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Transpiration-use efficiency coefficient (Kc) describes the amount of biomass 

produced per unit transpiration at a given vapor pressure deficit. A series of greenhouse 

experiments were conducted to determine the Kc values of seven weed species and to 

measure how Kc values were affected by fraction of transpirable soil water (FTSW) level 

and plant growth stage. Experiments were conducted using a factorial design with 4 

levels of water stress (0.3, 0.4, 0.7, and 1.0 FTSW) and two harvest times (first bloom 

and seed maturity). After plants attained a predetermined size, each plant was sealed at 

the base using a polyethylene bag. Pots were weighed daily and maintained the required 

weight by watering through an inserted syringe. Pre-bagging transpiration was back-

calculated from 0 d to the first 20 d of measured daily transpiration. One set of plants was 

harvested at first bloom and another set was harvested at seed maturity. Kc was calculated 

as the ratio of total biomass to the cumulative transpiration multiplied by the average 

daytime vapor pressure deficit.  

FTSW level did not affect the Kc of henbit (vegetative growth) or shepherd’s-

purse. Kc values increased as FTSW levels declined for common lambsquarters, pinnate 

tansymustard, henbit (complete lifecycle) and field pennycress (vegetative growth). Kc 

values decreased as FTSW declined for dandelion, Carolina foxtail, and field pennycress 



 

 

(complete lifecycle) suggesting that these species were relatively sensitive to water stress. 

Plant growth stage did not affect Kc for pinnate tansymustard and dandelion. Kc values 

decreased between the first bloom and seed maturity for field pennycress, common 

lambsquarters, shepherd’s-purse and henbit. The decline in Kc may be attributed to high 

oil content in the seed of field pennycress, shepherd’s-purse and henbit, and the high 

protein content of common lambsquarters. Carolina foxtail Kc values did not respond 

consistently to FTSW across harvest times – Kc values increased from first bloom to seed 

maturity at FTSW levels 0.3 and 0.4, but remained same at the 0.7 FTSW level. 
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INTRODUCTION 

No-till agricultural systems have been adopted widely (Klassen 1991; Swanton 

and Weise 1991; Swanton et al. 1993) to reduce labor and fuel inputs (Brown et al. 1989; 

Griffith et al. 1986; Hairston et al. 1984) and to minimize the level of interference to the 

environment (Hildebrand 1990; Reganold et al. 1990). No-tillage practices are beneficial 

to the farmer in terms of reduced soil erosion, improved water infiltration, improved 

surface water quality, greater soil moisture retention, better soil tilth, and reduced soil 

compaction (Griffith et al. 1986; Hairston et al. 1984). Long-term use of no-tillage leads 

to altered weed species composition, weed density, weed emergence patterns (Buhler 

1995; Doll et al. 1992; Wicks et al. 1994), and greater reliance on herbicides to manage 

weeds (Buhler 1988; Coffman and Frank 1991; Koskinen and McWhorter 1986; Nowak 

1983).  

Weeds compete with crops for water, nutrients, light, and may also act as alternate 

hosts for plant diseases or insect pests (Creech et al. 2007; Johnson et al. 2004). Between 

1996 and 2006, the percentage of corn acres in no-till increased from 17 to 74% in areas 

of southeast Nebraska (Franti et al. 2009). With that change there are an increasing 

number of fields infested with high densities of henbit, field pennycress, shepherd’s-

purse, pinnate tansymustard, marestail and other winter annual weeds. On some of the 

infested acres farmers delay controlling these weeds until the time of corn or soybean 

planting, and in extreme cases may even wait until after the crop has been planted and 

emerged. When winter annual weed control was delayed until planting or later, crop 

emergence and growth was reduced, especially in drier than normal springs (A. Martin, 

personal communication). Weed competition does not always affect soil water 
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availability, but can have severe effects on crop growth and yield during extended dry 

periods (Dalley et al. 2004, 2006). There is little data on the effect of winter annual 

weeds on the growth and development of the subsequent crop, nor is there data on the 

water use of winter annual weeds. 

The ratio of total biomass to the cumulative transpiration is the simplest definition 

of transpiration use efficiency (TUE) (Sinclair et al. 1984). Early work on water use 

efficiency of several crop and weed plants was done by Briggs and Shantz (1914), 

Dillman (1931), and Shantz et al. (1927). Briggs and Shantz (1914) measured water use 

efficiency of various cultivars of corn, wheat, oats, sorghum, 15 species of legumes, and 

grasses, forbs and shrubs by growing plants in 15 kg of sealed earthen pots. Water use 

efficiency of corn and sorghum cultivars ranged from 220 to 400 kg H2O per kg dry 

matter and from 571 to 935 kg H2O per kg dry matter for 14 legume species. Shantz et al. 

(1927) and Dillman (1931) conducted pot experiments to determine the water use 

efficiency and transpiration coefficients of several crop and weed species. They have also 

determined the amount of water required to produce one pound of dry matter.   

The definition described above and the concept used by Briggs and Shantz (1914) 

does not account for differences in environmental conditions which might be responsible 

for differences in transpiration use efficiency of a particular plant species across 

environments. Consequently, a ‘vapor pressure deficit’ term was introduced into the 

definition, and the transpiration-use efficiency coefficient (Kc) described the amount of 

biomass produced per unit amount of water transpired at a given vapor pressure deficit 

(Sinclair et al. 1984; Kemanian et al. 2005) and is calculated using the equation (1): 
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Г� � ���� �	

� � 	     (1) 

where Kc = transpiration-use efficiency coefficient (Pa), Y = crop above-ground 

biomass production (kg ha
-1

), T = total canopy transpiration per area during growth to 

harvest (kg ha
-1

), e*a = saturation vapor pressure at air temperature (Pa), and e = actual 

vapor pressure (Pa). 

 Kc values are preferred over transpiration use efficiency values because the vapor 

pressure deficit term help minimizing the variation in Kc values across environments. Kc 

values have been reported for many crop species (Table 1) but not for weed species. 

Knowing the Kc for a species allows one to calculate the amount of water used by that 

species at a given biomass and it may also help explain the relative competitiveness of a 

crop and a weed in water-sufficient or water-stressed environments. For example, if the 

Kc of a weed species is relatively greater than crop species it may be more competitive 

under water-deficit conditions.  

The leaf level transpiration-use efficiency coefficient (Kl) was defined by Sinclair 

et al. (1984) and is calculated using equation (2):   

Г� �� ���� �� (2) 

where Kl = leaf level transpiration-use efficiency coefficient (Pa), A = CO2 assimilation 

rate per unit of leaf area (µmol m
-2

 s
-1

), E = rate of evaporation per unit leaf area (µmol 

m
-2

 s
-1

), and D1 = leaf-to-air vapor pressure deficit (Pa).  
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Assuming the leaf temperature is within ±2-3 
o
C of air temperature (Bierhuizen 

and Slatyer 1965), Tanner (1981) and Sinclair et al. (1984) modified equation (2) to 

calculate the transpiration-use efficiency coefficient of a crop canopy (Kc) : 

Г� � ���� �
 (3) 

where Kc = transpiration-use efficiency coefficient (Pa), Y = crop above-ground biomass 

production (kg ha
-1

), T = total canopy transpiration per area during growth to harvest (kg 

ha
-1

), and Da = seasonal average daytime vapor pressure deficit (Pa). 

Tanner and Sinclair (1983) modified the equation (3) further by employing a 

number of simplifying assumptions. They assumed that the ratio between the internal 

(leaf) and the external (bulk air) concentration of CO2 (ci/ca) is a constant (0.7 for C3 

crops and 0.3 for C4 crops), and when the leaf area index is greater than 3, leaves are 

separated into either shaded or sunlit, and shaded leaf temperatures are assumed to be 

equal to air temperature.  Equation 4 is: 

Г� � ���������
 ����� (4) 

where, a = molecular weight ratio of carbohydrates to CO2 (0.68), b = conversion 

coefficient from hexose to biomass (0.8 for crops with high accumulation of sugar or 

starch, 0.45 for crops with high accumulation of oil, and 0.40 for crops with high 

accumulation of protein), c = constant for expressing the CO2 concentration difference 

(0.7 for C3 crops and 0.3 for C4 crops), Pa = partial pressure of CO2 in the atmosphere 

(Pa), and LD = sunlit leaf area index, LT = effective transpiring leaf area  
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Most Kc values represent only shoot biomass due to the difficulty of measuring 

root biomass, especially in field studies. However, modeling root biomass can have a 

large effect on Kc values, especially when the plant is a perennial or the root is a storage 

or reproductive organ. Azam-Ali and Squire (2002) reported that the transpiration-use 

efficiency for groundnuts (Arachis hypogaea) almost doubled by including the roots in 

the biomass measurement. 

There are two different approaches to calculate Kc at the field level. The first 

defines Kc as the slope of the linear regression between total biomass and the daily 

integration of the quotient between transpiration and daytime air vapor pressure deficit 

(Tanner 1981; Condon et al. 1993; Marcos 2000; Kemanian et al. 2005). The second 

calculates Kc as the product of Y/T times the seasonal average of day time air vapor 

pressure deficit (Equation (2)). (Hubick and Farquhar 1989; Siddique et al. 1990; 

Gregory et al. 1992; Doyle and Fischer 1979; Connor et al. 1992; Meinke et al. 1997; 

Angus and van Herwaarden 2001; Foulkes et al. 2001). It is difficult to compare both 

approaches as none of the experiments have calculated the Kc values using both 

approaches. It is clear from the literature review that the first approach was used in field 

experiments and the second approach was used in pot experiments. In this research, Kc 

values were calculated using the second approach. 

Total transpirable soil water (TTSW) is the difference between field capacity and 

permanent wilting point, and represents the water available in a soil to support plant 

transpiration (Sinclair and Ludlow 1986). The quantity of TTSW varies among soils and 

depends primarily on soil texture and organic matter (Colman 1947). However, for a 

given soil there can be additional variation in the TTSW depending on the plant species 
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and its ability to extract water, and the effect of environmental conditions such as 

temperature, humidity, wind speed and radiation (Sinclair et al. 2005). TTSW can be 

defined either thermodynamically or based on plant physiological response.  

The thermodynamic definition of field capacity is the bulk water content retained 

in soil at -33 kPa of soil matric potential, and the definition for permanent wilting point is 

the bulk water content retained in soil at -1500 kPa of soil matric potential. 

Thermodynamic measurements of field capacity and permanent wilting point of soil 

samples are made by applying air pressures of 33 kPa and 1500 kPa using pressure plate 

apparatus (Richards and Weaver 1943; Cassel and Nielsen 1986). The main advantage of 

thermodynamic measurements is that they are relatively easy to measure. An important 

limitation of the thermodynamic approach is that it does not account for the differential 

abilities across plant species to extract water from a soil, and thus may lead to either 

overestimation or under estimation of TTSW for the permanent wilting point (Granier et 

al. 2000; Bernier et al. 2002; Girona et al. 2002, Sinclair and Ludlow 1985; Sinclair et al 

2005).  

The physiological definition of field capacity (FC) is the upper boundary of water 

held in the soil (Colman 1947). The field capacity represents water held in micropores of 

soil after water has drained from the macropores due to gravitational pull. The field 

capacity of a particular soil depends primarily on soil texture and is considered consistent 

irrespective of the plant species and environmental conditions (Colman 1947; Sinclair et 

al. 2005). In the field, the velocity of the drainage depends on the hydraulic conductivity 

of the soil, and drainage is faster for coarse-textured soils compared to fine-textured soils. 

Hence, the required time after saturation to measure the field capacity should vary based 
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on the texture of a soil (Zotarelli et al. 2010). In pot studies, field capacity was 

determined by weighing pots that had been allowed to drain for 36 hours after having 

been saturated (Sinclair and Ludlow 1986, Sinclair et al. 2005).  

The physiological definition of permanent wilting point (PWP) is the lower 

boundary of water held in the soil below which plants wilt and fail to recover when 

placed in a humid chamber (Soil Science Society of America 1997; Richards and Weaver 

1943). At PWP, a soil still holds water, sometimes in relatively large quantities, but it is 

held so tightly that the plant cannot extract it. Sunflower was used as an indicator species 

in wilting studies by Veihmeyer and Hendrickson (1928), Furr and Reeve (1945), and 

Briggs and Shantz (1912) and the procedures were standardized as the sunflower method. 

In the sunflower method, pot-grown plants are watered until the third set of leaves 

appears, at which time the watering ceases and the plants are bagged at the base of the 

stem. Then plants are kept in an environment with low evaporative demand until all three 

sets of leaves wilt. To ensure that the wilting is permanent, plants are placed overnight in 

a dark humid chamber. If the leaves remain wilted in the morning, plants are considered 

permanently wilted and the soil water content is determined and defined as the permanent 

wilting point. There are several additional approaches that can be used to measure 

physiological PWP. In pot studies, the permanent wilting point can be determined by 

weighing pots daily until the transpiration rates of water-stressed plants falls below 10% 

of well-watered plants (Sinclair et al 2005). However, measuring permanent wilting point 

in the field is difficult because of different rooting depths, complex soil horizons, varied 

cropping patterns, and environmental demands can cause large variations in the measured 

values (Ratliff et al. 1983; Ritchie 1981, Cabelguenne and Debaeke 1998).  
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The fraction of transpirable soil water (FTSW) represents the percentage of total 

transpirable soil water remaining in a soil. The FTSW can be used to impose different 

levels of water stress on a plant or to reference changes in plant transpiration as a soil is 

allowed to dry from field capacity toward the PWP (Sinclair et al 2005; Ray and Sinclair 

1998; Sinclair et al. 2007; Sinclair and Ludlow 1986). Plants that are subjected to water 

stress typically are smaller, have reduced leaf expansion (Boyer 1970; Connor and Sadras 

1992; Takami et al. 1981), reduced stomatal conductance (Connor and Sadras 1992; 

Gimenez and Fereres 1986; Hernandez and Orioli 1985; Kiani et al. 2007) and reduced 

transpiration compared to well-watered controls. Dry down studies show the FTSW 

thresholds where transpiration rates decline (Table 2). In these studies plants maintained 

rapid transpiration rates and growth until reaching the reported FTSW threshold, at which 

point the rate of transpiration per unit mass declines.  With few exceptions, the FTSW 

threshold where transpiration declines on a mineral soil occurs between 0.20 and 0.45 

(Table 2).  

Knowing Kc values theoretically allows one to compare transpiration use 

efficiencies among plant species. However, Kc is not a true constant because it represents 

a site specific relationship between a plant and a given environment. Hence, comparisons 

of Kc among species when the plants are grown in different environments must be made 

cautiously.  In addition, extrapolating Kc values to other environments must also be done 

cautiously.  Some of the reasons why Kc varies across environments may include: partial 

pressures of CO2 inside the leaf airspaces and outside atmosphere (Pi/Pa) which explains 

the differences between C3 and C4 plants and the level at which Kc was estimated (leaf 

level versus. canopy level) (Condon et al. 1993, 2002); the time of year and associated 
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variation in vapor pressure deficit (Kemanian et al. 2005); growth stages of the crop 

(vegetative versus reproductive) (Angus and van Herwaarden 2001); exclusion of root 

biomass in calculating Kc  (Simmonds and Azam-Ali 1989; Azam-Ali et al. 1989); and 

level of water stress (water-stressed versus irrigated). The transpiration-use efficiency of 

water-stressed crops was reported to be higher than irrigated crops (Vos and Groenwold 

1989 in potato; Bruck et al. 2000 in pearl millet), but Kc values were not calculated in 

these experiments. Hubick and Farquhar (1989) reported that the Kc of water stressed 

barley was greater (5.9 Pa) than of irrigated barley (4.7 Pa).  

Based on our understanding of the principles and issues described above, we 

hypothesized that (1) Kc values would differ when weeds were subjected to water-

stressed vs. water-sufficient conditions and (2) Kc values would differ between vegetative 

growth and complete life cycle growth. The objectives of this research were to: (1) 

determine the Kc of seven weed species, (2) determine the effect of fraction of 

transpirable soil water level on Kc and (3) determine the effect of growth stage on Kc for 

these seven species. We chose five common winter annual weeds, field pennycress, 

pinnate tansymustard, henbit, shepherd’s-purse, and Carolina foxtail, one perennial, 

dandelion, and one summer annual, common lambsquarters. Common lambsquarters 

germinates early in the spring, often before crop planting and its life cycle overlaps with 

most winter annual weeds.  Dandelion is a perennial, occurs in many no-till fields, and 

grows actively during the same time that winter annual weeds complete their life cycles.   



 

 

MATERIALS AND METHODS 

Greenhouse Conditions 

Experiments were conducted from May 2008 to August 2010 in greenhouses 

located at the University of Nebraska-Lincoln, in Lincoln, NE. A Watchdog model 2475 

plant growth station
1
 was installed at a height of 5 ft at the center of the greenhouse to 

record air temperature, relative humidity and photosynthetically active radiation every 30 

minutes. The greenhouse was maintained at 25/20 (±3.3/5.7) C day/night temperatures 

and light was supplemented using sodium halide lamps to ensure a 14 h day length. 

Saturation vapor pressure (VPsat), actual vapor pressure (VPair), and vapor pressure deficit 

(VPD) were calculated using the following equations (Prenger and Ling 2000). 

�� !" � �#��#�$% � &'����$�(�) � *+�* , (-$�-) (4) 

VPair = VPsat × RH ÷100 (5) 

VPD = VPsat - VPair (6) 

Where RH is relative humidity (%) and T is temperature (C). 

Experimental Materials 

The seven weed species used in this research were field pennycress (Thlaspi 

arvense L.), common lambsquarters (Chenopodium album L.), pinnate tansymustard 

(Descurainia pinnata (Walt.) Britt.), dandelion (Taraxacum officinale G.H. Weber ex 

Wiggers), henbit (Lamium amplexicaule L.), shepherd’s-purse (Capsella bursa-pastoris 

(L.) Medik.), and Carolina foxtail (Alopecurus carolinianus Walt.). Seed of Carolina 

foxtail, dandelion and common lambsquarters was collected from fields of the Lincoln 

Agronomy Farm, Lincoln, NE. Seed of henbit, pinnate tansymustard, field pennycress 

and shepherd’s-purse was obtained from Herbiseed
2
. Two different pot sizes were used 
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based on the growth habit of each species. The small pots had a volume of 1.05 L and 

were used for dandelion, henbit, shepherd’s-purse and Carolina foxtail. The large pots 

had a volume of 2.65 L and were used for field pennycress, common lambsquarters and 

pinnate tansymustard. The potting mixture was prepared by thoroughly mixing soil, sand 

and perlite in an 8:1:1 volumetric ratio. The soil used in the potting mixture had a clay 

loam texture and a pH of 6.7. Perlite is a low density material that expands upon soaking 

and helps prevent water loss and soil compaction. Pots were filled with either 1300 g 

(small pots) or 3300 g (large pots) dry potting mixture.  

The bulk density of potting mixture was determined by taking a soil core of 18 

cm
3
 and drying the sample in an oven at 105 C for 48 h and then weighing the core.  Bulk 

density was calculated as the ratio between oven dry weight of the sample and volume of 

the soil core. The same procedure was performed twice, once before watering the pots 

and again at the end of the experiment. The bulk density of potting mixture before 

watering the pots and prior to plants growing in them was 1.34 g cm
-3

. When measured 

after plants had grown in them the bulk density was 1.21 g cm
-3

. A bulk density of 1.34 g 

cm
-3

 used to calculate the volumetric soil water content at field capacity and permanent 

wilting point. 

Total Transpirable Soil Water.  

The total transpirable soil water was calculated for each species by measuring the 

field capacity of the potting mixture and the species specific physiological permanent 

wilting point. Experiments were conducted as a completely randomized design 

experiment with 4 replications for each species. 
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Field capacity (θfc) 

Field capacity of the potting mixture was measured using 4 replications per pot 

size. Pots were watered to saturation, allowed to drain for 36 hours, and then weighed. 

The mass of water at field capacity was the difference between the weight at field 

capacity and the dry weight of the soil. Volumetric soil water content was calculated 

using: 

θ = 
./
.0

12 (8) 

where Ml is the mass of water (g), Ms is the mass of dry soil (g), and ρs is the bulk density 

of the mixture (1.34 g cm
-3

).  

Permanent Wilting Point (θpwp) 

A polyethylene bag was placed in each pot before the potting mixture was added. 

Seeds were planted by species in separate pots. Pots were watered adequately to maintain 

plant growth. Once the plants attained a predetermined leaf number (Table 3), they were 

thinned to one plant per pot and the pots were watered to reach field capacity. The 

polyethylene bag was then sealed at the base of the plant to limit water loss to 

transpiration only.  After bagging, watering was completely withheld and pots were 

weighed at regular intervals until the plants reached permanent wilting point. Plants were 

considered permanently wilted when the pot mass did not change for 4 consecutive days. 

Table 3 gives the number of days between bagging and permanent wilting for each 

species. Volumetric soil water content at the PWP (θpwp) was calculated using equation 7.  

Total transpirable soil water was calculated as the mass difference of pots 

between field capacity and permanent wilting point. Different fractions of TTSW were 
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calculated to impose various levels of water stress for the transpiration-use efficiency 

coefficient study (Table 3).  

The field capacity and permanent wilting point of the potting mixture were also 

determined thermodynamically. Three composite samples of potting mixture were sent to 

a soil testing lab
3
 to determine the gravimetric water content held against 0, 33, 66, 100, 

300, 900, and 1500 kPa matric pressure. Gravimetric water content was converted to 

volumetric water content using a bulk density of 1.34 g cm
-3

 and a soil water retention 

curve was modeled (Burgert 2009) by fitting a three-parameter exponential decay 

function to the data (Fig. 1).  

Transpiration-use Efficiency Coefficients 

Experiments were conducted to determine the effect of fraction of transpirable 

soil water (FTSW) and plant growth stage on the transpiration-use efficiency coefficient 

(Kc), leaf area (LA), cumulative transpiration (T), dry matter partitioning (Yb, Ya and Y), 

water use (WU), transpiration-use efficiency (TE), transpiration per unit leaf area (TLA), 

and leaf area ratio (LAR) of the seven weed species listed above. The experimental 

design was completely randomized with 6 replications two factors:  four FTSW levels 

(0.3, 0.4, 0.7, and 1) and two harvest times (first bloom and complete life cycle). Pot 

location was re-randomized weekly on the greenhouse bench. Due to space and time 

constraints, all seven species were not tested simulataneously – no more than 4 species 

were grown at a time. The experiment was conducted twice for each species.  

Until the bags were sealed around the plant stem, the same procedures described 

above for the Total Transpirable Soil Water experiment were followed.  Immediately 

prior to sealing the bags, each pot was watered to reach the required pot mass for the 
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assigned FTSW level. At the time of bagging, a 5 ml plastic syringe was inserted through 

the bag and the junction was taped to maintain the seal. From this time forward the 

syringe was used to water the plants daily to maintain the required pot mass. Pots were 

weighed daily at the same time and in the same order for the duration of the experiment 

and daily transpiration was calculated as the difference in mass on successive days. Daily 

transpiration that occurred prior to bagging was estimated for each plant by fitting a 

second order polynomial function to daily transpiration during the first 20 days of 

measurement after bagging plants and back-calculating to the time of emergence (Fig. 2). 

Cumulative transpiration (T) per plant was calculated by summing daily transpiration 

throughout the experiment for each plant. 

Plants were harvested at first bloom or seed maturity. First bloom or vegetative 

stage was defined as the time when the first flower (dandelion) or set of flowers (field 

pennycress, common lambsquarters, pinnate tansymustard, henbit, and shepherd’s-purse) 

or seed head (Carolina foxtail) was produced on the plant. Seed maturity or complete 

lifecycle was defined as the time when seed from all the flowers was mature and ready to 

drop from the plant, hence it includes vegetative growth too. At harvest, plants were cut 

at the soil surface and separated into leaf and stem tissue. The roots were washed free of 

soil by running tap-water over them. Leaves, stems and roots were dried separately at 60 

C to a constant mass. The dry biomass was summed as total biomass (Y), biomass-below 

ground (Yb), or biomass-above ground (Ya). 

Senesced leaves were collected at regular intervals and their leaf area was 

measured using an area meter
4
. The leaf area of leaves attached to the plant at harvest 
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was also measured. Total leaf area is the sum of leaf area at harvest and the leaf area of 

senesced leaves measured prior to harvest.  

The leaf area ratio was calculated using equation 9:  

345 � � ���  (9) 

where, LAR = leaf area ratio (cm
2
 g

-1
), LA = total leaf area produced by the plant from 

emergence to harvest (cm
2
), and Y = total biomass (g). The LAR measurements in this 

study differ from form LAR measurements taken in most field studies because it include 

senesced leaves.  However it did allow us to account for all the tissue produced by the 

plant. 

The Transpiration per unit leaf area was calculated using equation 10: 

*34 � � �
�� (10) 

where, TLA = transpiration per unit leaf area (g cm
-2

), T = cumulative transpiration (g), 

and LA = total leaf area from emergence to harvest (cm
2
). TLA values should be 

interpreted with care because it integrates the total leaf area over the plants entire life 

cycle rather than leaf area on a particular day. TLA measurements described elsewhere 

typically describe transpiration per day per LA on the plant on the day of the transpiration 

measurement. 

Whole plant transpiration-use efficiency was calculated using equation 11: 

*& � �
�  (11) 

where, TE = whole plant transpiration-use efficiency (g biomass g
-1

 water transpired), Y 

= total biomass (g), and T = cumulative transpiration (g). 

Shoot transpiration-use efficiency was calculated using equation 12: 
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6*& � �7
�   (12) 

where, STE = shoot transpiration-use efficiency (g biomass g
-1

 water transpired), YA = 

total biomass (g), and T = cumulative transpiration (g). 

Whole plant water conversion to plant biomass was calculated using equation 13: 

89 � � �� (13) 

where, WC = whole plant water conversion (g water transpired g
-1

 biomass), T = 

cumulative transpiration (g), and Y = total biomass (g). 

Shoot water conversion to plant biomass was calculated using equation 14: 

689 �� �
:7

 (14) 

where, SWC = shoot water conversion (g water transpired g
-1

 biomass), T = cumulative 

transpiration (g), and YA = total biomass (g). 

The whole plant transpiration-use efficiency coefficient was calculated using 

equation 3: 

Г� �� �� ��
 (3) 

where, Kc = whole plant transpiration-use efficiency coefficient (Pa), Y = total biomass 

(g), T = cumulative transpiration (g), and Da = seasonal average daytime vapor pressure 

deficit (Pa). 

The shoot transpiration-use efficiency coefficient was calculated using equation 

15: 

6Г� �� :7
� ��
 (15) 
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where, SKc = shoot transpiration-use efficiency coefficient (Pa), YA = shoot biomass (g), 

T = cumulative transpiration (g), and Da = seasonal average daytime vapor pressure 

deficit (Pa). 

Seasonal minimum, maximum, and average daytime vapor pressure deficit and 

number of days before first bloom and seed maturity during both experimental runs for 

each weed species are presented in table 4. 

Statistical Analysis 

Data were analyzed using the SAS System for Windows, Version 9.2
5
. Data for 

each species were analyzed separately. Leaf area, cumulative transpiration, dry matter 

partitioning, water conversion, transpiration-use efficiency, leaf area ratio, transpiration 

per unit leaf area and the transpiration-use efficiency coefficient were compared among 

experimental runs by ANOVA using the MIXED procedure in SAS. Experiment run, 

FTSW level and growth stage were considered as fixed variables. If the three-way 

interaction was significant, results were reported by experiment. Differences among 

treatment means were compared using the Tukey adjustment at p = 0.05.



 

 

RESULTS AND DISCUSSION 

Total Transpirable Soil Water 

Volumetric water content at field capacity (θfc) was 0.376 for large pots and 0.352 

for small pots, when measured after allowing the pots to drain for 36 h after being 

saturated (Table 3). Based on the thermodynamic measurement of 33 kPa, the volumetric 

field capacity was 0.351 (Fig 1). The volumetric water content at permanent wilting point 

(θpwp), defined as the point when  pot weight did not change over 4 days, differed 

between species and ranged from 0.051 (field pennycress) to 0.115 (henbit). Volumetric 

water content measured using a pressure-plate apparatus at 1500 kPa was 0.167 (Fig 1). 

This suggests that each of these species was able to extract water beyond 1500 kPa of soil 

matric pressure.  

The field capacity for a given soil is relatively constant (Colman et al. 1947; 

Ratliff et al. 1983), but the permanent wilting point is influenced by the interaction of 

plant species and soil characteristics (Sinclair et al. 2005; Sinclair and Ludlow 1986). Our 

results show that permanent wilting point should be calculated using physiological 

definitions to account for variation among species. 

Field pennycress 

Field pennycress Kc values were greater during the vegetative stage compared to 

the complete life cycle at all FTSW levels (Figure 3A).  However, the plants responded 

differently to FTSW levels depending on growth stage (Table 5). During vegetative 

growth, Kc values decreased as FTSW level increased from 0.4 to 0.7, suggesting that 

pennycress used water more efficiently under water stressed conditions (Fig. 3A). In 

contrast, the complete lifecycle Kc values increased as FTSW level increased from 0.4 to 
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0.7, suggesting plants did not use water as efficiently when water-stressed during 

reproductive stages (Fig. 3A).  

  The complete lifecycle Kc values integrate water use during both vegetative and 

reproductive growth stages. When Kc values differ between growth stages the changes 

that take place in water use characteristics during reproductive growth may be understood 

to be substantial. The differential response of Kc to FTSW level between vegetative and 

reproductive growth reflects a lack of biomass accumulation at 0.3 FTSW. Field 

pennycress completed its life cycle and produced seed at 0.3 FTSW, but did not 

accumulate new biomass after flowering while still continuing to transpire. This 

drastically reduced Kc values for the complete lifecycle (Table 6). Plants at FTSW levels 

0.4 and greater accumulated new biomass after flowering.  

Seeds of field pennycress are rich in oil content (36%) and are being considered 

as an oil source for biodiesel production (Evangelista et al. 2010). The conversion 

coefficient from hexose to oil (0.45) is less than the conversion to structural 

carbohydrates (0.8). The large decline in Kc between vegetative and reproductive growth 

is because most of the biomass accumulated during reproductive stages is stored as oil, 

consequently biomass gain per unit water transpired is less. 

 Field pennycress biomass increased as FTSW levels increased (Table 6). 

Similarly, leaf area increased as FTSW levels increased (Table 6). Field pennycress 

typically has a determinate growth habit, which means that new leaf production stops 

once flowering begins. However, in an occurrence that we do not have an explanation 

for, leaf area in the 0.7 FTSW level increased after flowering during experiment run 1 

(Table 6).  
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Root growth (Yb) was not consistent between harvest times, nor was it consistent 

across FTSW levels (Table 6).  At FTSW levels 0.7 and 1.0, shoot growth relative to root 

growth was much greater at seed maturity compared to first bloom (Table 6). This 

affected the relationship between whole plant Kc and shoot Kc values (Figure 3A, 3B).  

The exclusion of root biomass reduced Kc values more at first bloom than at seed 

maturity. 

  Experiment run influenced the interaction of FTSW and time of harvest for Ya, 

Y, T, LA, LAR and TLA (Table 5). The results of those variables are presented as means 

of individual experiment runs (Table 6) and the results of TE and WC are presented as 

combined means of both experiment runs (Table 7).  

Common lambsquarters 

Common lambsquarters Kc values were greater during vegetative growth than 

during the complete life cycle (Table 8, Fig. 4), similar to field pennycress. Seeds of 

common lambsquarters are rich in protein (22.9%) (National Academy of Sciences 

1971), and the conversion coefficient from hexose to protein (0.40) is less than the 

conversion to structural carbohydrates (0.8) (Penning de vries 1975b). The decline in Kc 

between vegetative and reproductive growth is likely because much of the biomass 

accumulated during reproductive stages is protein. Kc values decreased from 0.3 to 0.7 

FTSW during both vegetative and complete life cycle measurements (Figure 4), 

suggesting common lambsquarters is well adapted to growing under water-stressed 

conditions in both vegetative and reproductive stages.  

Total biomass increased as FTSW level increased from 0.3 to 0.7 (Table 9). Total 

biomass did not increase between flowering and seed maturity at 0.3 FTSW, but did 
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increase at 0.4, 0.7 and 1.0 FTSW levels, also similar to field pennycress (Table 9). 

Common lambsquarters is a short-day species and is a photoperiodic indeterminate 

(Williams 1963). New leaf production can continue after flowering depending on 

resource availability. Reproductive development can begin shortly after emergence if 

conditions are unfavorable which enables it to complete its life cycle quickly and produce 

mature seeds. Leaf area (Table 10) did not change between vegetative and complete life 

cycle growth stages except a decrease at 0.7 and 1.0 FTSW during experimental run 2.  

Shoot Kc values were numerically smaller than whole plant Kc values, but were 

not statistically different (Figures 4A, 4B). Experiment run influenced the interaction 

between FTSW and time of harvest for LA, T, LAR, TLA and Yb (Table 8). Results of 

those variables are presented as means of individual experiment runs (Table 10) and 

results of TE, Ya, Y  and WC are presented as combined means of both experiment runs 

(Tables 11 and 12). 

Pinnate tansymustard 

Pinnate tansymustard Kc values were not influenced by time of harvest (Table 13, 

Figure 5) which means that pinnate tansymustard converted transpiration to biomass at 

similar rates during vegetative and complete life cycle growth stages. Kc values decreased 

from 0.3 to 0.7 FTSW (Fig. 5), suggesting that pinnate tansymustard may be relatively 

drought tolerant.  

Total biomass and cumulative transpiration increased as FTSW increased during 

both vegetative and complete life cycle growth stages (Table 14). Total biomass did not 

increase between first bloom and seed maturity at the FTSW levels 0.3 and 0.4, but did 

increase at FTSW levels 0.7 and 1.0.  This was somewhat surprising, because pinnate 
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tansymustard has a determinate growth habit, which means new leaf production ceases at 

flowering. Typically, pinnate tansymustard plants produce a low rosette of basal leaves 

before bolting. But the plants growing at FTSW levels 0.7 and 1.0 produced more than 

one flowering branch and more leaves compared than plants grown at FTSW levels 0.3 

and 0.4 (visual observation).  

There was little difference between shoot Kc (Figure 5B) and whole plant Kc 

values (Figure 5A) because root biomass (Yb) represented a relatively small percentage of 

total biomass (Table 15).  Experiment run significantly influenced the interaction 

between FTSW and time of harvest for biomass-belowground (Yb) (Table 13). Hence, the 

results of Yb are presented as means of individual experiment runs (Table 15) and the 

results of WC, TE, LA, Ya, TLA and LAR are presented as combined means of both 

experiment runs (Table 16-18). 

Dandelion 

Dandelion Kc values increased as FTSW level increased (Table 19, Figure 6A), 

suggests that dandelion is relatively susceptible to drought stress. During vegetative 

growth Kc values increased from 0.3 to 0.7 FTSW, but during the complete life cycle 

they increased from 0.3 to 1.0 FTSW (Fig 6). Whole plant Kc values were similar 

between the vegetative and complete life cycle growth stages (Figure 6A). The duration 

of time between first bloom and seed maturity was relatively short (7-10 days).  In 

addition, the seed biomass of dandelion is small compared to the total plant biomass 

because a high proportion of the biomass is carbohydrate reserves stored in the root. 

Consequently, there were no differences in Kc or transpiration between first bloom and 

seed maturity.  



23 

 

 Dandelion biomass increased as FTSW level increased. Biomass did not increase 

between first bloom and seed maturity except at 1.0 FTSW (Table 20), likely due to the 

relatively brief time between flowering and seed maturity. Some plants grown at 1.0 

FTSW produced more than one flower stem, but no plants at the lower FTSW levels 

produced multiple stems. Similar to total biomass, total leaf area increased as FTSW 

levels increased (Table 21). The length of time required for dandelion plants to flower 

was longer at 0.3 FTSW (139-277 days after treatments were imposed) compared to 

plants grown at 0.7 or 1.0 FTSW (70-166 days after treatments were imposed) (Table 4). 

The duration from imposing treatments to flowering was variable among dandelion 

individuals at all FTSW levels.  

Shoot Kc values (Figure 6B) were greatly reduced compared to whole plant Kc 

values (Figure 6A). At least 50% of the total biomass of dandelion in this experiment was 

stored in the taproot (Table 20), underscoring the importance of including root biomass 

when calculating the Kc of species that have large percentage of biomass stored 

belowground. Azam-Ali and Squire (2002) reported that the transpiration-use efficiency 

for groundnuts (Arachis hypogaea) almost doubled by including the roots in the biomass 

measurement. Experiment run did not influence the interaction of fraction of transpirable 

soil water and time of harvest of any response variable (Table 19). Results of LA, TE, 

WC, Yb, Ya, TLA and LAR are presented as the combined means of experiment runs 

(Table 20-22). 

 Henbit 

Henbit Kc values did not differ among FTSW levels during the vegetative growth 

stage (Figure 7A). However, during the complete life cycle, Kc values declined as FTSW 
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levels increased from 0.3 to 0.7 during the complete life cycle (Table 23, Figure 7A). , 

suggesting that henbit may be relatively tolerant to drought. Kc values were greater at 

first bloom than at seed maturity harvests at 0.3 FTSW. In contrast, Kc values were 

smaller at seed maturity harvest than at first bloom for the 0.7 and 1.0 FTSW levels (Fig. 

7A).   

Henbit is a tap-rooted winter annual in the Lamiaceae (mint) family. It has an 

indeterminate growth habit, and continues to produce leaves and new flowers after first 

bloom when resource availability is favorable. Henbit plants flower relatively quickly 

after emergence. In this study, plants at all FTSW levels flowered approximately 25 days 

after emergence. This likely contributed to the similar Kc values measured at all FTSW 

levels at first bloom. Similarly, total biomass did not differ among FTSW levels during 

vegetative growth (Table 24). Total biomass did not increase between flowering and seed 

maturity except at 1.0 FTSW during experiment run 1 (Table 24), but increased as FTSW 

level increased from 0.3 to 1.0 during the complete life cycle (Table 24). The interaction 

in Kc values between vegetative and complete life cycle may be explained in part by how 

the indeterminate habit of henbit was affected by FTSW level. Plants at the 0.3 and 0.4 

FTSW levels produced seed approximately 7 days after first bloom, but did not produce 

additional flowers. Plants at the 0.7 and 1.0 FTSW levels continued to produce flowers 

even after mature seed had formed. Seed of henbit is rich in essential volatile oils 

(Flamini et al. 2005). The conversion coefficient from hexose to oil (0.45) is less than the 

conversion to structural carbohydrates (0.8) (Penning de vries 1975b). The decline in Kc 

between vegetative and reproductive growth at 0.7 and 1.0 FTSW was because much of 

the biomass during reproductive stages is accumulated as oil. 
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 Shoot Kc values (Figure 7B) were lower than whole plant Kc values (Figure 7A) 

numerically, but not statistically.  Experiment run significantly influenced the interaction 

of fraction of transpirable soil water and time of harvest for Ya, Y, T, LA, TLA and LAR 

(Table 23). The results of those variables are presented as means of individual experiment 

runs (Table 24) and the results of TE, WC, Yb  are presented as combined means of both 

experiment runs (Table 25 and 26). 

Shepherd’s-purse 

Shepherd’s-purse Kc values greater at first bloom than at seed maturity for FTSW 

levels 0.3 and 0.4 (Table 27, Figure 8A).  Kc values were similar at 0.7 and 1.0 FTSW at 

the first bloom and seed maturity harvest times (Figure 8A).  Within a harvest time (first 

bloom or seed maturity), Kc values were similar for all FTSW levels, suggesting that 

shepherd’s-purse is neutral in its adaptation to water-deficit stress.   Shepherd’s-purse is a 

winter annual in the Brassicaceae family. Plants produce a rosette of lobed basal leaves 

from where the flower stem emerges. It has a determinate growth habit and new 

vegetative growth ceases at flowering. Plants grown under water deficit conditions (0.3 

and 0.4 FTSW) required more days before flowering and producing seed compared to the 

plants grown under water sufficient conditions (0.7 and 1.0 FTSW) (personal 

observation). Total biomass did not differ between FTSW levels during the first bloom 

(Table 28). However, total biomass increased as FTSW level increased from 0.3 to 1.0 at 

the time of seed maturity (Table 28). Plants at 0.3 and 0.4 FTSW did not statistically 

increase biomass between first bloom and seed maturity (Table 28).   The decline in Kc 

between vegetative and reproductive growth at 0.3 and 0.4 FTSW may have been 
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partially due to limited biomass accumulation while transpiration continued. Seed of 

shepherd’s-purse is rich in oil content (27.8-39.7%) (Mukherjee et al. 1984; Moser et al. 

2010).  This may also have contributed to the lower Kc values at complete life cycle for 

0.3 and 0.4 FTSW.  However, one may have expected some reduction at the 0.7 and 1.0 

FTSW levels, but this did not occur 

Shoot Kc values were numerically lower than whole plant Kc values, but were 

statistically similar. Experiment run influenced the interaction of fraction of transpirable 

soil water and time of harvest for leaf area ratio (LAR) (Table 27). The results of LAR 

are presented as means of individual experiment runs (Table 29) and the results of TE, 

WC, Yb, Ya, T, TLA and LA are presented as combined means of both experiment runs 

(Table 28 and 30). 

Carolina foxtail 

The response Carolina foxtail Kc values to FTSW level and life cycle was not 

consistent across experiment runs (Table 31). Kc values increased as FTSW level 

increased from 0.3 to 0.7 during vegetative and complete life cycle growth stages 

suggesting that Carolina foxtail is drought susceptible (Fig. 9 and 10). Kc values were 

greater at seed maturity than at first bloom for 0.3 FTSW during run 1 and 0.3 and 0.4 

FTSW levels during run 2 (Fig. 9 and 10). This differs from all the other species we 

studied, with the exception of henbit at 0.3 FTSW.  In contrast, Kc values but did not 

differ between vegetative and complete life cycle at 0.7 and 1.0 FTSW levels with the 

exception of lower Kc values for complete life cycle at 1.0 FTSW level during 

experiment run 1. We were unable to identify any errors in methodology that may have 

contributed to this variation.  
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Carolina foxtail biomass and leaf area increased as FTSW increased (Table 32 

and 33). Flowering was delayed for plants grown at 0.3 and 0.4 FTSW compared to 0.7 

and 1.0 FTSW. Plants at 0.3 and 0.4 FTSW produced only one seed head, while those at 

higher FTSW levels produced multiple seed heads.  

Carolina foxtail is more susceptible to drought stress than many of the other 

species we studied.  

Experiment run influenced the interaction between fraction of transpirable soil 

water and time of harvest for TE, WC, Ya, T, and LA (Table 31). The results of those 

variables are presented as means of individual experiment runs (Table 32). Results of Yb, 

LAR, and TLA are presented as combined means of experiment runs (Table 33 and 34).



 

 

SUMMARY 

This research is the first we know of determine Kc values of these weed species. 

Other Kc values reported are for crop species. Wheat Kc values ranged from 2.80 

(Gregory et al. 1992) to 6.7 Pa (Angus and van Herwaarden 2001) when grown at 

different locations. Not all this variability should be attributed to genotypic variation. 

Some of the variation can be attributed the inconsistent calculation methods (Kemanian et 

al. 2005; Tanner 1981). Condon et al. (1993) found a correlation between genotypic 

variation in Kc and 
13

C discrimination in wheat. It is assumed that the Kc, rather than a 

constant, could be a function of leaf-to-air vapor pressure deficit at the leaf level 

(Kemanian et al. 2005; Condon et al. 2002). By conducting this research in greenhouse 

experiments, we minimized some of the variation   in vapor pressure deficit and common 

in field research. In the field, calculation of water loss due solely to transpiration is 

difficult because it can be difficult to account for factors such as infiltration, runoff, 

precipitation, evaporation and deep percolation. By preventing evaporation and leaching 

through the use of polyethylene bags we eliminated all factors responsible for water loss 

excluding the transpiration.  

This is the first research we are aware of that determines the effect of water stress 

(different FTSW levels) and time of harvest (growth stage) on Kc values. Previous FTSW 

studies allowed plants to progressively deplete soil moisture to determine the threshold 

FTSW where transpiration starts declining. Angus and van Herwaarden (2001) reported a 

higher Kc values postanthesis in wheat compared to preanthesis.  They reported that this 

variation was due to the higher vapor pressure deficit during postanthesis.  
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Our results show that the Kc values are influenced by fraction of transpirable soil 

water.. Species that appeared to be relatively drought-tolerant (Kc values increased as 

FTSW levels decreased) included common lambsquarters and pinnate tansymustard. 

Species that appeared to be relatively drought-susceptible (Kc values increased as FTSW 

level increased) included dandelion and Carolina foxtail. Kc values for Shepherd’s-purse 

were not affected by FTSW level.  Kc values of henbit and field pennycress responded 

differently to FTSW level depending on whether the plants were in vegetative or 

reproductive growth stages.  Field pennycress was more drought tolerant during 

vegetative than reproductive growth, but henbit was more drought tolerant during 

reproductive growth stages.  Further research is required to understand the physiological 

mechanisms responsible how Kc values respond to FTSW levels, which may help in 

developing drought resistant plants.  

Reproductive growth can have a large influence on Kc values. This may be in part 

due to differences in the carbohydrate:oil:protein ratio of the seed relative to the plants 

stems and leaves.  For example, protein-rich common lambsquarters and oil-rich field 

pennycress and henbit seeds resulted in lower Kc values for the complete life cycle 

relative to the vegetative growth stage. In contrast, for pinnate tansymustard and 

dandelion, Kc values did not change between first bloom and seed maturity time of 

harvest. One of the more surprising results was that Kc values of Carolina foxtail (0.3 

FTSW in experiment run 1 and 0.3 and 0.4 FTSW in experiment run 2) were greater for 

the complete life cycle than during vegetative growth at 0.3 and 0.4 FTSW.  Seed 

composition undoubtedly has an influence on Kc values, but there may be other 
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physiological mechanisms that affect water use efficiency during reproductive growth 

stages.    

Our data also show that excluding root dry weight has only a minor effect on the 

Kc calculation, unless the root represents a major storage organ for the plant, as was the 

case for dandelion.   

Understanding how plants use water, and how to help them use water more efficiently, 

will be critical to advancing agricultural productivity in a climate that appears to be 

increasing in the range of extremes experienced in any given location.  Weeds may prove 

to be a source genes and traits that can be adapted to improve crop function.  At the least, 

understanding water use of weeds will help science understand more of how weed 

competition for resources affects crop growth. 
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Sources of Materials 

1
 WatchDog Model 2475 Plant Growth Station, Spectrum Technologies Inc., 12360 

South Industrial Dr., East – Plainfield, Illinois 60585. 

2
 Herbiseed, New Farm, Mire Lane, West End, Twyford, Berks, RG10 0NJ, UK 

3
 Midwest Laboratories., 13611 B St., Omaha, NE 68144. 

4 
LI-3000, LiCor Inc., 4421 Superior St., Lincoln, NE 68504. 

5
 SAS Version 9.2, Statistical Analysis Systems Institute, SAS Campus Drive, Cary, NC 

27512.



32 

 

 

 

 

Table 1.  Transpiration-use efficiency coefficients of crop species. 

Species Kc (Pa) Reference 

Pearl millet 3.9 – 4.6 Squire et al. (1984) 

Groundnut 1.5-5.2 Ong et al. (1987) 

Groundnut 3.0 Azam-Ali et al. (1989) 

Bean 2.2 – 3.7 Pilbeam et al. (1995) 

Soybean 1.15 Lawn (1982) 

Lucerne 2-2.5 Barnard et al. (1998) 

Barley 6.6 – 6.9 Kemanian et al. (2005) 

Maize 9 Muchow and Sinclair (1991), 

Common bean 3.26 Ogindo and Walker (2004) 

Barley (water stressed) 5.9 Hubick and Farquhar (1989) 

Barley (irrigated) 4.7 Hubick and Farquhar (1989) 
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Figure 1.  Soil water retention curve developed for greenhouse potting mixture.  
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Figure 2.  Daily transpiration prior to bagging was calculated by fitting a 

polynomial function to the measured daily transpiration during the first 20 days 

after bagging the plants, and forcing the function to pass through the origin.  The 

figure represents the transpiration for one individual. Unique functions were 

calculated for each individual plant. 
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Field Pennycress
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Figure 3.  Whole plant transpiration-use efficiency coefficient (A) and shoot 

transpiration-use efficiency coefficient (B) of field pennycress as influenced by 

fraction of transpirable soil water and time of harvest. Error bars represent 

standard errors at p=0.05 
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Figure 4. Whole plant transpiration-use efficiency coefficient (A) and shoot 

transpiration-use efficiency coefficient (B) of common lambsquarters as influenced 

by fraction of transpirable soil water and time of harvest. Error bars represent 

standard errors at p=0.05 
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Pinnate Tansymustard
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Figure 5. Whole plant transpiration-use efficiency coefficient (A) and shoot 

transpiration-use efficiency coefficient (B) of pinnate tansymustard as influenced by 

fraction of transpirable soil water and time of harvest. Error bars represent 

standard errors at p=0.05 
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Dandelion
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Figure 6. Whole plant transpiration-use efficiency coefficient (A) and shoot 

transpiration-use efficiency coefficient (B) of dandelion as influenced by fraction of 

transpirable soil water and time of harvest. Error bars represent standard errors at 

p=0.05 
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Figure 7. Whole plant transpiration-use efficiency coefficient (A) and shoot 

transpiration-use efficiency coefficient (7B) of henbit as influenced by fraction of 

transpirable soil water and time of harvest. Error bars represent standard errors at 

p=0.05 
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Shepherd's-purse
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Figure 8. Whole plant transpiration-use efficiency coefficient (A) and shoot 

transpiration-use efficiency coefficient (B) of shepherd’s-purse as influenced by 

fraction of transpirable soil water and time of harvest. Error bars represent 

standard errors at p=0.05 
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Figure 9.  Whole plant transpiration-use efficiency coefficient of Carolina foxtail as 

influenced by fraction of transpirable soil water and time of harvest during 

experiment run 1. 
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Carolina foxtail - Run 2
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Figure 10.  Whole plant transpiration-use efficiency coefficient of Carolina foxtail as 

influenced by fraction of transpirable soil water and time of harvest during 

experiment run 2. 
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