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Behavioral perceptual abilities and neurophysiologic changes observed after listening training can
generalize to other stimuli not used in the training paradigm, thereby demonstrating behavioral
‘‘transfer of learning’’ and plasticity in underlying physiologic processes. Nine normal-hearing
monolingual English-speaking adults were trained to identify a prevoiced labial stop sound~one that
is not used phonemically in the English language!. After training, the subjects were asked to
discriminate and identify a prevoiced alveolar stop. Mismatch negativity cortical evoked responses
~MMN ! were recorded to both labial and alveolar stimuli before and after training. Behavioral
performance and MMNs also were evaluated in an age-matched control group that did not receive
training. Listening training improved the experimental group’s ability to discriminate and identify
an unfamiliar VOT contrast. That enhanced ability transferred from one place of articulation~labial!
to another~alveolar!. The behavioral training effects were reflected in the MMN, which showed an
increase in duration and area when elicited by the training stimuli as well as a decrease in onset
latency when elicited by the transfer stimuli. Interestingly, changes in the MMN were largest over
the left hemisphere. The results demonstrate that training can generalize to listening situations
beyond those used in training sessions, and that the preattentive central neurophysiology underlying
perceptual learning are altered through auditory training. ©1997 Acoustical Society of America.
@S0001-4966~97!00912-0#

PACS numbers: 43.71.Pc@WS#

INTODUCTION

The auditory cortex is plastic, that is, it is capable of
reorganization as a function of experience. This fact has been
well documented by animal experiments, and by human be-
havioral and electrophysiologic studies. For example, single-
and multiple-unit recordings from mammalian cortical neu-
rons show learning-induced changes in the auditory cortex
~Buchwaldet al., 1966; Oldset al., 1972; Kraus and Dister-
hoft, 1982; Diamond and Weinberger, 1984, 1986, 1989;
Bakin and Weinberger, 1990; Recanzoneet al., 1993; Ede-
line et al., 1993; Weinberger, 1993!. In humans, Na¨ätänen
et al. ~1993! have reported learning-related neurophysiologic
changes reflected in a far-field electrophysiologic response
called the mismatch negativity~MMN !. They showed that
the MMN changed following discrimination training using

tonal stimuli. Similarly, Krauset al. ~1995a! demonstrated
learning-related changes in the MMN when elicited by syn-
thetic speech stimuli.

The MMN is an auditory-evoked response that reflects
preattentive discrimination of acoustic signals~Näätänen
et al., 1978; Samset al., 1985; Näätänen and Picton, 1987;
Scherg and Picton, 1990; Giardet al., 1990; Cse`pe et al.,
1987!. The MMN is elicited by a rarely occurring stimulus
when it is presented within a series of homogeneous stimuli
~Näätänenet al., 1978!. Animal and human studies indicate
that the encoding of different acoustic cues important for
speech perception involve distinct neuroanatomic and neuro-
physiologic processes~Blackburn and Sachs, 1990; Delgutte
and Kiang, 1984; Steinschneideret al., 1982, 1990! and that
the MMN can be used to probe the neurophysiologic encod-
ing of essential speech features~McGeeet al., 1996; Micco
et al., 1995; Cse`pe, 1995; Sharmaet al., 1995; Krauset al.,
1993, 1994a, 1994b, 1995b, 1996!.

The Näätänen et al. ~1993! and Krauset al. ~1995a!
findings suggest that changes in the MMN reflect
experience-related changes in central auditory processing of

a!Present address: House Ear Inst., Electrophysiology Lab., 2100 West Third
St., Los Angeles, CA 90069.
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complex signals such as speech. However, in those studies,
subjects were trained and tested using the same stimuli.
What is of great interest is if changes in stimulus represen-
tation are limited to the stimuli used in training, or whether
the changes in acoustic representation at a preattentive level
will generalize to novel stimuli with acoustic properties simi-
lar to the trained stimuli. This ‘‘transfer of learning’’ is im-
portant from a clinical perspective because it is important to
know if efforts at~re!habilitation using auditory training will
generalize beyond the training sessions to other listening
events.

Behavioral evidence of ‘‘transfer of learning’’ already
has been established in the speech-learning literature. For
example, McClaskeyet al. ~1983! found that adult listeners
generalized their newly acquired ability to perceive pre-
voiced labial syllables to prevoiced alveolar phonemes.
However, little is known about the neurophysiologic changes
associated with such learning and transfer of learning.

Consequently, this study combined the behavioral ap-
proaches of Pisoniet al. ~1982! and McClaskeyet al. ~1983!
with the neurophysiological approach used by Na¨ätänen
et al. ~1993! and Krauset al. ~1995a! to explore whether
behavioral training modified the neurophysiologic represen-
tation of speech, and to test the hypothesis that neurophysi-
ologic modification is not limited to the stimuli used to es-
tablish the change. Specifically, this study was designed to
determine if surface-recorded mismatch negativity responses
in humans reflect behavioral changes in perception following
training, and whether ‘‘transfer of learning’’ is evident be-
haviorally and neurophysiologically in response to novel
speech contrasts having an equivalent voice-onset-time dis-
tinction but a different place of articulation.

I. METHODS

A. Subjects

The subjects were 18 normal hearing, right-handed
monolingual speakers of English. Normal hearing was de-
fined as pure tone sensitivity better than or equal to 20 dB
HL bilaterally for octave frequencies between 250 Hz and 8
kHz. All subjects were born into monolingual English-
speaking households and had less than five years of exposure
to a foreign language~s! in school. Each subject was ran-
domly assigned to either an experimental or control group.
The mean age for the control group was 21 years with an age
range of 18–28 years. The mean age for the experimental
group was 22 years with an age range of 18–26 years.

B. Stimuli

The stimuli were synthesized tokens modeled after those
used by McClaskeyet al. ~1983!. Labial ~/ba/–/pa/! and al-
veolar ~/da/–/ta/! continua were created in which voice-
onset-time~VOT! varied from250 ms to150 ms in 10-ms
steps. Therefore, each continuum consisted of eleven items.
The VOT is defined as the interval between the release from
stop closure and the onset of laryngeal pulsing. A negative
VOT indicates laryngeal pulsing during the stop closure pe-
riod before the release. The stimuli were generated using a
Klatt digital speech synthesizer~Klatt, 1980!.

The steady-state portion of the stimuli consisted of the
vowel /a/, which varied in duration relative to the VOT so
that the overall duration for each stimulus remained constant
at 180 ms. The formant values for this vowel were:F1
5700 Hz, BW1590 Hz; F251200 Hz, BW2590 Hz; F3
52600 Hz, BW35130 Hz, F453300 Hz, BW45400 Hz;
F553700 Hz, BW55500 Hz. The fundamental frequency of
the stimuli began at 120 Hz and then fell to 100 Hz during
the steady-state portion of the vowel. The labial formant
transitions were 40 ms in duration. The alveolar formant
transitions were 50 ms in duration. To simulate a burst, a
turbulent noise source~AF! 10 ms in duration and 60 dB in
amplitude was added to both bilabial and alveolar stimuli.
The spectrum of the burst was centered around 2500–4000
Hz.

Because the MMN is elicited by any acoustic change,
we chose to use synthetic rather than natural speech in order
to precisely control the acoustic parameters and to determine
systematically which acoustic dimension was reflected in the
MMN. The use of natural speech would have complicated
the interpretation because natural speech contains many si-
multaneously changing parameters that might be reflected in
the MMN.

C. Procedure

The entire testing procedure took nine days for each
individual. The experimental and control group participated
in exactly the same testing on days 1, 2, 8, and 9. The only
difference was that the experimental group participated in
training sessions on days 3–7 whereas the control group did
not receive any training.

1. Day 1

a. Electrophysiology baseline.Baseline MMN responses
were obtained on the first day for both the experimental and
control groups in response to the two stimulus pairs; the
training stimuli ~labial! and the transfer stimuli~alveolar!.
The210-ms VOT stimulus~either labial or alveolar! was the
standard stimulus~frequency of occurrence585%! and the
220-ms VOT stimulus~either labial or alveolar! was the
deviant stimulus~frequency of occurrence515%!. The
stimuli were presented in a pseudorandom sequence with at
least three standard stimuli separating presentations of devi-
ant stimuli ~oddball paradigm!. Although 3500 standard
stimuli were presented, the responses to the standard stimuli
following each deviant were not included in the averaged
response. In an ‘‘alone’’ condition, 1000 presentations of the
deviant stimulus were presented alone for comparison with
the response to that same stimulus when it was the deviant
stimulus in the oddball paradigm. The rationale for using a
deviant-stimulus-alone control condition is reviewed by
Krauset al. ~1995b!. The order of labial and alveolar presen-
tation was counterbalanced across subjects to prevent any
potential order effects. For each individual, the order of
stimulus presentation was the same before and after training.

All subjects were tested in a sound-treated booth. The
stimuli were presented monaurally to the right ear using Ety-
motic Research~ER3! insert earphones. Subjects were in-
structed to ignore the stimuli. To ensure that the subject was
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not attending to the stimuli, each subject watched a video-
tape of his or her choice. The test stimuli were presented at
74 dB SPL while the background videotape sound, presented
in free field, was 40 dB SPL.

Previous studies by Na¨ätänen et al. ~1993! and Kraus
et al. ~1995a! recorded over the midline of the scalp only and
therefore did not report topographical distributions of MMN
change. This study included nine active electrode locations.
Active electrodes were placed at Fz, Cz, Pz, over the frontal
lobes~F3 andF4), temporal lobes~TL and TR!, and mas-
toids ~A1 and A2!. Electrode TR was situated halfway be-
tween T4 and T6. Electrode TL was situated half way be-
tween T3 and T5 according to the International 10/20
recording system~Jasper, 1958!. A nose electrode served as
the reference and a forehead electrode served as ground.
Eyeblink activity was monitored using electrodes located on
the superior and outer canthus of one eye. Artifacts measur-
ing in excess of 100mV on the EOG channel were rejected
off-line during data processing.

Each individual’s grand-averaged ‘‘difference’’ wave
was calculated by subtracting the average response to the
deviant stimulus when presented alone from the response to
the same stimulus when it was presented in the oddball para-
digm. The MMN onset latency, duration, and area were mea-
sured from the individual subject grand-averaged difference
wave. Latency was measured between 120 and 500 ms. Du-
ration was defined as the offset minus the onset latency. The
MMN area was calculated by drawing a line between the
onset and offset of the MMN in the difference wave, and
determining the number of ms3mV.

Individual grand averages were averaged together for
each group. Group MMN onset latency, duration, and area
measurements were calculated using the same methods. The
present study intentionally focused on group effects. To date,
methods for statistically defining the MMN in individuals are
evolving ~McGee, 1997a, 1997b!. Extracting the MMN sig-
nal from noise in individual responses has been a longstand-
ing methodological issue.

2. Day 2

a. Behavioral baseline: Discrimination testing.During
behavioral tests, subjects were seated in a sound-treated
booth in front of a computer monitor which provided visual
instructions to the subjects. Subjects in both the experimental
and control groups were instructed to listen to two stimuli
and to indicate whether the stimuli were the same or differ-
ent. This AX discrimination task served as a practice task
and included ten trials without feedback using two-step
stimulus pairs from the labial series. Once the subjects dem-
onstrated proficiency with this task, they performed the same
discrimination test using all of the labial stimuli in the VOT
continuum. That is, each subject was presented with 264
trials consisting of both one- and two-step pairs of the labial
stimuli with no feedback. The two-step pairs were included
to provide reinforcement since these were ‘‘easier’’ con-
trasts.

The discrimination task was an AX paradigm with an
interstimulus interval of 750 ms. The interpair interval varied
since the test was self-paced. Once the subject provided a

response, the next stimulus pair was delivered 1 s later. The
discrimination test was repeated using stimuli from the al-
veolar continuum. The number of correct and incorrect re-
sponses for the220/210 ms VOT contrast were calculated
for each individual. These results served as a baseline dis-
crimination measure. The order of labial and alveolar presen-
tation was counterbalanced across subjects to prevent influ-
ences of order effects. For each individual, the order of
stimulus presentation was the same before and after training.

b. Identification testing.Following discrimination test-
ing, each subject was asked to identify, from three choices
displayed as text on the computer screen, what sound they
heard. This paradigm was a three-alternative forced-choice
identification task. When a single labial stimulus from the
labial continuum was presented, the choices were /mba/, /ba/,
and /pa/. When the stimulus was from the alveolar con-
tinuum, the choices were /nda/, /da/, and /ta/. Each test con-
sisted of 210 trials and included all 11 items from the con-
tinuum. No feedback was provided to the subject. However,
in order to score identification data, labels were arbitrarily
assigned such that the250-, 240-, 230-, and220-ms VOT
stimuli were assigned the label /mba/, the210-, 0-, 110-,
and 120-ms VOT were assigned the label /ba/, and the
130-, 140-, and150-ms VOT stimuli were assigned the
label /pa/. Percent correct was calculated for the number of
times the220-ms VOT stimulus was identified as /mba/.
These results served as a baseline identification measure.

3. Day 3

a. Behavioral training (experimental group only).The
experimental subjects were asked to listen to single presen-
tations of the labial stimuli in order from250-ms through
150-ms VOT. This served as a familiarization session. Us-
ing a fading technique described by Jamieson and Morosan
~1986, 1989!, subjects were presented with either a210-ms
or 230-ms VOT stimulus from the labial continuum. Sub-
jects were asked to identify the sound as either /mba/ or /ba/.
Both choices were presented as text on the computer moni-
tor. Feedback in the form of a green reinforcement light ap-
peared when the subject correctly identified the230-ms
VOT stimuli as /mba/ and the210-ms VOT stimuli as /ba/.
This task was repeated 50 times to train the listener to label
the acoustic prevoiced component as /mba/.

The210-ms and230-ms stimuli were chosen based on
a pilot study in which listeners were able to identify these
stimuli well above chance without training. Therefore, this
initial session allowed the subjects to listen to the prevoiced
stimuli and orient themselves to the prevoiced cue using an
easy stimulus pair. Following this fading session, each sub-
ject began their first training session using a more difficult
stimulus ~220-ms VOT!. This stimulus was now assigned
the label /mba/. The training session consisted of four blocks
of 50 trials where either a210-ms or220-ms VOT labial
stimuli was presented. Feedback in the form of a green rein-
forcement light appeared when the220-ms VOT stimuli
was labeled as /mba/ and the210-ms VOT was labeled as
/ba/. Each stimulus was presented randomly with equal prob-
ability of occurrence. Percent correct was calculated based
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on the number of correct responses for each block of 50
trials. Performance on all four blocks of 50 trials was aver-
aged to obtain a final training session score.

4. Days 4 –7

a. Behavioral training continued (experimental group
only). Each subject in the experimental group continued the
training sessions, listening, and identifying the220- and
210-ms VOT labial stimuli. Nine sessions were conducted
over 5 days. Each training session~200 trials! lasted approxi-
mately 20 min.

5. Day 8

a. Electrophysiology posttraining test.Electrophysi-
ologic responses were measured for both groups in response
to the220- and210-ms VOT contrasts~labial and alveolar!
using the same procedure described for day 1.

6. Day 9

a. Behavioral posttraining test.Discrimination and iden-
tification measures were obtained for both the labial and al-
veolar stimuli for both the experimental and control groups
as described under day 2.

II. RESULTS

The results are presented in two sections:~A! Behavioral
data and~B! Electrophysiological data.

A. Behavioral results

1. Identification training

Through training, all subjects in the experimental group
learned to identify the220-ms VOT stimulus as /mba/ and
the 210-ms VOT stimulus as /ba/. Grouped data show a
significant improvement from the first to the last training
session ~t53.43, d f58, p,0.01). Group averaged data
across sessions are shown in Fig. 1.

2. Pre- and postdiscrimination and identification
testing

a. Trained stimuli /mba/.Training resulted in improved
posttraining discrimination and identification scores for the
experimental group but not the control group~Fig. 2!.
Planned comparisons revealed a significant improvement in
the experimental group’s ability to identify the220-ms VOT
stimuli as /mba/ when comparing pre- versus posttraining
identification scores~t52.11, d f58, p,0.05). The control
group did not show any significant change in performance
from pre- to posttesting~t50.85, d f58, p.0.05). Simi-
larly, the experimental group demonstrated a significant im-
provement in their ability to discriminate the220/210-ms
VOT /mba/ contrast~t52.39,d f58, p,0.05) whereas the
control group did not (t51.51,d f58, p.0.05).

b. Transfer stimuli.The effects of training transferred to
the /nda/ stimuli with posttraining discrimination scores im-
proving significantly for the experimental group (t52.60,
d f58, p.0.05) but not the control group (t51.71,d f58,
p.0.05). Improvement in the identification of the220-ms
VOT /nda/ stimulus narrowly missed reaching significance
for the experimental group (t51.71, d f58, p50.06). The
control group did not show any significant changes in the
ability to correctly identify the220-ms VOT /nda/ stimulus
(t50.09,d f58, p.0.05).

3. Summary

In summary, listening training improved the experimen-
tal group’s ability to discriminate and identify the unfamiliar
prevoiced labial stimulus /mba/. That enhanced ability trans-
ferred from one place of articulation~labial! to another~al-
veolar!. No significant changes in performance were seen for
the control group since they did not receive the training.

B. Electrophysiology results

1. MMN onset latency, duration, and area

Planned comparisons revealed a significant decrease in
MMN onset latency for the experimental group but not the
control group for the training stimuli /mba/ (t52.31, d f
58, p.0.05; t50.99, d f58, p.0.05). No significant
changes were seen in onset latency for either the experimen-
tal or control groups when tested using the transfer stimuli
(t51.48,d f58, p.0.05; t50.22,d f58, p.0.05).

Planned comparisons comparing pre- versus posttraining
scores revealed significant increases in MMN duration for
the experimental group for both the trained and transfer
stimuli (t54.97, d f58, p.0.01; t52.91, d f58, p
,0.05). The control group did not show significant changes
for either stimulus condition (t50.90, d f58, p.0.05; t
50.25,d f58, p.0.05).

Planned comparisons comparing pre- versus posttraining
revealed significant increases in MMN area for the experi-
mental group for both the trained and transfer stimuli (t
52.77,d f58, p.0.05;t52.94,d f58, p.0.05). The con-
trol group did not show significant changes for either stimu-
lus condition (t51.13, d f58, p,0.05; t50.91, d f58, p
.0.05).

FIG. 1. Average correct identification scores~j---j! and one standard
deviation~---! are shown as a function of training session for the experimen-
tal group. Identification scores improved significantly from the first to final
training session (n59).
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In summary, an increase in MMN duration and area
were seen for the experimental group when elicited by either
the training or transfer stimuli following training~Fig. 3!. No
significant pre- versus posttraining changes were seen for the
control group.

2. Laterality differences

Changes in MMN were largest over the left hemisphere.
Figure 4 provides right versus left hemisphere MMN data
pre- and posttraining for the experimental group in response
to the training stimuli. Enhancement of the MMN was evi-
dent visually at all electrode sites in response to the training
stimuli. For the transfer stimuli, changes were evident at Fz
and FL only. Because there appeared to be a greater amount
of change over the left hemisphere in the experimental
group, MMN onset latency, duration, and area measures
were analyzed using a 23~232! repeated measures ANOVA
~experimental versus control group, left versus right hemi-
sphere, and frontal versus temporal lobe!, using post- minus
pretraining values as the dependent variable.

For the training stimuli~mba!, there were significant
group effects for onset latency (F54.135, p50.05). A

group 3 hemisphere interaction was seen for MMN onset
latency (F55.62, p,0.05). Post hoc t tests revealed that
the significant difference between right and left onset latency
was seen over the frontal lobes. The decrease in onset la-
tency following training was greater at electrode site FL
when compared to FR (t53.10,d f58, p,0.01).

For the training stimuli~mba!, there were significant
group effects for MMN duration and area (F54.41, p
,0.05; F55.63, p,0.05). A group3 hemisphere3 lobe
interaction was seen for MMN duration (F54.6, p,0.05).
Post hoc ttests revealed that the degree of duration change
was greater at electrode site FL compared to FR in the ex-
perimental group (t53.74,d f58, p,0.01). No significant
onset latency, duration, or area differences were seen across
hemispheres for the control group. For the transfer stimuli
~nda!, there were no significant hemispheric differences.

C. Summary of results

Listening training improved the ability to discriminate
and identify an unfamiliar VOT contrast. That enhanced abil-
ity transferred from one place of articulation~labial! to an-
other ~alveolar!. The behavioral training effects were re-

FIG. 2. Pre- versus posttraining identification and discrimination performance for the training and transfer stimuli for the experimental and control groups.
Asterixes denote a significant change in performance withp values,0.05.
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flected in the MMN, which showed an increase in duration
and area when elicited by the training or transfer stimuli for
the experimental group but not the control group. This find-
ing is illustrated in Figs. 5 and 6, which show grand-
averaged MMN waveforms for each group. Figure 7 illus-
trates that the grand-averaged MMN measures reflect the
individual trends in the data and are not simply a result of
one or two outlayers. Figure 4 shows that changes in the
MMN were largest over the left hemisphere.

III. DISCUSSION

A. Main findings

Auditory training alters the perception of novel stimuli.
Behavioral learning was shown by the improved identifica-

tion scores during training sessions as well as the improved
pre- versus posttraining discrimination and identification
scores. Concurrently, neurophysiological plasticity was
shown by the changes in the mismatch response. Specifi-
cally, this study showed that~1! through training, the experi-
mental group learned to identify speech contrasts~differing
in VOT! that are not phonemically different in the English
language,~2! improvement of voice-onset-time discrimina-
tion generalized to spectrally different stimuli that also var-
ied in VOT, ~3! electrophysiologic responses to the training
and transfer stimuli reflected this improved perception as an
increase in MMN duration and area, as well as a decrease in
the onset of the mismatch response for the experimental
group but not the control group, and~4! electrophysiologic

FIG. 3. Increases in MMN duration and area and a decrease in onset latency~recorded from Fz! were seen in the experimental group and not in the control
group for both training and transfer stimuli. Single asterixes denote a significant change withp values,0.05. Double asterixes denote a significant change
with p values,0.01.
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duration changes were greater over the left hemisphere than
the right hemisphere.

The behavioral data are consistent with those of Mc-
Claskeyet al. ~1983! who reported that the perception of a
new linguistic contrast can be acquired by adult listeners and
that this trained ability generalizes to novel stimuli not used
during training. The electrophysiologic data reinforce the

findings of Näätänen et al. ~1993! and Krauset al. ~1995a!
that neurophysiologic changes can be demonstrated in hu-
mans following listening training, thereby reflecting auditory
system plasticity. Most importantly, this study showed that
both behavioral and electrophysiologic changes are general-
izable to other auditory stimuli that were not used during the
training sessions.

FIG. 4. Pre- and posttraining group-averaged electrophysiologic responses at four electrode sites~FL, TL, FR, and TR! are shown for the experimental group
to the training stimuli~220/210-ms VOT! when the deviant was presented alone~thin line! and when it was presented in the mismatch condition~thick line!.
The MMN is seen in the subtraction wave below. The area of significance (p,0.05) is depicted by the blocked area on thex axis (n59).
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B. Implications of experimental results to other areas
of research

1. Plasticity of the adult system

In the past, there was debate concerning the flexibility of
the mature perceptual system to accommodate new phonetic
categories. Both successful as well as unsuccessful training
and generalization attempts subsequently have led to the
conclusion that the adult system does not lose the ability to
acquire new linguistic contrasts, provided specific experi-
mental procedures are used to train the listeners~Carney
et al., 1977; Aslin and Pisoni, 1980; Strange and Dittmann,
1984; Jamieson and Morosan, 1989; Pisoniet al., 1982;
Werker and Tees, 1984a; Livelyet al., 1993, 1994; Logan
et al., 1991!. Until now, this line of research has been limited
to behavioral studies. The present study establishes that the
adult perceptual system is indeed plastic and that transfer of
training can be shown through both behavioral and neuro-
physiologic measures.

2. Locus of neurophysiologic change

Neurophysiological evidence of learning-induced plas-
ticity as well as representation of VOT have both cortical and
subcortical origins~Disterhoft and Stuart, 1976, 1977; Ryugo

and Weinberger, 1978; Kraus and Disterhoft, 1982; Wein-
berger et al., 1984; Edelineet al., 1990; Sinex and Mc-
Donald, 1988; Steinschneideret al., 1982, 1990, 1995; Egg-
ermont, 1995; McGeeet al., 1996!. Furthermore, there is
evidence for cortical and subcortical mismatch generators
~Näätänenet al., 1978, 1980; Hariet al., 1984; Cse`pe et al.,
1987; Näätänen and Picton, 1987; Giardet al., 1990; Scherg
and Picton, 1990; Sams and Na¨ätänen, 1991; Alhoet al.,
1992; Javitt et al., 1992; Kraus et al., 1994a, 1994b!.
Training-induced neurophysiologic changes as well as their
generalizability may be the result of~1! a greater number of
neurons responding in the sensory field,~2! increased syn-
chrony of neuronal responses, or~3! an expansion of recep-
tive fields~Bergeret al., 1976; Merzinechet al., 1983, 1984;
Kaaset al., 1983; Merzinech and Jenkins, 1983!.

Although this study does not specifically address
whether changes occurred cortically or subcortically, it does
provide insight into where neural changes might have oc-
curred and how neuroanatomy may relate to perceptual
learning. Specifically, changes in MMN were greater over
the left compared to the right hemisphere following training,
thereby suggesting that preattentive aspects of speech pro-
cessing may also be lateralized. This laterality finding is new
and may have implications regarding the role of each hemi-

FIG. 5. A significant increase in duration and area of the mismatch response was seen following training for the experimental group. Group-averaged
electrophysiologic responses~electrode Fz! are shown for the experimental group to the training and transfer stimuli~220/210-ms VOT! when the deviant
stimulus was presented alone~thin line! and when it was in the mismatch paradigm~thick line!. The MMN is seen in the subtraction wave below. The area
of significance (p,0.05) is depicted by the blocked area on thex axis (n59).
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sphere in processing learning-associated stimulus change.
Mapping studies using current source density analysis

have reported both bilateral cortex involvement and pre-
dominantly right-hemispheric frontal involvement in MMN
generation~Giard et al., 1990; Paavilainenet al., 1991!. In
the present study, the pretraining MMN was seen bilaterally
and was not significantly larger over one hemisphere. The
absence of laterality may result in part from the nature of the
stimuli. Prior to training, subjects did not perceive the /mba/
and /nda/ stimuli to be phonetically distinct from /ba/ and
/da/. Identification training may have resulted in these stimuli
being recognized linguistically rather than as simple acoustic
variants of /ba/ and /da/, thereby leading to greater activity in
the left hemisphere. For example, when Giardet al. ~1990!
and Paavilainenet al. ~1991! observed right-hemispheric
dominance when recording the MMN, they used tonal
stimuli. Because tones do not convey linguistic or phonetic
information, the left hemisphere may not have played a
dominant role in encoding those stimuli. Sharma and Kraus
~1995! showed that the MMN lateralizes to the left if the
change in a stimulus sequence signals a phonetic rather than
a tonal pitch contrast. Thus, these studies in combination

with the findings from the present study suggest that the
linguistic/phonetic nature of the stimuli may relate to which
hemisphere is most active in detecting the stimulus change
and that preattentive aspects of speech processing are modi-
fiable and may also be lateralized.

3. The role of attention and perceptual learning

Regardless of where and how these neurophysiological
changes take place, the data suggest that some degree of
speech learning occurs at a preattentive level that can be
measured in the absence of an overt response. Until now, the
role of attention in comparable training and generalization
experiments has been explored primarily in the visual mo-
dality. Visual experiments suggest that high-level attentional
mechanisms are necessary for demonstrating ‘‘transfer’’ of
visual learning~Ahissar and Hochstein, 1993!. Even though
the behavioral tasks in this study required attention and cog-
nitive processing of the stimuli during training, changes in
the MMN elicited by the training as well as the transfer
stimuli indicate that speech-sound learning is evident at an
automatic, preattentive level. Future studies examining the
role of attention and other high-level cognitive processes

FIG. 6. No significant changes in onset latency, duration, and area of the mismatch response was seen for the control group. Group-averaged electrophysi-
ologic responses~electrode Fz! are shown for the control group to the training and transfer stimuli~220/210-ms VOT! when the deviant stimulus was
presented alone~thin line! and when it was in the mismatch paradigm~thick line!. The MMN is seen in the subtraction wave below. The area of significance
(p,0.05) is depicted by the blocked area on thex axis (n59).
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may yield information pertaining to the site~s! of perceptual
learning, and how learning manifests itself as behavior.

IV. CONCLUSIONS

Ultimately, the goal of successful~re!habilitative train-
ing is to have listeners transfer learned behaviors to new
listening situations. The behavioral results of this study have
confirmed that controlled laboratory-based training proce-
dures can be effective in modifying listeners’ preattentive
phonetic perception in a short period of time and that the
learned behavior transfers to new acoustic conditions. The

corresponding neurophysiologic findings are significant from
a clinical perspective because they provide an objective ap-
proach for examining the neurophysiologic change that may
occur following~re!habilitation efforts in populations such as
hearing-impaired individuals and children with auditory-
based learning problems, who may not be able to participate
in behavioral testing. From a more theoretical standpoint,
these findings establish an avenue for examining the human
capacity for change, and for understanding neurophysiologic
processes associated with foreign language training, musi-
cian ear training, and other forms of auditory learning.

FIG. 7. Individual subject changes in MMN onset latency, duration, and area after training are shown for the experimental group. Posttraining changes are
plotted relative to normalized pretraining values and show a significant increase in both duration and area as well as a significant decrease in onset latency.
Note that overlapping individual scores are indicated by thes symbol.
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