Can negligible levels of Rubisco activase, be the reason for decreased rubisco activity levels in guard cells?

S. Madhavan
University of Nebraska - Lincoln

P. Echtenkamp
University of Nebraska - Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/biochemfacpub

Part of the Biochemistry, Biophysics, and Structural Biology Commons

Madhavan, S. and Echtenkamp, P., "Can negligible levels of Rubisco activase, be the reason for decreased rubisco activity levels in guard cells?" (2001). Biochemistry -- Faculty Publications. 31.
http://digitalcommons.unl.edu/biochemfacpub/31

This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Can negligible levels of Rubisco activase, be the reason for decreased rubisco activity levels in guard cells?

S. Madhavan and P. Echtenkamp

Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA. Fax: 402-472-7842, email: msoundar@unlnotes.unl.edu

Keywords: rubisco, rubisco activase, guard cells, immunogold localization

Rubisco in guard cell chloroplasts has been a subject of controversy for decades. Several studies have unequivocally confirmed not only the presence of Rubisco in guard cells but also found it to be catalytically active. Based on a cell basis, the amount of Rubisco in guard cells is suggested to be in the range of 0.6 to 1.4 % whereas its activity is reported to be in the range of 0.35 to 0.5%, of a mesophyll cell. This low activity may be due a) to a low Rubisco content, and/or, b) to either the absence or an inactive functional activation mechanism in guard cells. Rubisco activase, enables rubisco to function under physiological conditions. Rubisco activase has been detected immunologically in cyanobacteria, unicellular green algal species and higher plant species. In this study, evidence have been provided for the presence and/or absence of both rubisco and rubisco activase, in guard cells and mesophyll cells of C$_3$ and C$_4$ plants, using immunoblot and immunogold electron microscopy techniques. Results suggest that: 1.) Mesophyll cell chloroplasts in C$_3$ plants and bundle sheath cell chloroplasts of a C$_4$ plant have both rubisco and rubisco activase; 2.) In bundle sheath cells, rubisco activase appears to be a low abundant protein when compared to C$_3$ mesophyll cell chlooplasts; 3.) Guard cells of both C$_3$ and C$_4$ plants have rubisco; and, 4.) rubisco activase, if present, is present in negligible amounts in both C$_3$ and C$_4$ guard cells. Reported inadequate levels of rubisco activity in guard cells are consistent with inadequate level of rubisco activity in Arabidopsis mutants lacking rubisco activase.