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880 M. S. WEBSTER [December

ORTHOGONAL POLYNOMIALS WITH ORTHOGONAL
DERIVATIVES*

M. S. WEBSTER
1. Introduction. Let {¢.(x)=x"+ ---} be a set of orthogonal

polynomials satisfying the relations

[ s@sn@on@i = [ a@ad @sd @iz = o,

mFE nym,n
b b
a; Ef p(x)xidzx, B Ef g(x)xidx, 7

p(x) z 0, Q(x) =0, o > 0, Bo > 0.

Lebesgue integrals are used and the interval (e, b)) may be finite or
infinite.
We are concerned with the following assertion:

Oyl}"')
(1)

0’1,...’

THEOREM. If {d)"(x)} and {¢. (x)} are orthogonal systems of poly-
nomsials, then { ¢n(x)} may be reduced to the classical polynomials of
Jacobi, Laguerre, or Hermite by means of a linear transformation on x.

This result was first proved by W. Hahn} who obtained a differ-
ential equation of the second order for ¢,(x). When (a, b) is finite,
Krall§ derived the Jacobi polynomials by using the moments §8; to
determine the weight function ¢(x). The present paper extends his
method to the case (e, b) infinite, thus obtaining the Laguerre and
Hermite polynomials.

2. Weight function for {¢>n’ (x) } . Krall’s proof shows that constants
7, s, t (not all zero) may be determined so that

* Presented to the Society, November 28, 1936.

t There is no loss of generality in assuming the intervals of orthogonality for
{¢n(x)} and for {¢,f (x)} to be the same, since the definitions of p(x), ¢(x) may
always be extended to a common interval (a, b). More generally, p(x)dx may be
replaced by dyi(x)=Ap(x)+dT(x), where 4 is a constant, and _/,',’x"dT(x)=O,
(2=0, 1, - - - ); g(x)dx may be replaced by dys(x), where y2(x) is monotone non-
decreasing.

t W. Hahn, Uber die Jacobischen Polynome und zwei verwandte Polynomklassen,
Mathematische Zeitschrift, vol. 39 (1935), pp. 634-638.

§ H. Krall, On derivatives of orthogonal polynomsials, this Bulletin, vol. 42 (1936),
pp. 423-428.
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b b
O [ a@eias = [@eis, a6 = @+ s+ 09,
‘ ’ [ =0,1, .

We suppose that (@, b) is the smallest interval in the sense that no
number %, (a <h<b), exists such that [Jp(x)dx=0 or [7p(x)dx=0.
There is no restriction in assuming likewise that either (a, b) = (0, )

or (@, b)=(~ », »). (Perform, if necessary, a linear transformation
on x.)
Following Krall we let

3) S(x) = Kf z(z — L)p(z)dz, a

IIA
lIA

x =0,

where K, L are constants determined by the conditions S(b) =0,
J2S(x)dx= [2q(x)dx. The boundary conditions on S(x) require that
the integrand (z—L)p(z) change sign so that a<L<b. Then
J&(z—L)p(z)dz decreases in (¢, L) and increases in (L, b), therefore
this integral is always less than or equal to zero. Hence,

fabK< faz (z — L)p(z)dz)dx = fabq(x)dx >0

requires K <0 and therefore S(x) 20. Suppose

€ = f wK(z — L)p(2)dz

and
4 Ef Kzi(z — L)p(z)dz,

i a positive integer. Then, S(x) = —e,, —e! = —ex’ if x>| L], and
€, €2 —0 as x— o, Therefore, S(x) £ —¢/ /xtif x> ILI , and x%S(x)—0
as x—», (¢=0, 1,---). Similarly, if a=— «, we prove that
x%S(x)—0 as x—— o, (4=0, 1, - - - ). In every case, f:xiS(x)dx ex-
ists, (#=0, 1, - - - ). We conclude that S(x) has the following proper-
ties:

K<0, a<L<b S(x) >0, a<x<bd Sl =S50 =0,
S’'(x) = K(x — L)p(x) exists almost everywhere,
4) S'(x) 20, ¢ = x = L, almost everywhere,
S’(x) =0, L < x =< b, almost everywhere,

x%S(x) — 0 as x — ¢ or b, 1=0,1,---
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Again, with Krall, we obtain
b b b
f S(x)xidx = f gi(x)xidx =f g(x)xtdx, i=20,1,---,

o fabs(x)%’ ()¢ (x)dx = f: (%) ()¢, (x)dx = 0,
m#Zn;mn=20,1,--.
5
qi(x) = S(x) + T'(x), f T(x)w'ds = 0, i= 0,1,

In the finite interval this requires that 7T'(x) =0 almost everywhere,
but in the infinite interval this result does not follow.* However,
it is known that if /2. T'(x)x'dx=0, (=0, 1, - - - ), and if [*,| T'(2)|dz
exists for every x, and T'(x) =0 for Ix| sufficiently large, then T'(x) =0
almost everywhere. We shall now prove this statement.

Suppose T'(x) =0 for |x| = A. In view of (5), /%,| T'(z)| dz exists for
all x. Choose A’ >4 and 7 even. Then

® —4
f T(x)xdx =

4 A
T(x)xdx + T(x)x*dx + f T(x)xidx
4

—0 —A
A1 ®

5
+ T(x)xidx + T(x)xide = X, I, =0,
Al

A'+1 n=1

where I, 20, I;20, 1,20, Iy 20, I, <0, I1+I3+1;=0, and I,+1,<0.
Given €>0, suppose T(x) =€ on some set G of positive measure in
(4, «). Choose 4’, (A’ >A), such that the interval (4', 4’+1) con-
tains a subset of G of measure ¢ >0. Then I, >0 and

| 2| _ flaw | 7@) | dx _ 490 | T(x)| da
I, =~ o-e(4’)? - o-e(4)
if ¢ is sufficiently large, since 4/4’<1. Then lIzl <I, I;+I1,>0,
which is a contradiction. Thus 7'(x) =0 almost everywhere in (4, »),
and likewise in (— o, —A4). We conclude that [4,T(x)x‘dx=0,
(1=0,1, - - - ), therefore T'(x) =0 almost everywhere.
Since S’(x) = K(x— L)p(x) almost everywhere, (2) and (5) lead to
the differential equation
(6) (rx® + sx + S’ (x) — K(x — L)S(x) = K(x — L)T(%).

The solution of (6) is

<1

* Stieltjes’ example is [yxme~="* sin (x//4)dx=0, (n=0, 1, - - +),
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+ * K(z — L)d
(M + sz +

Si(x) = f(x)fc (rz2 + sz 4 £)f(z) ’

3. Discussion of rx?+sx+:. (i) Suppose first that rx?+sx-¢ has
imaginary zeros. Then

¢, C constants.

f(x) = (ra? 4 sx 4 f)aefarctan (va+d) a, B, v, § constants,

where 7[1 4+ (yx+8)2] =12 (ra2+sx+1), 2ar =K, and Br= —a(2rL+s).
Since Bo=[q1(x)dx >0, we conclude that >0, <0, and 7x2+sx+¢
>0in (a, ).

Let 7 be an integer such that a+:20, ¢=1, and let fi(x)
= (rx2+sx+1)¢ [(a+1) 2ra+s)+Br/v]f(x).

Integrating by parts we have

J 8 e[ S0 ]

- Kf (x — L)(ra? + sx + t)i‘ll:(a + )Q2rx + s) + —ﬂI]T(x)dx,
a Y

a

fab*S'(x)(Mc2 + sx + t)i—l{[(a + 9)Q2rx 4+ 5) + %]2

+ 2r(a + ) (ra? + sx + t)}dx = 0.

Since the integrand does not change sign, we conclude that S(x) =0
almost everywhere, which is impossible in view of (4).
(i) Suppose that rx2+sx+i=r(x—g)2 As in (i), »>0. Here

f(x) = (x — g)eef/ =0, a, 8 constants.
Let i be an integer such that a+¢=0,7=2, and

N(@) = (& — )il(a+ (e — g) — Blf(x).

fb—S—(i)f’(x)dx=0
o S ’

As in (i),

which is impossible.

(ili) Suppose that rx2+4sx+i=r(x—g)(x—*%), (g, & real; g<h).
(If (a, b) is finite, this is the only possible case, since T'(x)=0 al-
most everywhere.) Here f(x) = (x —g)*(x — k)8,
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SG8) = (5 — (e — k)ﬂ{ f ©  K(z — L)T(?)dz C},

. ra — (s — M
a, B, ¢, C constants, r(a + 8) = K.

If 4, j are integers such that a+7>0, 84+7>0, :=1, j=1, then, in-
tegrating by parts, we find that

fb S(x) _d_ [(x = g)=+i(x — B)B+ildx = 0
o (&= g%(x— h)P dv |

(a+ Db+ B +ie
atB+itj

This is impossible, as we shall show when @ =0. (The proof is simi-
lar if a=— .) If §(x)=S(x)(x—g)i~(x—h)"~1(x—%Z), and if con-
stants 4, A’ are chosen so that 4’>4>3| k| +|L| +1, then

be(x)(x — 9 (x— A (x—Xdx =0, &=

© 4 ar_ A1
f S(x)dx = f S(x)dx —|—f S(x)dx + S(x)dx
0 0 4 4
o 4
+ S(x)dx = Y i, = 0.
A4l o

If 4 is so large that |#—h| <|k| +1, we have
i2>0, 35>0, 4>0, i1<0, da+44>0, i+ i5<O0.
On the other hand,

| 41| é 4 - 914 - B)i1(4 — &) fAS(x)dx -
i3 (A" — o)1 (4" — B4’ — BSU' +1)J

if 4 is sufficiently large. Then |4,| <is, contradicting 43445 <O0.
From these cases we conclude that r=0."
(iv) Suppose that =0, s=0. Let

K(x — L) as
sx + ¢ sx-]—t’

a, 3 constants, s = K.
The condition S(b) =0 gives

b b b
f [B(sx + ) p(x) + asp(x)]dx = Bf q1(x)dx + asf p(x)dx
= BBy + asag = 0.


file://-/-/l/
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We must have a>0, because ay, 80>0, Bs<0. In this case, f(x)
= (sx+1)*ef>, and

* K(z — L)T(2)dz
(sz + £)ot1epe

S(x) = (s + t)“eﬂ”{f + C} , ¢, C constants.

If a< —t/s=—1, the existence of S(x) near —¢ requires the exist-
ence of the integral

-t
K(z — L)(sz + t)~*le#T(3)dz,

so that S(—¢) =0, which is impossible. Thus sx-+¢ does not change
sign in (e, b), and s>0 because 3o>0. Then ¢=0, 3<0, ¢'=¢/5s=0.

Let

0 in (0,7),
s =4 N
S(x—#) in (¥, »),
where
1 ¢ K(z — L — ¢)T(z — t)dz
S(x — ) E—x“eﬂ’{f +C'}>
s o za+leﬂz

¢/, C’ constants.

The weight functions S(x—¢') in (¢, ) and Sa(x) in (0, «) give rise
to the same system of orthogonal polynomials {¢,/ (x—#)} since the
moments are the same. Let

Ti(x) = Sy(x) + Cix2ef?,

where the constant C is determined so that [;° 71(x)dx =0. Integrat-
ing by parts, we obtain

®Tiy(x) d
f (=) — [x“*‘iaﬂﬁ]dx =0, 1=1,
0 x%f* dx

f Ty(x)x[a + i + Bx]dx = f Ti(x)xi~ldx = 0,
0 0
i=1,2,---.

Hence, if we neglect the function Ti(x) whose moments vanish, the
weight function is of the form Cx?ef* (C an arbitrary constant). Re-
placing x by —x/8 and putting C= (—8)¢, we obtain the weight func-
tion x*¢~* which is the weight function for the derivatives of the
Laguerre polynomials with the property that
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J,

(v) Suppose that r=s5=0, ¢{50. Since 3,>0, we must have ¢>0.
Here f(x) = X’ s"~2L=)  and

0 ©

5o () ou(2) I = f woeep,! (2)¢d (x)dx = 0,

0

a>0m=En;mn=0,1,---.

S(x) = eKI(22_2Lx){ f ZK'(Z . L)e—K/(zz_sz)T(z)dz + C } ,
K’, ¢, C constants, K/ = K/2t < 0.
If 7 is an odd positive integer, the function

x
e—K:(xﬂ_zLx)f (Z — L)ieK/(ZZ_sz)dz
0

is a polynomial in x. Hence, integration by parts gives [2S(x)(x — L) dx

=0, (¢ odd), which requires ¢ = — «. Since by (5)
f p(x)(x — L)idx = f p(x + L)xtdx =f p(— x4+ L)xidx = 0,
7 odd,

f p(x + L)xidx = f p(— x + L)xidx, i even,

it follows that p1(x) =p(x+L)+p(—x+L) is a weight function for
{¢n(x+L)}. Assuming that p(x) has been replaced by pi(x), we find
that pi(—x) =pi(x), T(—x)=T(x), S(—x)=S(x), and

S(x) = eK"CZ{ f 2K'zeK'#"T(3)ds + C } , K’, C constants.
0

Let
Ti(x) = eK"”z{f 2K’z K" T (3)ds + C1} ,
0

where C is a constant to be determined. Then T1(—x)=T1(x), and
J 2w T1(x)x’dx =0, (i odd). If 7 is even, then integration by parts shows
that

x z
. 2 2
u(x) = e_K"‘zf 2K’ dz = xP;_o(x) 4+ Coe XK'= f eK'adg,
o0 o0

where P; »(x) is a polynomial of degree ¢—2 in x, (¢=2, C, constant).
It follows that
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[f zieK'zzdz{f 2K'5e~K'* T (z)dz + Cl}]
0 0 0

— 2K’ f wa(x)u(x)dx

f T1(x)xtdx
0

= C2{C1f eK'#dy
— 2K’f xT(x)e“K’x2<f eK'zzdz>dx}
0 ©

=0, i even,

if Cis properly chosen. Thus [, Ti(x)xidx=0, (=0, 1, - - - ). Ex-
cept for a function whose moments vanish, the weight function re-
duces to CseX’’, (C; an arbitrary constant). Replacing x by
x/(—K’)!/? and putting Cs=1, we obtain e+, which is the weight
function for Hermite polynomials.

4. Conclusion. Having completed a proof of the theorem, we give
the following corollary:

COROLLARY. If {¢n() } s an orthogonal system of polynomials which
is also an A ppell sysiem, so that ¢, (x) =np._1(x) (that is, p(x) =q(x)),
then {¢,(x) } is reducible to the system of Hermite polynomials by means
of a linear transformation on x.

Meixner* first proved this result, but other proofs have been given
by W. Hahn, the author,} and Shohat.§ Sheffer’s| recurrence rela-
tion for Appell polynomials and the recurrence relation for orthogonal
polynomialsy enable us to give a more direct proof.** Comparing
Sheffer’s relation

* J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugen-
den Funktion, Journal of the London Mathematical Society, vol. 9 (1934), pp. 6-13.

1 Loc cit.

1 M. Webster, On the zeros of Jacobi polynomials with applications, Duke Mathe-
matical Journal, vol. 3 (1937), pp. 426442,

§ J. Shohat, The relation of the classical orthogonal polynomsials to the polynomials
of Appell, American Journal of Mathematics, vol. 58 (1936), pp. 453—464.

|| 1. Sheffer, A differential equation for Appell polynomials, this Bulletin, vol. 41
(1935), pp. 914-923.

9| J. Shohat, Théorie Générale des Polyndmes Orthogonaux de Tchebichef, Mémorial
des Sciences Mathématiques, vol. 66, Paris, 1934.

** This Bulletin, abstract 42-3-127.
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$a(%) = (5 + b)na(x) + (1 — Dbigos + (2 — 1)(n — 2bagn_s(x)
+ k(= D)= 2) - 1bso()

with
Dn(%) = (& — ca)n1(x) — Madpn—a(2),
we have
bn=—by, ba=by=-- =by1=0, A=—b(m—1) >0,

for n>1. Let x=(—2by)2y—by; then ¢.(x)=(—2b1)"*Y,(y), where

¥n(¥) =0¥na(y) — [(n—1)/2ns(y), which proves that {¢.(3)} is
the set of Hermite polynomials.

UNIVERSITY OF NEBRASKA
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