gene from *Streptococcus thermophilus*

AZLIN MUSTAPHA, ROBERT W. HUTKINS, and GERALD W. ZIRNSTEIN
Department of Food Science and Technology
University of Nebraska-Lincoln
Lincoln 68583-0919

ABSTRACT

The objective of this research was to clone and characterize the galactokinase gene (*galK*) from *Streptococcus thermophilus* F410. Partially digested genomic DNA was cloned into pBR322 and transformed into *galK* *Escherichia coli*, and a galactose-fermenting transformant was isolated. Restriction analysis revealed that the transformant resulted from a Sau3A-HindIII 4.0-kb fragment. Galactokinase activity in the recombinant was 10 times that of the parent strain. Analysis of the DNA sequence showed the presence of a 1.3-kb open reading frame that had high homology with the *galK* gene from other organisms. A putative ribosome-binding site, start and stop codons, and -10 and -35 sequences were identified. The predicted protein had a molecular mass of 49 kDa, which corresponded to the estimated size of a band apparent by SDS-PAGE. Amino acid sequence homologies with other galactokinases ranged from 50 to 62% similarity. Northern blots were performed between the *galK* gene and mRNA from *S. thermophilus*. No hybridization signals were observed for cells grown in glucose, but cells grown in lactose or galactose gave moderate and strong signals. The results suggest that repression of the *galK* gene by glucose may be responsible for the galactose-releasing phenotype in these strains.

(Key words: *Streptococcus thermophilus*, galactose, galactokinase)

INTRODUCTION

Despite the importance of *Streptococcus thermophilus* as a starter culture in the dairy industry, the catabolic pathways for carbohydrate metabolism have only recently been established in this organism. It is now known that carbohydrate fermentation in this organism differs markedly from that of the lactococci and other mesophilic lactic acid bacteria. In fact, metabolism of sugars by *S. thermophilus* is more similar to that in *Escherichia coli* than to that in other lactic acid bacteria. Although lactococci depend on a phosphoenolpyruvate-dependent phosphotransferase system for lactose transport and the enzyme phospho-β-galactosidase and hydrolysis (16), this system is absent in *S. thermophilus*. Moreover, recent studies (21, 22, 24) indicate that many of the genes coding for proteins involved in sugar catabolism in *S. thermophilus* have higher homology with *E. coli* genes than with those of other lactic acid bacteria.

Similar to *E. coli*, *S. thermophilus* utilizes a lactose permease, or LacS, and the enzyme, β-galactosidase, to transport and hydrolyze lactose inside the cell (8, 21, 28, 29). Most wild-type strains of this organism, however, are unable to ferment lactose completely and instead release the galactose portion of lactose back into the medium (19, 25, 27, 28). The galactose-fermenting (*Gal*⁺) strains of *S. thermophilus* metabolize galactose via the enzymes of the Leloir pathway, but *Gal*⁻ strains release this sugar into the medium even when grown on lactose (10, 25, 28) because the rate-limiting Leloir pathway enzyme, galactokinase, is thought to be catabolite repressed (8, 10).
However, evidence for regulation at the gene level has not yet been provided. In this investigation, we report the cloning of the gene coding for galactokinase, galK, from *S. thermophilus* and show that transcription of this gene is regulated by glucose and lactose.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions

Streptococcus thermophilus F410, isolated from a commercial starter culture, and *S. thermophilus* ATCC 19258 were maintained at 42°C in M17 broth (26) containing 1% galactose. Both strains are Gal+, but release galactose into the medium during growth on lactose. The *E. coli* strains were maintained in Luria-Bertani (LB) broth (14) and grown at 37°C with shaking (80 to 100 rpm). Plasmid vectors used for cloning and sequencing experiments were obtained from commercial sources.

Cloning of the galK Gene

Streptococcus thermophilus F410 was grown in M17 broth containing 5% galactose to an optical density at 600 nm wavelength of .4 to .6. Chromosomal DNA was isolated by the guanidium-thiocyanate method of Pitcher et al. (20). The purified DNA was partially digested with different combinations of *Sau*3AI, *Nde*I, *Eco*RI, *Hind*III, and *Xho*I, and the fragments were ligated into pBR322. Seven different *galK* *E. coli* hosts were made competent by the CaCl2 method of Maniatis et al. (14) and transformed with the ligation mixtures. The Gal+ *E. coli* transformants were plated on eosin-methylene blue agar containing 1% galactose and 50 µg/ml of ampicillin. Plates were incubated at 37°C for 48 to 96 h; Gal+ transformants appeared as bright green colonies. In some experiments, transformants were plated on LB agar containing 5-bromo-4-chloro-3-indoyl-β-D-galactoside, isopropyl thiо-β-galactoside (IPTG), and ampicillin.

Galactokinase Assays

Cells of *E. coli* were grown in M9 minimal media (14), containing either galactose or glucose as the sole carbon source. Log-phase cells were harvested, washed, and resuspended in 100 mM Tris buffer, pH 7.5. A toluene:ethanol (1:9, vol/vol) mixture was added to the cells at a rate of 30 µl/ml of cells, and the mixture was vortexed for 1 min. Permeabilized cells were assayed for galactokinase activity using the NADH-ADP coupled enzyme assay of Thomas and Crow (28) with modifications. Assay mixtures contained permeabilized cells, 2 mM ATP, 4 mM NADH, 2 mM phosphoenolpyruvate, 2 U/ml of pyruvate kinase, 5 U/ml of lactate dehydrogenase, 10 mM MgCl₂, 1 mM dithiothreitol, .5 mM NaF, and 100 mM triethanolamine, pH 7.5. The reaction was started by the addition of 10 mM galactose, and oxidation of NADH was measured by the increase of absorbance at 340 nm. Absorbencies were corrected for endogenous NADH oxidation. Protein concentrations were determined by the Bradford method (2). From triplicate determinations, mean galactokinase activities were expressed as micromoles of galactose phosphorylated per minute per milligram of cell protein.

DNA Sequencing and Analysis

Double-stranded DNA sequencing was done by the dideoxy chain-terminating method of Sanger et al. (23), using 17- to 19-mer synthetic oligonucleotide primers. Sequencing reactions were performed according to the protocol described by the manufacturer (Sequenase 2.0 kit; United States Biochemicals, Cleveland, OH). Both strands were sequenced at least twice from opposite directions. Samples were electrophoresed on a .4-mm thick, 5% polyacrylamide gel using a Sequi-Gen Nucleic Acid Sequencing Cell (Bio-Rad Laboratories, Richmond, CA). Sequences were analyzed using the University of Wisconsin (Madison) Genetics Computer Group (GCG) FASTA Program.

SDS-PAGE of the Galactokinase Protein

Cells were grown in LB broth, collected during the log phase by centrifugation, and resuspended in SDS gel-loading buffer (50 mM Tris-HCl, 100 mM dithiothreitol, 2% SDS, .1% bromphenol blue, and 10% glycerol). Total cell protein was determined by the Lowry method (13). The proteins from cell extracts were sepa-
STREPTOCOCCAL GALACTOKINASE

research on a denaturing SDS-PAGE 12% acrylamide gel using the method of Laemmli (12). Each lane contained .1 mg of protein.

RNA isolation

Streptococcus thermophilus strains F410 and 19258 were grown to midlog phase in Elliker broths containing either 1.5% glucose, lactose, or galactose (5). Cells (45 ml) were harvested by centrifugation at 12,000 × g for 10 min. at 4°C, and pellets were resuspended in 1 ml of Ultraspec RNA isolation and purification reagent (Biotex Laboratories, Inc., Houston, TX). Cell suspensions were immediately homogenized for 3 min with .8 volume of .5- to 1-mm glass beads in a Bead-Beater (Biospec Products, Bartlesville, OK). The suspensions were separated from the glass beads by centrifugation (10 min at 12,000 × g at 4°C), and the aqueous phase was extracted with .2 volume of chloroform. The RNA was then precipitated with an equal volume of 2-propanol at 4°C for 10 min and centrifuged as described. The RNA pellets were washed twice with 75% ethanol, air dried at 4°C, and solubilized in 5 mM EDTA previously treated with diethyl pyrocarbonate.

Northern analysis

Northern analysis was performed as previously described (7) with minor modifications. Each lane contained 10 μg of total cellular denatured (incubated for 45 min at 55°C in glyoxal loading buffer) RNA. The RNA was fixed by UV crosslinking to a nylon membrane support, and the blots were prehybridized at 65°C for 3 h in hybridization buffer. A .8-kb, *Clal*-EcoRV DNA fragment from pAM1 was used to probe *S. thermophilus* RNA for detection of *galK* transcripts. The probe DNA was prepared and purified by the method of Zhen and Swank (30) and labeled according to the protocol supplied with the DECAprime DNA labeling kit (Ambion, Inc., Austin, TX) using 3000 Ci/mmol of [32P]dCTP. Labeled DNA was separated from unincorporated radioactivity using STE midi Select®-D, G-50 Sephadex microcentrifuge spin columns (5 Prime → 3 Prime, Inc., Boulder, CO). For hybridization, the [32P]-labeled DNA was first denatured by heating to 100°C for 10 min and then immediately cooled in liquid nitrogen before dilution into hybridization buffer at a concentration of 1 to 2 μCi/ml.

Chemicals

Restriction enzymes were from Bethesda Research Laboratories (Grand Island, NY), Promega (Madison, WI), and United States Biochemicals. The T4 DNA ligase, calf intestinal alkaline phosphatase, 5-bromo-4-chloro-3-indoyl-β-D-galactoside, and IPTG were from Bethesda Research Laboratories. Ampicillin, tetracycline, lysozyme, and other chemicals were from Sigma Chemical Company (St. Louis, MO). Acrylamide, bis-acrylamide, N,N,N',N'-tetramethylethylene-diamine, and ammonium persulfate were from Bio-Rad Laboratories. The [α-35S]dATP and [32P]dCTP were obtained from Amersham Corporation (Arlington Heights, IL). Oligonucleotide primers were synthesized by the University of Nebraska Center for Biotechnology Oligonucleotide Synthesis Facility (using an Applied Biosystems PCR-MATE DNA Synthesizer).

RESULTS

Cloning of the *galK* gene

Genomic DNA from *S. thermophilus* F410 was partially digested and cloned into the tetracycline resistance gene of pBR322. From over 5000 colonies screened, only 1 suspect positive colony was obtained. This positive colony exhibited a distinctive dark purple color with a metallic sheen on eosin-methylene blue-galactose agar containing ampicillin and was unable to grow on agar containing ampicillin and tetracycline.

Analysis of the recombinant strain revealed that it had resulted from the cloning of a *HindIII*-Sau3AI chromosomal fragment from *S. thermophilus* F410 into *E. coli* SA2383. The size of the cloned fragment was estimated by agarose gel electrophoresis to be about 4.0 kb (data not shown). The recombinant plasmid and host were named pAM1 and RW1, respectively. When the recombinant plasmid (pAM1) from the single positive transformant was analyzed, however, the expected *BamHI* recognition site had been lost. By using SphI, with a recognition site 187 bp downstream from the *BamHI* site, we were able to isolate a *HindIII*-
MUSTAPHA ET AL.

SphI insert, to clone this fragment into pBR322, and to retransform the original parent. Strong positive signals were again exhibited. The smallest fragment, subcloned from pAM1, that still complemented the galK E. coli host was a 1.7-kb SphI-EcoRI fragment (Figure 1). Because part of this fragment contained a 187-bp SphI-BamHI fragment that had originated from pBR322, we concluded that the galK gene was present within a 1.5-kb BamHI-EcoRI chromosomal fragment from S. thermophilus F410.

Galactokinase Activity of E. coli RW1

Galactokinase activity of the recombinant E. coli strain RW1 (containing pAM1) was about 2.5 times higher than that of the wild-type Gal+ E. coli strain C600 and more than 10 times higher than the galK parental strain, E. coli SA2383 (Table 1).

DNA Sequence Analysis

Sequencing results revealed that the insert fragment of pAM1 consisted of 3896 bp, which corresponded well with the estimated size of 4.0 kb determined by agarose gel electrophoresis. One open reading frame, orfl, spanning about 1.3 kb, was identified by the GCG FRAMES (GCG, Madison, WI) program. Comparisons of the insert fragment with DNA sequences in the Gen Bank database revealed significant homology (52 to 59% identity) with the galK genes of Lactobacillus helveticus, E. coli, Haemophilus influenzae, and Kluyveromyces lactis. Based on 1) these DNA homologies, 2) the location of orfl predicted by GCG FRAMES, 3) the finding of a putative ribosomal binding site, and 4) comparisons of amino acid sequence homologies (discussed below), a translational start site of orfl was predicted at nucleotide position 153 (Figure 2). A putative ribosomal binding site was located at position 135, and putative –10 and –35 sequences were located at positions 117 and 89, respectively. The molar percentage G + C content of orfl was 40%, which was consistent with the reported mean value of 38 to 40% for S. thermophilus genomic DNA (6).

Based on analyses of DNA and amino acid sequences, the size of orfl was predicted to be 1319 bp. This size translated into a protein monomer of 439 amino acid residues with a calculated molecular mass of 49,168 Da. The amino acid homologies between the predicted amino acid sequence of the S. thermophilus galactokinase and galactokinases from other organisms ranged from 50 to 62% similarities and from 27 to 45% identities (Table 2). An alignment of the predicted sequence with other galactokinases (Figure 3) revealed several regions of significant amino acid homology.

Analysis of orfl Flanking Regions

Comparisons of the flanking regions of orfl with other DNA sequences in the Gen Bank did not reveal significant homologies with other reported lac or gal genes. Surprisingly, no homologies were found between the region downstream of the galK gene in this work and galM, galE, or galT genes (coding for aldose-1-epimerase, uridine-diphosphogalactose-4-epimerase, and galactose-1-phosphate uri-

TABLE 1. Mean (n = 3) galactokinase activities of Escherichia coli RW1, wild-type E. coli C600, and E. coli SA2383 parental strain.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Activity</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli C600, wild-type (Gal+)</td>
<td>139</td>
<td>7</td>
</tr>
<tr>
<td>E. coli SA2383, parent (Gal-)</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>E. coli RW1 (recombinant strain)</td>
<td>347</td>
<td>14</td>
</tr>
</tbody>
</table>

1Nanomoles of galactose phosphorylated per milligram of protein per minute.

2Strains C600 and RW1 were grown in M9 medium containing galactose, and SA2383 was grown in M9 containing glucose.

3Gal+ = Galactose-fermenting; Gal- = galactose-nonfermenting.

Figure 1. Linear restriction map of the 4.0-kb SphI-HindIII fragment cloned from Streptococcus thermophilus. Upstream and downstream regions containing pBR322 DNA are shown by the hatched lines. The 1.3-kb galK gene is shown by the heavy line. Restriction enzyme abbreviations are P, SphI; B, BamHI; V, EcoRV; C, ClaI; E, EcoRI; S, SalI; X, XhoI; and H, HindIII.
Figure 2. Nucleotide sequence of Streptococcus thermophilus F410 galK. The start site, the ribosomal binding site (RBS), and -10 and -35 sequences are underlined; the termination site is indicated by an asterisk.
<table>
<thead>
<tr>
<th></th>
<th>Ecogalk</th>
<th>Higalltmr</th>
<th>Stgalk</th>
<th>Lhgalltmr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Amino acid sequence alignment of open reading frame ORF1 (galK gene product) with other galactokinases, as determined by the Genetics Computer Group PILEUP program. Dots represent gaps in the alignments. The numbers correspond to the amino acid position of *Streptococcus thermophilus* galactokinase. Regions containing identical amino acids (#) and conserved amino acids ($) are indicated. The species presented are *Escherichia coli*, Ecogalk; *Haemophilus influenzae*, Higalltmr; *Streptococcus thermophilus*, Stgalk; and *Lactobacillus helveticus*, Lhgalltmr.

Journal of Dairy Science Vol. 78, No. 5, 1995
TABLE 2. Amino acid homology between the *Streptococcus thermophilus* galactokinase and galactokinases from other sources.1

<table>
<thead>
<tr>
<th>Organism</th>
<th>Similarity (%)</th>
<th>Identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus helveticus</td>
<td>62</td>
<td>45</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>58</td>
<td>35</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>55</td>
<td>35</td>
</tr>
<tr>
<td>Kluyveromyces lactis</td>
<td>50</td>
<td>27</td>
</tr>
</tbody>
</table>

1Values were calculated by the Genetics Computer Group GAP program.

dyltransferase, respectively) from *E. coli, S. thermophilus,* or *L. helveticus.*

Interestingly, a homology of 56.7% was found by the GCG FASTA program between a 462-bp region at position 1293 to 1735 of the galK gene in this work with a proposed galK regulatory sequence of *Clostridium pasteurianum* (3). However, this homology was with the opposite strand of our DNA sequence and in the reverse direction. Because those workers (3) did not sequence the *C. pasteurianum* galK gene, the role or the actual location of this regulatory region relative to the galK could not be determined in this study.

SDS-PAGE of the Galactokinase Protein

An EcoRI-SphI fragment from pAM1 containing the galK gene from *S. thermophilus* F410 (Figure 1) was inserted downstream from the lacZ promoter of pUC19, resulting in pAM2, and transformed into *E. coli* DH5α. When cell extracts of the *E. coli* DH5α containing pAM2 were electrophoresed on SDS-PAGE, a protein band was observed of about 49 kDa (lane 1, Figure 4). This size corresponded with the predicted size of 49,168 Da calculated from the DNA sequence of the cloned galK gene. The intensity of this band increased when cells were induced with IPTG (lane 2). The 49-kDa protein was not detected in extracts of *E. coli* DH5α transformed with pUC19.

Northern Analysis

Northern analysis of total RNA isolated from midlog cultures of *S. thermophilus* strains F410 and 19258 grown in Elliker broth with 1.5% of glucose, lactose, or galactose are shown in Figure 5. There was no apparent hybridization between the galK DNA gene probe derived from strain F410 and total RNA isolated from strain F410 grown in glucose (lane 5). Hybridization signals were moderately strong (at 2.7 and 1.3 kb) for cells grown with lactose (lane 6), and signals were stronger for...
galactose-grown cells (lane 7). A similar pattern was observed when strain 19258, grown in glucose, lactose, and galactose (lanes 1, 2, 3), respectively, was probed with the galK DNA of strain F410. Interference by the rRNA bands of 2.9 kb and 1.5 kb made the determination of the transcript size difficult to estimate, but the predominant hybridization signal in Figure 5 and subsequent blots (not shown) indicated a transcript size of approximately 1.3 to 1.4 kb, which was in reasonably good agreement with the predicted 1319-bp size of the galK gene.

DISCUSSION

It was previously thought that the galactose-nonfermenting phenotype (Gal-), which is common to most strains of S. thermophilus, was due to the absence of enzymes catalyzing galactose, the absence of a specific galactose transport system, or both (8, 25). However, galactose transport as well as enzymes of the Leloir pathway involved in galactose catabolism have been demonstrated for both Gal+ and Gal- strains of S. thermophilus, suggesting that the Gal- phenotype may be due to negative regulation of gal genes rather than to the actual absence of the relevant genes (9, 10, 25, 28). The successful isolation and cloning of the galK gene from S. thermophilus F410 in this study have provided additional evidence to support this view.

Shotgun cloning of S. thermophilus F410 genomic DNA fragments, generated by partial digests, resulted in the successful cloning of a 3.9 kb HindIII-Sau3AI fragment that complemented a galK E. coli. Sequence analysis of the cloned fragment indicated high DNA homologies between a region of about 1300 bp and the galK genes of L. helveticus (18), E. coli (4), H. influenzae (15), and K. lactis (17). Deduced amino acid sequence of the galK gene revealed equally high homologies with the same four galactokinase proteins (Table 2). Clusters of high homology were distributed throughout the entirety of the sequences (Figure 3).

Poolman et al. (22) reported the presence of other genes in S. thermophilus that code for enzymes involved in galactose metabolism. The galE and galM genes were both located upstream of the lacSZ gene cluster (coding for the lactose transporter and β-galactosidase) in S. thermophilus A147. Location of the galK gene in L. helveticus has been proposed to be upstream of galT on a single operon (18). In E. coli, the galactose genes are arranged on a single operon of the order galETK (1). Interestingly, however, no homologies were significant between the region downstream from the galK in this work and other lactose or galactose structural genes in the Gen Bank, indicating that the galK gene in S. thermophilus may be unlinked from these other genes metabolizing carbohydrate.

Northern analysis indicated that the transcription of the galK gene in both strains of S. thermophilus tested was catabolite-repressed by glucose. The lack of any galK transcripts in cells grown in glucose (Figure 5; lanes 1 and 5) suggests a repression mechanism with very tight control over galK expression in strains F410 and 19258. This result is consistent with the observation that S. thermophilus F410 and 19258 ferment glucose preferentially over galactose, although both strains are Gal+ in the absence of glucose or lactose (data not shown).

Recently, Hutkins and Ponne (11) and Poolman et al. (21) showed that most strains of S. thermophilus prefer to excrete galactose into the medium during growth on lactose. They suggested that excretion of galactose might occur because galactokinase was unable to compete with the efflux reaction, mediated by LacS, the lactose carrier. However, our results clearly demonstrate that the transcription of the galK gene is dramatically reduced in the presence of glucose and that decreased expression of galactokinase may also be responsible for the galactose-releasing and Gal- phenotype that is typical of most strains of S. thermophilus when grown on lactose. Because S. thermophilus is used in the manufacture of Mozarella and other cheeses in which the presence of galactose is undesirable, efforts aimed at depressing galK may result in the availability of improved S. thermophilus starter culture strains.

ACKNOWLEDGMENTS

We acknowledge the National Dairy Promotion and Research Board and the University of Nebraska Center for Biotechnology for their support of this project. We thank Suzette Spratt for technical assistance.
REFERENCES
