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Transpiration-use efficiency coefficient (K.) describes the amount of biomass
produced per unit transpiration at a given vapor pressure deficit. A series of greenhouse
experiments were conducted to determine the K, values of seven weed species and to
measure how K, values were affected by fraction of transpirable soil water (FTSW) level
and plant growth stage. Experiments were conducted using a factorial design with 4
levels of water stress (0.3, 0.4, 0.7, and 1.0 FTSW) and two harvest times (first bloom
and seed maturity). After plants attained a predetermined size, each plant was sealed at
the base using a polyethylene bag. Pots were weighed daily and maintained the required
weight by watering through an inserted syringe. Pre-bagging transpiration was back-
calculated from 0 d to the first 20 d of measured daily transpiration. One set of plants was
harvested at first bloom and another set was harvested at seed maturity. K, was calculated
as the ratio of total biomass to the cumulative transpiration multiplied by the average
daytime vapor pressure deficit.

FTSW level did not affect the K, of henbit (vegetative growth) or shepherd’s-
purse. K. values increased as FTSW levels declined for common lambsquarters, pinnate
tansymustard, henbit (complete lifecycle) and field pennycress (vegetative growth). K

values decreased as FTSW declined for dandelion, Carolina foxtail, and field pennycress



(complete lifecycle) suggesting that these species were relatively sensitive to water stress.
Plant growth stage did not affect K, for pinnate tansymustard and dandelion. K, values
decreased between the first bloom and seed maturity for field pennycress, common
lambsquarters, shepherd’s-purse and henbit. The decline in K. may be attributed to high
oil content in the seed of field pennycress, shepherd’s-purse and henbit, and the high
protein content of common lambsquarters. Carolina foxtail K. values did not respond
consistently to FTSW across harvest times — K. values increased from first bloom to seed

maturity at FTSW levels 0.3 and 0.4, but remained same at the 0.7 FTSW level.
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INTRODUCTION

No-till agricultural systems have been adopted widely (Klassen 1991; Swanton
and Weise 1991; Swanton et al. 1993) to reduce labor and fuel inputs (Brown et al. 1989;
Griffith et al. 1986; Hairston et al. 1984) and to minimize the level of interference to the
environment (Hildebrand 1990; Reganold et al. 1990). No-tillage practices are beneficial
to the farmer in terms of reduced soil erosion, improved water infiltration, improved
surface water quality, greater soil moisture retention, better soil tilth, and reduced soil
compaction (Griffith et al. 1986; Hairston et al. 1984). Long-term use of no-tillage leads
to altered weed species composition, weed density, weed emergence patterns (Buhler
1995; Doll et al. 1992; Wicks et al. 1994), and greater reliance on herbicides to manage
weeds (Buhler 1988; Coffman and Frank 1991; Koskinen and McWhorter 1986; Nowak

1983).

Weeds compete with crops for water, nutrients, light, and may also act as alternate
hosts for plant diseases or insect pests (Creech et al. 2007; Johnson et al. 2004). Between
1996 and 2006, the percentage of corn acres in no-till increased from 17 to 74% in areas
of southeast Nebraska (Franti et al. 2009). With that change there are an increasing
number of fields infested with high densities of henbit, field pennycress, shepherd’s-
purse, pinnate tansymustard, marestail and other winter annual weeds. On some of the
infested acres farmers delay controlling these weeds until the time of corn or soybean
planting, and in extreme cases may even wait until after the crop has been planted and
emerged. When winter annual weed control was delayed until planting or later, crop
emergence and growth was reduced, especially in drier than normal springs (A. Martin,

personal communication). Weed competition does not always affect soil water



availability, but can have severe effects on crop growth and yield during extended dry
periods (Dalley et al. 2004, 2006). There is little data on the effect of winter annual
weeds on the growth and development of the subsequent crop, nor is there data on the

water use of winter annual weeds.

The ratio of total biomass to the cumulative transpiration is the simplest definition
of transpiration use efficiency (TUE) (Sinclair et al. 1984). Early work on water use
efficiency of several crop and weed plants was done by Briggs and Shantz (1914),
Dillman (1931), and Shantz et al. (1927). Briggs and Shantz (1914) measured water use
efficiency of various cultivars of corn, wheat, oats, sorghum, 15 species of legumes, and
grasses, forbs and shrubs by growing plants in 15 kg of sealed earthen pots. Water use
efficiency of corn and sorghum cultivars ranged from 220 to 400 kg H,O per kg dry
matter and from 571 to 935 kg H,O per kg dry matter for 14 legume species. Shantz et al.
(1927) and Dillman (1931) conducted pot experiments to determine the water use
efficiency and transpiration coefficients of several crop and weed species. They have also

determined the amount of water required to produce one pound of dry matter.

The definition described above and the concept used by Briggs and Shantz (1914)
does not account for differences in environmental conditions which might be responsible
for differences in transpiration use efficiency of a particular plant species across
environments. Consequently, a ‘vapor pressure deficit’ term was introduced into the
definition, and the transpiration-use efficiency coefficient (K.) described the amount of
biomass produced per unit amount of water transpired at a given vapor pressure deficit

(Sinclair et al. 1984; Kemanian et al. 2005) and is calculated using the equation (1):



Ke=[1] -

where K, = transpiration-use efficiency coefficient (Pa), Y = crop above-ground
biomass production (kg ha™"), T = total canopy transpiration per area during growth to
harvest (kg ha™), e*, = saturation vapor pressure at air temperature (Pa), and ¢ = actual

vapor pressure (Pa).

K. values are preferred over transpiration use efficiency values because the vapor
pressure deficit term help minimizing the variation in K. values across environments. K,
values have been reported for many crop species (Table 1) but not for weed species.
Knowing the K, for a species allows one to calculate the amount of water used by that
species at a given biomass and it may also help explain the relative competitiveness of a
crop and a weed in water-sufficient or water-stressed environments. For example, if the
K. of a weed species is relatively greater than crop species it may be more competitive

under water-deficit conditions.

The leaf level transpiration-use efficiency coefficient (K;) was defined by Sinclair

et al. (1984) and is calculated using equation (2):

Ki=[¢]D: @

where K, = leaf level transpiration-use efficiency coefficient (Pa), A = CO, assimilation
rate per unit of leaf area (pumol m?s™), E = rate of evaporation per unit leaf area (umol

m?s"), and D, = leaf-to-air vapor pressure deficit (Pa).



Assuming the leaf temperature is within +2-3 °C of air temperature (Bierhuizen
and Slatyer 1965), Tanner (1981) and Sinclair et al. (1984) modified equation (2) to

calculate the transpiration-use efficiency coefficient of a crop canopy (K.) :

K. = [%] D. (3

where K. = transpiration-use efficiency coefficient (Pa), Y = crop above-ground biomass
production (kg ha™), T = total canopy transpiration per area during growth to harvest (kg

ha™), and D, = seasonal average daytime vapor pressure deficit (Pa).

Tanner and Sinclair (1983) modified the equation (3) further by employing a
number of simplifying assumptions. They assumed that the ratio between the internal
(leaf) and the external (bulk air) concentration of CO; (ci/c,) 1s a constant (0.7 for Cs
crops and 0.3 for C4 crops), and when the leaf area index is greater than 3, leaves are
separated into either shaded or sunlit, and shaded leaf temperatures are assumed to be

equal to air temperature. Equation 4 is:
K.=1.6abcP, 22 (4)
Lt

where, a = molecular weight ratio of carbohydrates to CO, (0.68), b = conversion
coefficient from hexose to biomass (0.8 for crops with high accumulation of sugar or
starch, 0.45 for crops with high accumulation of oil, and 0.40 for crops with high
accumulation of protein), ¢ = constant for expressing the CO, concentration difference
(0.7 for Cs crops and 0.3 for C4 crops), P, = partial pressure of CO; in the atmosphere

(Pa), and Lp = sunlit leaf area index, Lt = effective transpiring leaf area



Most K values represent only shoot biomass due to the difficulty of measuring
root biomass, especially in field studies. However, modeling root biomass can have a
large effect on K. values, especially when the plant is a perennial or the root is a storage
or reproductive organ. Azam-Ali and Squire (2002) reported that the transpiration-use
efficiency for groundnuts (4rachis hypogaea) almost doubled by including the roots in

the biomass measurement.

There are two different approaches to calculate K, at the field level. The first
defines K. as the slope of the linear regression between total biomass and the daily
integration of the quotient between transpiration and daytime air vapor pressure deficit
(Tanner 1981; Condon et al. 1993; Marcos 2000; Kemanian et al. 2005). The second
calculates K as the product of Y/T times the seasonal average of day time air vapor
pressure deficit (Equation (2)). (Hubick and Farquhar 1989; Siddique et al. 1990;
Gregory et al. 1992; Doyle and Fischer 1979; Connor et al. 1992; Meinke et al. 1997;
Angus and van Herwaarden 2001; Foulkes et al. 2001). It is difficult to compare both
approaches as none of the experiments have calculated the K. values using both
approaches. It is clear from the literature review that the first approach was used in field
experiments and the second approach was used in pot experiments. In this research, K.

values were calculated using the second approach.

Total transpirable soil water (TTSW) is the difference between field capacity and
permanent wilting point, and represents the water available in a soil to support plant
transpiration (Sinclair and Ludlow 1986). The quantity of TTSW varies among soils and
depends primarily on soil texture and organic matter (Colman 1947). However, for a

given soil there can be additional variation in the TTSW depending on the plant species



and its ability to extract water, and the effect of environmental conditions such as
temperature, humidity, wind speed and radiation (Sinclair et al. 2005). TTSW can be

defined either thermodynamically or based on plant physiological response.

The thermodynamic definition of field capacity is the bulk water content retained
in soil at -33 kPa of soil matric potential, and the definition for permanent wilting point is
the bulk water content retained in soil at -1500 kPa of soil matric potential.
Thermodynamic measurements of field capacity and permanent wilting point of soil
samples are made by applying air pressures of 33 kPa and 1500 kPa using pressure plate
apparatus (Richards and Weaver 1943; Cassel and Nielsen 1986). The main advantage of
thermodynamic measurements is that they are relatively easy to measure. An important
limitation of the thermodynamic approach is that it does not account for the differential
abilities across plant species to extract water from a soil, and thus may lead to either
overestimation or under estimation of TTSW for the permanent wilting point (Granier et
al. 2000; Bernier et al. 2002; Girona et al. 2002, Sinclair and Ludlow 1985; Sinclair et al

2005).

The physiological definition of field capacity (FC) is the upper boundary of water
held in the soil (Colman 1947). The field capacity represents water held in micropores of
soil after water has drained from the macropores due to gravitational pull. The field
capacity of a particular soil depends primarily on soil texture and is considered consistent
irrespective of the plant species and environmental conditions (Colman 1947; Sinclair et
al. 2005). In the field, the velocity of the drainage depends on the hydraulic conductivity
of the soil, and drainage is faster for coarse-textured soils compared to fine-textured soils.

Hence, the required time after saturation to measure the field capacity should vary based



on the texture of a soil (Zotarelli et al. 2010). In pot studies, field capacity was
determined by weighing pots that had been allowed to drain for 36 hours after having
been saturated (Sinclair and Ludlow 1986, Sinclair et al. 2005).

The physiological definition of permanent wilting point (PWP) is the lower
boundary of water held in the soil below which plants wilt and fail to recover when
placed in a humid chamber (Soil Science Society of America 1997; Richards and Weaver
1943). At PWP, a soil still holds water, sometimes in relatively large quantities, but it is
held so tightly that the plant cannot extract it. Sunflower was used as an indicator species
in wilting studies by Veihmeyer and Hendrickson (1928), Furr and Reeve (1945), and
Briggs and Shantz (1912) and the procedures were standardized as the sunflower method.
In the sunflower method, pot-grown plants are watered until the third set of leaves
appears, at which time the watering ceases and the plants are bagged at the base of the
stem. Then plants are kept in an environment with low evaporative demand until all three
sets of leaves wilt. To ensure that the wilting is permanent, plants are placed overnight in
a dark humid chamber. If the leaves remain wilted in the morning, plants are considered
permanently wilted and the soil water content is determined and defined as the permanent
wilting point. There are several additional approaches that can be used to measure
physiological PWP. In pot studies, the permanent wilting point can be determined by
weighing pots daily until the transpiration rates of water-stressed plants falls below 10%
of well-watered plants (Sinclair et al 2005). However, measuring permanent wilting point
in the field is difficult because of different rooting depths, complex soil horizons, varied
cropping patterns, and environmental demands can cause large variations in the measured

values (Ratliff et al. 1983; Ritchie 1981, Cabelguenne and Debaeke 1998).



The fraction of transpirable soil water (FTSW) represents the percentage of total
transpirable soil water remaining in a soil. The FTSW can be used to impose different
levels of water stress on a plant or to reference changes in plant transpiration as a soil is
allowed to dry from field capacity toward the PWP (Sinclair et al 2005; Ray and Sinclair
1998; Sinclair et al. 2007; Sinclair and Ludlow 1986). Plants that are subjected to water
stress typically are smaller, have reduced leaf expansion (Boyer 1970; Connor and Sadras
1992; Takami et al. 1981), reduced stomatal conductance (Connor and Sadras 1992;
Gimenez and Fereres 1986; Hernandez and Orioli 1985; Kiani et al. 2007) and reduced
transpiration compared to well-watered controls. Dry down studies show the FTSW
thresholds where transpiration rates decline (Table 2). In these studies plants maintained
rapid transpiration rates and growth until reaching the reported FTSW threshold, at which
point the rate of transpiration per unit mass declines. With few exceptions, the FTSW
threshold where transpiration declines on a mineral soil occurs between 0.20 and 0.45

(Table 2).

Knowing K. values theoretically allows one to compare transpiration use
efficiencies among plant species. However, K, is not a true constant because it represents
a site specific relationship between a plant and a given environment. Hence, comparisons
of K. among species when the plants are grown in different environments must be made
cautiously. In addition, extrapolating K, values to other environments must also be done
cautiously. Some of the reasons why K, varies across environments may include: partial
pressures of CO, inside the leaf airspaces and outside atmosphere (Pi/P,) which explains
the differences between C; and C,4 plants and the level at which K, was estimated (leaf

level versus. canopy level) (Condon et al. 1993, 2002); the time of year and associated



variation in vapor pressure deficit (Kemanian et al. 2005); growth stages of the crop
(vegetative versus reproductive) (Angus and van Herwaarden 2001); exclusion of root
biomass in calculating K, (Simmonds and Azam-Ali 1989; Azam-Ali et al. 1989); and
level of water stress (water-stressed versus irrigated). The transpiration-use efficiency of
water-stressed crops was reported to be higher than irrigated crops (Vos and Groenwold
1989 in potato; Bruck et al. 2000 in pear] millet), but K, values were not calculated in
these experiments. Hubick and Farquhar (1989) reported that the K. of water stressed

barley was greater (5.9 Pa) than of irrigated barley (4.7 Pa).

Based on our understanding of the principles and issues described above, we
hypothesized that (1) K. values would differ when weeds were subjected to water-
stressed vs. water-sufficient conditions and (2) K, values would differ between vegetative
growth and complete life cycle growth. The objectives of this research were to: (1)
determine the K, of seven weed species, (2) determine the effect of fraction of
transpirable soil water level on K and (3) determine the effect of growth stage on K, for
these seven species. We chose five common winter annual weeds, field pennycress,
pinnate tansymustard, henbit, shepherd’s-purse, and Carolina foxtail, one perennial,
dandelion, and one summer annual, common lambsquarters. Common lambsquarters
germinates early in the spring, often before crop planting and its life cycle overlaps with
most winter annual weeds. Dandelion is a perennial, occurs in many no-till fields, and

grows actively during the same time that winter annual weeds complete their life cycles.



MATERIALS AND METHODS

Greenhouse Conditions

Experiments were conducted from May 2008 to August 2010 in greenhouses
located at the University of Nebraska-Lincoln, in Lincoln, NE. A Watchdog model 2475
plant growth station' was installed at a height of 5 ft at the center of the greenhouse to
record air temperature, relative humidity and photosynthetically active radiation every 30
minutes. The greenhouse was maintained at 25/20 (£3.3/5.7) C day/night temperatures
and light was supplemented using sodium halide lamps to ensure a 14 h day length.
Saturation vapor pressure (VPg,), actual vapor pressure (VP,;;), and vapor pressure deficit
(VPD) were calculated using the following equations (Prenger and Ling 2000).

VPg: = 0.60178 * EXP((17.269 = T) /(T + 237.3)) 4)
VPair = VPg: X RH =100 (5)
VPD = VPg - VP, (6)

Where RH is relative humidity (%) and T is temperature (C).

Experimental Materials

The seven weed species used in this research were field pennycress (Thlaspi
arvense L.), common lambsquarters (Chenopodium album L.), pinnate tansymustard
(Descurainia pinnata (Walt.) Britt.), dandelion (Taraxacum officinale G.H. Weber ex
Wiggers), henbit (Lamium amplexicaule L.), shepherd’s-purse (Capsella bursa-pastoris
(L.) Medik.), and Carolina foxtail (4/lopecurus carolinianus Walt.). Seed of Carolina
foxtail, dandelion and common lambsquarters was collected from fields of the Lincoln
Agronomy Farm, Lincoln, NE. Seed of henbit, pinnate tansymustard, field pennycress

and shepherd’s-purse was obtained from Herbiseed”. Two different pot sizes were used
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based on the growth habit of each species. The small pots had a volume of 1.05 L and
were used for dandelion, henbit, shepherd’s-purse and Carolina foxtail. The large pots
had a volume of 2.65 L and were used for field pennycress, common lambsquarters and
pinnate tansymustard. The potting mixture was prepared by thoroughly mixing soil, sand
and perlite in an 8:1:1 volumetric ratio. The soil used in the potting mixture had a clay
loam texture and a pH of 6.7. Perlite is a low density material that expands upon soaking
and helps prevent water loss and soil compaction. Pots were filled with either 1300 g
(small pots) or 3300 g (large pots) dry potting mixture.

The bulk density of potting mixture was determined by taking a soil core of 18
cm’ and drying the sample in an oven at 105 C for 48 h and then weighing the core. Bulk
density was calculated as the ratio between oven dry weight of the sample and volume of
the soil core. The same procedure was performed twice, once before watering the pots
and again at the end of the experiment. The bulk density of potting mixture before
watering the pots and prior to plants growing in them was 1.34 g cm™. When measured
after plants had grown in them the bulk density was 1.21 g cm™. A bulk density of 1.34 g
cm™ used to calculate the volumetric soil water content at field capacity and permanent
wilting point.

Total Transpirable Soil Water.

The total transpirable soil water was calculated for each species by measuring the
field capacity of the potting mixture and the species specific physiological permanent
wilting point. Experiments were conducted as a completely randomized design

experiment with 4 replications for each species.
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Field capacity (0r,)

Field capacity of the potting mixture was measured using 4 replications per pot
size. Pots were watered to saturation, allowed to drain for 36 hours, and then weighed.
The mass of water at field capacity was the difference between the weight at field
capacity and the dry weight of the soil. Volumetric soil water content was calculated

using:
M_s Ps (8)

where M, is the mass of water (g), M; is the mass of dry soil (g), and ps is the bulk density

of the mixture (1.34 g cm™).

Permanent Wilting Point (0,,,,)

A polyethylene bag was placed in each pot before the potting mixture was added.
Seeds were planted by species in separate pots. Pots were watered adequately to maintain
plant growth. Once the plants attained a predetermined leaf number (Table 3), they were
thinned to one plant per pot and the pots were watered to reach field capacity. The
polyethylene bag was then sealed at the base of the plant to limit water loss to
transpiration only. After bagging, watering was completely withheld and pots were
weighed at regular intervals until the plants reached permanent wilting point. Plants were
considered permanently wilted when the pot mass did not change for 4 consecutive days.
Table 3 gives the number of days between bagging and permanent wilting for each
species. Volumetric soil water content at the PWP (0,,,) was calculated using equation 7.

Total transpirable soil water was calculated as the mass difference of pots

between field capacity and permanent wilting point. Different fractions of TTSW were
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calculated to impose various levels of water stress for the transpiration-use efficiency
coefficient study (Table 3).

The field capacity and permanent wilting point of the potting mixture were also
determined thermodynamically. Three composite samples of potting mixture were sent to
a soil testing lab® to determine the gravimetric water content held against 0, 33, 66, 100,
300, 900, and 1500 kPa matric pressure. Gravimetric water content was converted to
volumetric water content using a bulk density of 1.34 g cm™ and a soil water retention
curve was modeled (Burgert 2009) by fitting a three-parameter exponential decay

function to the data (Fig. 1).

Transpiration-use Efficiency Coefficients

Experiments were conducted to determine the effect of fraction of transpirable
soil water (FTSW) and plant growth stage on the transpiration-use efficiency coefficient
(K,), leaf area (LA), cumulative transpiration (T), dry matter partitioning (Yp, Y, and Y),
water use (WU), transpiration-use efficiency (TE), transpiration per unit leaf area (TLA),
and leaf area ratio (LAR) of the seven weed species listed above. The experimental
design was completely randomized with 6 replications two factors: four FTSW levels
(0.3,0.4, 0.7, and 1) and two harvest times (first bloom and complete life cycle). Pot
location was re-randomized weekly on the greenhouse bench. Due to space and time
constraints, all seven species were not tested simulataneously — no more than 4 species
were grown at a time. The experiment was conducted twice for each species.

Until the bags were sealed around the plant stem, the same procedures described
above for the Total Transpirable Soil Water experiment were followed. Immediately

prior to sealing the bags, each pot was watered to reach the required pot mass for the
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assigned FTSW level. At the time of bagging, a 5 ml plastic syringe was inserted through
the bag and the junction was taped to maintain the seal. From this time forward the
syringe was used to water the plants daily to maintain the required pot mass. Pots were
weighed daily at the same time and in the same order for the duration of the experiment
and daily transpiration was calculated as the difference in mass on successive days. Daily
transpiration that occurred prior to bagging was estimated for each plant by fitting a
second order polynomial function to daily transpiration during the first 20 days of
measurement after bagging plants and back-calculating to the time of emergence (Fig. 2).
Cumulative transpiration (T) per plant was calculated by summing daily transpiration
throughout the experiment for each plant.

Plants were harvested at first bloom or seed maturity. First bloom or vegetative
stage was defined as the time when the first flower (dandelion) or set of flowers (field
pennycress, common lambsquarters, pinnate tansymustard, henbit, and shepherd’s-purse)
or seed head (Carolina foxtail) was produced on the plant. Seed maturity or complete
lifecycle was defined as the time when seed from all the flowers was mature and ready to
drop from the plant, hence it includes vegetative growth too. At harvest, plants were cut
at the soil surface and separated into leaf and stem tissue. The roots were washed free of
soil by running tap-water over them. Leaves, stems and roots were dried separately at 60
C to a constant mass. The dry biomass was summed as total biomass (Y), biomass-below
ground (Yy), or biomass-above ground (Y,).

Senesced leaves were collected at regular intervals and their leaf area was

measured using an area meter’. The leaf area of leaves attached to the plant at harvest
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was also measured. Total leaf area is the sum of leaf area at harvest and the leaf area of
senesced leaves measured prior to harvest.
The leaf area ratio was calculated using equation 9:
LAR= 2 (9
Y
where, LAR = leaf area ratio (cm” g'), LA = total leaf area produced by the plant from
emergence to harvest (cm?), and Y = total biomass (g). The LAR measurements in this
study differ from form LAR measurements taken in most field studies because it include
senesced leaves. However it did allow us to account for all the tissue produced by the
plant.

The Transpiration per unit leaf area was calculated using equation 10:

T
TLA= —  (10)

where, TLA = transpiration per unit leaf area (g cm™?), T = cumulative transpiration (g),
and LA = total leaf area from emergence to harvest (cm?). TLA values should be
interpreted with care because it integrates the total leaf area over the plants entire life
cycle rather than leaf area on a particular day. TLA measurements described elsewhere
typically describe transpiration per day per LA on the plant on the day of the transpiration
measurement.

Whole plant transpiration-use efficiency was calculated using equation 11:

TE == (11)

where, TE = whole plant transpiration-use efficiency (g biomass g water transpired), Y

= total biomass (g), and T = cumulative transpiration (g).

Shoot transpiration-use efficiency was calculated using equation 12:
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STE=-2  (12)

where, STE = shoot transpiration-use efficiency (g biomass g water transpired), Y =
total biomass (g), and T = cumulative transpiration (g).
Whole plant water conversion to plant biomass was calculated using equation 13:

T
we= - (13)

where, WC = whole plant water conversion (g water transpired g”' biomass), T =

cumulative transpiration (g), and Y = total biomass (g).

Shoot water conversion to plant biomass was calculated using equation 14:

SWC= — (14
Ya

where, SWC = shoot water conversion (g water transpired g biomass), T = cumulative
transpiration (g), and Y 5 = total biomass (g).
The whole plant transpiration-use efficiency coefficient was calculated using

equation 3:

where, K, = whole plant transpiration-use efficiency coefficient (Pa), Y = total biomass
(g), T = cumulative transpiration (g), and D, = seasonal average daytime vapor pressure
deficit (Pa).

The shoot transpiration-use efficiency coefficient was calculated using equation

15:

SK. = 2 D, (15)
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where, SK. = shoot transpiration-use efficiency coefficient (Pa), Y o = shoot biomass (g),
T = cumulative transpiration (g), and D, = seasonal average daytime vapor pressure
deficit (Pa).

Seasonal minimum, maximum, and average daytime vapor pressure deficit and
number of days before first bloom and seed maturity during both experimental runs for

each weed species are presented in table 4.

Statistical Analysis

Data were analyzed using the SAS System for Windows, Version 9.2°. Data for
each species were analyzed separately. Leaf area, cumulative transpiration, dry matter
partitioning, water conversion, transpiration-use efficiency, leaf area ratio, transpiration
per unit leaf area and the transpiration-use efficiency coefficient were compared among
experimental runs by ANOVA using the MIXED procedure in SAS. Experiment run,
FTSW level and growth stage were considered as fixed variables. If the three-way
interaction was significant, results were reported by experiment. Differences among

treatment means were compared using the Tukey adjustment at p = 0.05.



RESULTS AND DISCUSSION

Total Transpirable Soil Water

Volumetric water content at field capacity (0g) was 0.376 for large pots and 0.352
for small pots, when measured after allowing the pots to drain for 36 h after being
saturated (Table 3). Based on the thermodynamic measurement of 33 kPa, the volumetric
field capacity was 0.351 (Fig 1). The volumetric water content at permanent wilting point
(Opwp), defined as the point when pot weight did not change over 4 days, differed
between species and ranged from 0.051 (field pennycress) to 0.115 (henbit). Volumetric
water content measured using a pressure-plate apparatus at 1500 kPa was 0.167 (Fig 1).
This suggests that each of these species was able to extract water beyond 1500 kPa of soil
matric pressure.

The field capacity for a given soil is relatively constant (Colman et al. 1947;
Ratliff et al. 1983), but the permanent wilting point is influenced by the interaction of
plant species and soil characteristics (Sinclair et al. 2005; Sinclair and Ludlow 1986). Our
results show that permanent wilting point should be calculated using physiological

definitions to account for variation among species.

Field pennycress

Field pennycress K, values were greater during the vegetative stage compared to
the complete life cycle at all FTSW levels (Figure 3A). However, the plants responded
differently to FTSW levels depending on growth stage (Table 5). During vegetative
growth, K. values decreased as FTSW level increased from 0.4 to 0.7, suggesting that
pennycress used water more efficiently under water stressed conditions (Fig. 3A). In

contrast, the complete lifecycle K, values increased as FTSW level increased from 0.4 to
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0.7, suggesting plants did not use water as efficiently when water-stressed during
reproductive stages (Fig. 3A).

The complete lifecycle K, values integrate water use during both vegetative and
reproductive growth stages. When K. values differ between growth stages the changes
that take place in water use characteristics during reproductive growth may be understood
to be substantial. The differential response of K, to FTSW level between vegetative and
reproductive growth reflects a lack of biomass accumulation at 0.3 FTSW. Field
pennycress completed its life cycle and produced seed at 0.3 FTSW, but did not
accumulate new biomass after flowering while still continuing to transpire. This
drastically reduced K, values for the complete lifecycle (Table 6). Plants at FTSW levels
0.4 and greater accumulated new biomass after flowering.

Seeds of field pennycress are rich in oil content (36%) and are being considered
as an oil source for biodiesel production (Evangelista et al. 2010). The conversion
coefficient from hexose to oil (0.45) is less than the conversion to structural
carbohydrates (0.8). The large decline in K. between vegetative and reproductive growth
is because most of the biomass accumulated during reproductive stages is stored as oil,
consequently biomass gain per unit water transpired is less.

Field pennycress biomass increased as FTSW levels increased (Table 6).
Similarly, leaf area increased as FTSW levels increased (Table 6). Field pennycress
typically has a determinate growth habit, which means that new leaf production stops
once flowering begins. However, in an occurrence that we do not have an explanation
for, leaf area in the 0.7 FTSW level increased after flowering during experiment run 1

(Table 6).
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Root growth (Y},) was not consistent between harvest times, nor was it consistent
across FTSW levels (Table 6). At FTSW levels 0.7 and 1.0, shoot growth relative to root
growth was much greater at seed maturity compared to first bloom (Table 6). This
affected the relationship between whole plant K, and shoot K, values (Figure 3A, 3B).
The exclusion of root biomass reduced K. values more at first bloom than at seed
maturity.

Experiment run influenced the interaction of FTSW and time of harvest for Y,,
Y, T, LA, LAR and TLA (Table 5). The results of those variables are presented as means
of individual experiment runs (Table 6) and the results of TE and WC are presented as

combined means of both experiment runs (Table 7).

Common lambsquarters

Common lambsquarters K. values were greater during vegetative growth than
during the complete life cycle (Table 8, Fig. 4), similar to field pennycress. Seeds of
common lambsquarters are rich in protein (22.9%) (National Academy of Sciences
1971), and the conversion coefficient from hexose to protein (0.40) is less than the
conversion to structural carbohydrates (0.8) (Penning de vries 1975b). The decline in K,
between vegetative and reproductive growth is likely because much of the biomass
accumulated during reproductive stages is protein. K. values decreased from 0.3 to 0.7
FTSW during both vegetative and complete life cycle measurements (Figure 4),
suggesting common lambsquarters is well adapted to growing under water-stressed
conditions in both vegetative and reproductive stages.

Total biomass increased as FTSW level increased from 0.3 to 0.7 (Table 9). Total

biomass did not increase between flowering and seed maturity at 0.3 FTSW, but did
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increase at 0.4, 0.7 and 1.0 FTSW levels, also similar to field pennycress (Table 9).
Common lambsquarters is a short-day species and is a photoperiodic indeterminate
(Williams 1963). New leaf production can continue after flowering depending on
resource availability. Reproductive development can begin shortly after emergence if
conditions are unfavorable which enables it to complete its life cycle quickly and produce
mature seeds. Leaf area (Table 10) did not change between vegetative and complete life
cycle growth stages except a decrease at 0.7 and 1.0 FTSW during experimental run 2.
Shoot K, values were numerically smaller than whole plant K, values, but were
not statistically different (Figures 4A, 4B). Experiment run influenced the interaction
between FTSW and time of harvest for LA, T, LAR, TLA and Y}, (Table 8). Results of
those variables are presented as means of individual experiment runs (Table 10) and
results of TE, Y,, Y and WC are presented as combined means of both experiment runs

(Tables 11 and 12).

Pinnate tansymustard

Pinnate tansymustard K. values were not influenced by time of harvest (Table 13,
Figure 5) which means that pinnate tansymustard converted transpiration to biomass at
similar rates during vegetative and complete life cycle growth stages. K. values decreased
from 0.3 to 0.7 FTSW (Fig. 5), suggesting that pinnate tansymustard may be relatively
drought tolerant.

Total biomass and cumulative transpiration increased as FTSW increased during
both vegetative and complete life cycle growth stages (Table 14). Total biomass did not
increase between first bloom and seed maturity at the FTSW levels 0.3 and 0.4, but did

increase at FTSW levels 0.7 and 1.0. This was somewhat surprising, because pinnate
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tansymustard has a determinate growth habit, which means new leaf production ceases at
flowering. Typically, pinnate tansymustard plants produce a low rosette of basal leaves
before bolting. But the plants growing at FTSW levels 0.7 and 1.0 produced more than
one flowering branch and more leaves compared than plants grown at FTSW levels 0.3
and 0.4 (visual observation).

There was little difference between shoot K, (Figure 5B) and whole plant K,
values (Figure 5A) because root biomass (Y,) represented a relatively small percentage of
total biomass (Table 15). Experiment run significantly influenced the interaction
between FTSW and time of harvest for biomass-belowground (Y}) (Table 13). Hence, the
results of Yy, are presented as means of individual experiment runs (Table 15) and the
results of WC, TE, LA, Y,, TLA and LAR are presented as combined means of both

experiment runs (Table 16-18).

Dandelion

Dandelion K, values increased as FTSW level increased (Table 19, Figure 6A),
suggests that dandelion is relatively susceptible to drought stress. During vegetative
growth K values increased from 0.3 to 0.7 FTSW, but during the complete life cycle
they increased from 0.3 to 1.0 FTSW (Fig 6). Whole plant K values were similar
between the vegetative and complete life cycle growth stages (Figure 6A). The duration
of time between first bloom and seed maturity was relatively short (7-10 days). In
addition, the seed biomass of dandelion is small compared to the total plant biomass
because a high proportion of the biomass is carbohydrate reserves stored in the root.
Consequently, there were no differences in K, or transpiration between first bloom and

seed maturity.
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Dandelion biomass increased as FTSW level increased. Biomass did not increase
between first bloom and seed maturity except at 1.0 FTSW (Table 20), likely due to the
relatively brief time between flowering and seed maturity. Some plants grown at 1.0
FTSW produced more than one flower stem, but no plants at the lower FTSW levels
produced multiple stems. Similar to total biomass, total leaf area increased as FTSW
levels increased (Table 21). The length of time required for dandelion plants to flower
was longer at 0.3 FTSW (139-277 days after treatments were imposed) compared to
plants grown at 0.7 or 1.0 FTSW (70-166 days after treatments were imposed) (Table 4).
The duration from imposing treatments to flowering was variable among dandelion
individuals at all FTSW levels.

Shoot K, values (Figure 6B) were greatly reduced compared to whole plant K,
values (Figure 6A). At least 50% of the total biomass of dandelion in this experiment was
stored in the taproot (Table 20), underscoring the importance of including root biomass
when calculating the K, of species that have large percentage of biomass stored
belowground. Azam-Ali and Squire (2002) reported that the transpiration-use efficiency
for groundnuts (Arachis hypogaea) almost doubled by including the roots in the biomass
measurement. Experiment run did not influence the interaction of fraction of transpirable
soil water and time of harvest of any response variable (Table 19). Results of LA, TE,
WC, Yy, Y, TLA and LAR are presented as the combined means of experiment runs

(Table 20-22).

Henbit

Henbit K values did not differ among FTSW levels during the vegetative growth

stage (Figure 7A). However, during the complete life cycle, K values declined as FTSW
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levels increased from 0.3 to 0.7 during the complete life cycle (Table 23, Figure 7A). ,
suggesting that henbit may be relatively tolerant to drought. K. values were greater at
first bloom than at seed maturity harvests at 0.3 FTSW. In contrast, K. values were
smaller at seed maturity harvest than at first bloom for the 0.7 and 1.0 FTSW levels (Fig.
7A).

Henbit is a tap-rooted winter annual in the Lamiaceae (mint) family. It has an
indeterminate growth habit, and continues to produce leaves and new flowers after first
bloom when resource availability is favorable. Henbit plants flower relatively quickly
after emergence. In this study, plants at all FTSW levels flowered approximately 25 days
after emergence. This likely contributed to the similar K. values measured at all FTSW
levels at first bloom. Similarly, total biomass did not differ among FTSW levels during
vegetative growth (Table 24). Total biomass did not increase between flowering and seed
maturity except at 1.0 FTSW during experiment run 1 (Table 24), but increased as FTSW
level increased from 0.3 to 1.0 during the complete life cycle (Table 24). The interaction
in K, values between vegetative and complete life cycle may be explained in part by how
the indeterminate habit of henbit was affected by FTSW level. Plants at the 0.3 and 0.4
FTSW levels produced seed approximately 7 days after first bloom, but did not produce
additional flowers. Plants at the 0.7 and 1.0 FTSW levels continued to produce flowers
even after mature seed had formed. Seed of henbit is rich in essential volatile oils
(Flamini et al. 2005). The conversion coefficient from hexose to oil (0.45) is less than the
conversion to structural carbohydrates (0.8) (Penning de vries 1975b). The decline in K,
between vegetative and reproductive growth at 0.7 and 1.0 FTSW was because much of

the biomass during reproductive stages is accumulated as oil.
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Shoot K, values (Figure 7B) were lower than whole plant K, values (Figure 7A)
numerically, but not statistically. Experiment run significantly influenced the interaction
of fraction of transpirable soil water and time of harvest for Y,, Y, T, LA, TLA and LAR
(Table 23). The results of those variables are presented as means of individual experiment
runs (Table 24) and the results of TE, WC, Y}, are presented as combined means of both

experiment runs (Table 25 and 26).

Shepherd’s-purse

Shepherd’s-purse K, values greater at first bloom than at seed maturity for FTSW
levels 0.3 and 0.4 (Table 27, Figure 8A). K, values were similar at 0.7 and 1.0 FTSW at
the first bloom and seed maturity harvest times (Figure 8 A). Within a harvest time (first
bloom or seed maturity), K. values were similar for all FTSW levels, suggesting that
shepherd’s-purse is neutral in its adaptation to water-deficit stress. Shepherd’s-purse is a
winter annual in the Brassicaceae family. Plants produce a rosette of lobed basal leaves
from where the flower stem emerges. It has a determinate growth habit and new
vegetative growth ceases at flowering. Plants grown under water deficit conditions (0.3
and 0.4 FTSW) required more days before flowering and producing seed compared to the
plants grown under water sufficient conditions (0.7 and 1.0 FTSW) (personal
observation). Total biomass did not differ between FTSW levels during the first bloom
(Table 28). However, total biomass increased as FTSW level increased from 0.3 to 1.0 at
the time of seed maturity (Table 28). Plants at 0.3 and 0.4 FTSW did not statistically
increase biomass between first bloom and seed maturity (Table 28). The decline in K,

between vegetative and reproductive growth at 0.3 and 0.4 FTSW may have been
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partially due to limited biomass accumulation while transpiration continued. Seed of
shepherd’s-purse is rich in oil content (27.8-39.7%) (Mukherjee et al. 1984; Moser et al.
2010). This may also have contributed to the lower K, values at complete life cycle for
0.3 and 0.4 FTSW. However, one may have expected some reduction at the 0.7 and 1.0
FTSW levels, but this did not occur

Shoot K, values were numerically lower than whole plant K. values, but were
statistically similar. Experiment run influenced the interaction of fraction of transpirable
soil water and time of harvest for leaf area ratio (LAR) (Table 27). The results of LAR
are presented as means of individual experiment runs (Table 29) and the results of TE,
WC, Yy, Y, T, TLA and LA are presented as combined means of both experiment runs

(Table 28 and 30).

Carolina foxtail

The response Carolina foxtail K. values to FTSW level and life cycle was not
consistent across experiment runs (Table 31). K, values increased as FTSW level
increased from 0.3 to 0.7 during vegetative and complete life cycle growth stages
suggesting that Carolina foxtail 1s drought susceptible (Fig. 9 and 10). K, values were
greater at seed maturity than at first bloom for 0.3 FTSW during run 1 and 0.3 and 0.4
FTSW levels during run 2 (Fig. 9 and 10). This differs from all the other species we
studied, with the exception of henbit at 0.3 FTSW. In contrast, K. values but did not
differ between vegetative and complete life cycle at 0.7 and 1.0 FTSW levels with the
exception of lower K, values for complete life cycle at 1.0 FTSW level during
experiment run 1. We were unable to identify any errors in methodology that may have

contributed to this variation.
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Carolina foxtail biomass and leaf area increased as FTSW increased (Table 32
and 33). Flowering was delayed for plants grown at 0.3 and 0.4 FTSW compared to 0.7
and 1.0 FTSW. Plants at 0.3 and 0.4 FTSW produced only one seed head, while those at
higher FTSW levels produced multiple seed heads.

Carolina foxtail is more susceptible to drought stress than many of the other
species we studied.

Experiment run influenced the interaction between fraction of transpirable soil
water and time of harvest for TE, WC, Y,, T, and LA (Table 31). The results of those
variables are presented as means of individual experiment runs (Table 32). Results of Yy,

LAR, and TLA are presented as combined means of experiment runs (Table 33 and 34).



SUMMARY

This research is the first we know of determine K, values of these weed species.
Other K, values reported are for crop species. Wheat K, values ranged from 2.80
(Gregory et al. 1992) to 6.7 Pa (Angus and van Herwaarden 2001) when grown at
different locations. Not all this variability should be attributed to genotypic variation.
Some of the variation can be attributed the inconsistent calculation methods (Kemanian et
al. 2005; Tanner 1981). Condon et al. (1993) found a correlation between genotypic
variation in K. and °C discrimination in wheat. It is assumed that the K., rather than a
constant, could be a function of leaf-to-air vapor pressure deficit at the leaf level
(Kemanian et al. 2005; Condon et al. 2002). By conducting this research in greenhouse
experiments, we minimized some of the variation in vapor pressure deficit and common
in field research. In the field, calculation of water loss due solely to transpiration is
difficult because it can be difficult to account for factors such as infiltration, runoff,
precipitation, evaporation and deep percolation. By preventing evaporation and leaching
through the use of polyethylene bags we eliminated all factors responsible for water loss
excluding the transpiration.

This is the first research we are aware of that determines the effect of water stress
(different FTSW levels) and time of harvest (growth stage) on K. values. Previous FTSW
studies allowed plants to progressively deplete soil moisture to determine the threshold
FTSW where transpiration starts declining. Angus and van Herwaarden (2001) reported a
higher K. values postanthesis in wheat compared to preanthesis. They reported that this

variation was due to the higher vapor pressure deficit during postanthesis.
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Our results show that the K, values are influenced by fraction of transpirable soil
water.. Species that appeared to be relatively drought-tolerant (K. values increased as
FTSW levels decreased) included common lambsquarters and pinnate tansymustard.
Species that appeared to be relatively drought-susceptible (K. values increased as FTSW
level increased) included dandelion and Carolina foxtail. K. values for Shepherd’s-purse
were not affected by FTSW level. K. values of henbit and field pennycress responded
differently to FTSW level depending on whether the plants were in vegetative or
reproductive growth stages. Field pennycress was more drought tolerant during
vegetative than reproductive growth, but henbit was more drought tolerant during
reproductive growth stages. Further research is required to understand the physiological
mechanisms responsible how K, values respond to FTSW levels, which may help in
developing drought resistant plants.

Reproductive growth can have a large influence on K, values. This may be in part
due to differences in the carbohydrate:oil:protein ratio of the seed relative to the plants
stems and leaves. For example, protein-rich common lambsquarters and oil-rich field
pennycress and henbit seeds resulted in lower K. values for the complete life cycle
relative to the vegetative growth stage. In contrast, for pinnate tansymustard and
dandelion, K. values did not change between first bloom and seed maturity time of
harvest. One of the more surprising results was that K values of Carolina foxtail (0.3
FTSW in experiment run 1 and 0.3 and 0.4 FTSW in experiment run 2) were greater for
the complete life cycle than during vegetative growth at 0.3 and 0.4 FTSW. Seed

composition undoubtedly has an influence on K, values, but there may be other
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physiological mechanisms that affect water use efficiency during reproductive growth
stages.

Our data also show that excluding root dry weight has only a minor effect on the
K. calculation, unless the root represents a major storage organ for the plant, as was the
case for dandelion.
Understanding how plants use water, and how to help them use water more efficiently,
will be critical to advancing agricultural productivity in a climate that appears to be
increasing in the range of extremes experienced in any given location. Weeds may prove
to be a source genes and traits that can be adapted to improve crop function. At the least,
understanding water use of weeds will help science understand more of how weed

competition for resources affects crop growth.
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Sources of Materials

' WatchDog Model 2475 Plant Growth Station, Spectrum Technologies Inc., 12360
South Industrial Dr., East — Plainfield, Illinois 60585.

% Herbiseed, New Farm, Mire Lane, West End, Twyford, Berks, RG10 ONJ, UK

3 Midwest Laboratories., 13611 B St., Omaha, NE 68144.

41L1-3000, LiCor Inc., 4421 Superior St., Lincoln, NE 68504.

> SAS Version 9.2, Statistical Analysis Systems Institute, SAS Campus Drive, Cary, NC

27512.



Table 1. Transpiration-use efficiency coefficients of crop species.

Species K. (Pa) Reference

Pearl millet 39-46 Squire et al. (1984)
Groundnut 1.5-5.2 Ong et al. (1987)
Groundnut 3.0 Azam-Ali et al. (1989)
Bean 2.2-3.7 Pilbeam et al. (1995)
Soybean 1.15 Lawn (1982)

Lucerne 2-2.5 Barnard et al. (1998)

Barley 6.6-6.9 Kemanian et al. (2005)
Maize 9 Muchow and Sinclair (1991),
Common bean 3.26 Ogindo and Walker (2004)
Barley (water stressed) 59 Hubick and Farquhar (1989)
Barley (irrigated) 4.7 Hubick and Farquhar (1989)

32
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Figure 1. Soil water retention curve developed for greenhouse potting mixture.
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Figure 2. Daily transpiration prior to bagging was calculated by fitting a
polynomial function to the measured daily transpiration during the first 20 days
after bagging the plants, and forcing the function to pass through the origin. The
figure represents the transpiration for one individual. Unique functions were
calculated for each individual plant.
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Figure 3. Whole plant transpiration-use efficiency coefficient (A) and shoot
transpiration-use efficiency coefficient (B) of field pennycress as influenced by
fraction of transpirable soil water and time of harvest. Error bars represent
standard errors at p=0.05
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Figure 4. Whole plant transpiration-use efficiency coefficient (A) and shoot
transpiration-use efficiency coefficient (B) of common lambsquarters as influenced
by fraction of transpirable soil water and time of harvest. Error bars represent
standard errors at p=0.05
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Figure 5. Whole plant transpiration-use efficiency coefficient (A) and shoot
transpiration-use efficiency coefficient (B) of pinnate tansymustard as influenced by
fraction of transpirable soil water and time of harvest. Error bars represent
standard errors at p=0.05



75

10
1N Dandelion
81
—~ 6]
(U L
T
X 4t
2
—e— Vegetative
I @ Complete lifecycle
0 1 1
0.2 04 0.6 0.8 1.0
Fraction of Transpirable Soil Water
10 T :
s Dandelion
8
T Of
Q i —e— Vegetative
o I e Complete lifecycle
) 4
27
0 I 1 1 1 1
0.2 04 0.6 0.8 1.0

Fraction of Transpirable Soil Water

Figure 6. Whole plant transpiration-use efficiency coefficient (A) and shoot
transpiration-use efficiency coefficient (B) of dandelion as influenced by fraction of
transpirable soil water and time of harvest. Error bars represent standard errors at

p=0.05
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Figure 7. Whole plant transpiration-use efficiency coefficient (A) and shoot
transpiration-use efficiency coefficient (7B) of henbit as influenced by fraction of
transpirable soil water and time of harvest. Error bars represent standard errors at

p=0.05
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Figure 8. Whole plant transpiration-use efficiency coefficient (A) and shoot
transpiration-use efficiency coefficient (B) of shepherd’s-purse as influenced by
fraction of transpirable soil water and time of harvest. Error bars represent
standard errors at p=0.05
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Figure 9. Whole plant transpiration-use efficiency coefficient of Carolina foxtail as

influenced by fraction of transpirable soil water and time of harvest during

experiment run 1.
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Figure 10. Whole plant transpiration-use efficiency coefficient of Carolina foxtail as

influenced by fraction of transpirable soil water and time of harvest during

experiment run 2.
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