
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

MAT Exam Expository Papers Math in the Middle Institute Partnership

7-1-2007

Evaluating Polynomials
Thomas J. Harrington
University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/mathmidexppap
Part of the Science and Mathematics Education Commons

This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Harrington, Thomas J., "Evaluating Polynomials" (2007). MAT Exam Expository Papers. Paper 33.
http://digitalcommons.unl.edu/mathmidexppap/33

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathmidexppap?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathmiddle?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathmidexppap?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathmidexppap/33?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages

Master of Arts in Teaching (MAT)
Masters Exam

Thomas J. Harrington

In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization
in the Teaching of Middle Level Mathematics in the Department of Mathematics.

Jim Lewis, Advisor

July 2007

 Harrington 1

Evaluating Polynomials

Thomas J. Harrington

July 2007

 Harrington 2

Evaluating Polynomials

Computers use algorithms to evaluate polynomials. This paper will study the efficiency of
various algorithms for evaluating polynomials. We do this by counting the number of basic
operations needed; since multiplication takes much more time to perform on a computer, we will
count only multiplications. This paper addresses the following:

a) How many multiplications does it take to evaluate the one-variable polynomial,

∑
=

=++++
n

i

i
i

n
n xaxaxaxaa

0

2
210 ...

when the operations are performed as indicated? (Remember that powers are repeated
multiplications and must be counted as such.) Write this number of multiplications as
a function of n.

b) Use mathematical induction to prove that your answer is correct.
c) Find another way to evaluate this polynomial by doing the operations in a different

order so that fewer multiplications are needed. Hint: Think of ways to intermix
addition and multiplication and experiment with polynomials of lower degree. Write
the number of multiplications as a new function of n. The best algorithm will use only
n multiplications. Explain the algorithm you will use.

d) How many multiplications does it take to evaluate the two-variable polynomial,

∑∑
= =

n

i

n

j

ji
ij yxa

0 0

when the operations are performed as indicated? Write this number of multiplications
as another function of n.

e) Use mathematical induction to prove that your answer is correct.
f) Find another way to evaluate the two-variable polynomial by doing the operations in a

different order so that fewer multiplications are required. Write down the associated
function of n. Do you think that this is the most efficient algorithm? If not hunt for a
better algorithm.

Solving complex problems with has always been a time consuming process. While the

invention of computers has greatly sped up the process, it has also opened the door for more

complex problems. The time needed to solve complex problems with or without a computer is

based on the efficiency of the algorithm. Currently one of the most time consuming

mathematical problems, where an efficient algorithm does not yet exist, is the factorization of

 Harrington 3

integers, a feature of RSA public key cryptography which ensures its security (wikipedia: Integer

factorization). In May of 2005 a German Federal Agency for Information Technology was able

to factor an RSA-200, the RSA encryption algorithm based on a 200-digit number determined by

the product of two, distinct primes. The Agency’s computer took eighteen months to factor the

200-digit number into its prime factors. In computer time this is equivalent to seventy-five years

of work (wikipedia: RSA-200).

This paper will explore two different algorithms for evaluating two distinct polynomials

in order to find a more efficient way to evaluate them. Because the amount of time needed to

compute addition does not significantly increase the time needed to evaluate a problem, only the

number of multiplications will be considered.

The most basic algorithm for evaluating a polynomial is to evaluate each monomial

individually and add the result. Let F(n) represent the number of multiplications needed to

evaluate the polynomial: ∑
=

=++++
n

i

i
i

n
n xaxaxaxaa

0

2
210 ... using this method.

As a first example we consider the case when n = 3. This yields the polynomial a0 + a1 x1

+ a2 x2 + a3 x3. To count the number of multiplications required to evaluate the polynomial, we

consider each term. The first term, a0, would require no multiplications because it is a constant

that will be added to the final product. The second term, a1x1, would require one multiplication;

the third term, a2x2, would require two multiplications. The fourth term a3x3 would require three

multiplications. Adding the multiplications needed to evaluate a0 + a1 x1 + a2 x2 + a3 x3 would be

given by 1+2+3=6.

Now suppose n = 10. Then the number of multiplications needed to evaluate the

polynomial ∑
=

10

0i

i
i xaa would be 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55.

 Harrington 4

Continuing this pattern suggests that F(n), the number of multiplications needed to evaluate a

polynomial of degree n, is equal to the sum of the numbers 1 to n. The sum of the numbers 1 to

n is given by the expression
2

)1(+nn . Therefore F(n) =
2

)1(+nn .

 We prove that this formula holds true by mathematical induction:

First note that when n=1, we have the polynomial a0 + a1 x1, so that F(1) = 1
2

)11(1
=

+ is true by

inspection. Next we assume that F(n) = 1 + 2 + 3 + 4 + … + n =
2

)1(+nn is also true. We then

need to prove that the formula holds for F(n+1); namely that 1 + 2 + … + n + (n+1) =

2
)11)(1(+++ nn .

 The left hand side of this last equation can be rewritten as (1 + 2 + … + n) + (n+1). By

the induction assumption (1 + 2 + … + n) is equal to
2

)1(+nn . Then (1 + 2 + … + n) + (n+1) =

2
)1(+nn +(n+1) =

2
)1(2)1(+++ nnn . After factoring out (n+1) from the numerator we have

1+2+…+n+(n+1) =
2

)2)(1(++ nn , which was what we wanted to show. Therefore by

mathematical induction, F(n) =
2

)1(+nn .

Next, I need to find a more efficient way to evaluate ∑
=

=++++
n

i

i
i

n
n xaxaxaxaa

0

2
210

Below we describe a more creative approach to evaluating this polynomial. Let G(n) = number

of multiplications needed to evaluate the polynomial using this more efficient method. We again

begin with the case when n = 3 and only consider the number of multiplications needed to

evaluate this polynomial (recall that a0 does not affect the number of multiplications). This

 Harrington 5

means I only need to count the multiplications needed to evaluate a1x1+a2x2+a3x3. Factoring out

x from the polynomial creates a new polynomial of the form x(a1 + a2 x1 + a3 x2). Within the

parentheses, factoring out another x from this polynomial creates a new polynomial of the form

x(a1+x(a2+x(a3))). When the polynomial for n=3 is written in this form the inner most term has

one multiplication x*a3, within the second inner most parenthesis the second term has one

multiplication x*(a2+x(a3)), and the final parenthesis also only has one multiplication

x*(a1+x(a2+x(a3))). Factoring the polynomial in this fashion would only need three

multiplications to evaluate the entire polynomial.

Using this approach for arbitrary n, we count the number of multiplications needed to

evaluate our polynomial after factoring it in the form: x(a1+x(a2+x(a3+x(a4+x(a5+ …+x(a(n-

1)+x(an))…). Note that it would require n multiplications; one multiplication for every coefficient

ai, i = 1,…n. Therefore G(n) = n. This is the most efficient algorithm, since axn would require n

multiplications and ∑
=

n

i

i
i xa

0
cannot have fewer multiplications than this.

Suppose we have another polynomial in two variables,∑∑
= =

n

i

n

j

ji
ij yxa

0 0
, and we again want

to find the number of multiplications needed to evaluate this polynomial. Let P(n) equal the

number of multiplications needed if we evaluate each monomial individually and add the result.

For this polynomial I will again begin by counting the number of multiplications needed to

evaluate each term in the case when n = 3. The polynomial would be of the form 00
00 yxa +

10
01 yxa + 20

02 yxa + 30
03 yxa + 01

10 yxa + 11
11 yxa + 21

12 yxa + 31
13 yxa + 02

20 yxa + 12
21 yxa +

22
22 yxa + 32

23 yxa + 03
30 yxa + 13

31 yxa + 23
32 yxa + 33

33 yxa .

 Harrington 6

The number of multiplications needed to evaluate each term is shown in the following

table. For example, the entry “ 12
21 yxa ; 3” means that the term 12

21 yxa would require three

multiplications in order to be evaluated.

00
00 yxa ; 0 01

10 yxa ; 1 02
20 yxa ; 2 03

30 yxa ; 3

10
01 yxa ; 1 11

11 yxa ; 2 12
21 yxa ; 3 13

31 yxa ; 4

20
02 yxa ; 2 21

12 yxa ; 3 22
22 yxa ; 4 23

32 yxa ; 5

30
03 yxa ; 3 31

13 yxa ; 4 32
23 yxa ; 5 33

33 yxa ; 6

Rewriting the table with only the number of multiplications allows us to concentrate on these

values.

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

In order to find the total number of multiplications for all the terms, add all the values in the

table. Since 1+1+2+2+2+3+3+3+3+4+4+4+5+5+6 = 48, the number of individual

multiplications needed to evaluate the polynomial is 48; i.e. P(3) = 48. Continuing the pattern

for an arbitrary n yields the following table:

0 1 2 3 4 5 … n

1 2 3 4 5 6 … n+1

2 3 4 5 6 7 … …

3 4 5 6 7 8 … …

 Harrington 7

4 5 6 7 8 9 … …

5 6 7 8 9 10 … 2n-2

… … … … … … 2n-2 2n-1

n n+1 … … … 2n-2 2n-1 2n

Therefore, summing these entries we obtain P(n) = ...)3(4)2(3)1(2 +++

++−+++++)2)(1()1)(())(1(nnnnnn)2(1)12(2)22(3)32(4... nnnn +−+−+−+ .

The total number of individual multiplications for P(5) can be seen in the following table

for n = 0 to 5.

n P(n)

0 0

1 4

2 18

3 48

4 100

5 180

Using these values, I created a difference table in order of find the power of the

polynomial function.

n)(nP)(1 nPΔ)(2 nPΔ)(3 nPΔ

0 0 - - -

1 4 4 - -

2 18 14 10 -

 Harrington 8

3 48 30 16 6

4 100 52 22 6

5 180 80 28 6

6 ? ? ? ?

After the third difference there is a constant difference value of six. This tells me that

P(n) is a cubic function. Using a calculator I entered in the data points for (n, P(n)) and ran a

cubic regression. The coefficients for the standard cubic formula dcxbxaxy +++= 23 , were a

= 1, b = 2, c = 1, and d = 0, with 12 =R . Since 12 =R indicates a perfect correlation, we know

that nnnnP ++= 23 2)(is the exact formula for the number of multiplications needed to

evaluate the polynomial. We test the case where n = 6. If nnnnP ++= 23 2)(, then

6)6(2)6()6(23 ++=P = 216 + 72 + 6 = 294. According to the above table nf3Δ = 6 so that

62 fΔ = 6 + 28 = 34. Then 61 fΔ = 34 + 80 = 114, and finally 6f = 114 + 180 = 294. It checks.

If P(n) = nnn ++ 23 2 , from here we can factor out an “n” from the polynomial and rewrite it in

the form)12(2 ++ nnn or 2)1(+nn . Therefore P(n) = 2)1(+nn .

Another option for evaluating this polynomial requires us to look back at P(n) =

...)3(4)2(3)1(2 +++ ++−+++++)2)(1()1)(())(1(nnnnnn

)2(1)12(2)22(3)32(4... nnnn +−+−+−+ . The first part ...)3(4)2(3)1(2 +++ +(n+1)(n) can

be written as ∑
=

+
n

i
ii

1
)1(. The rest ++−++)2)(1()1)((nnnn

 Harrington 9

)2(1)12(2)22(3)32(4... nnnn +−+−+−+ can be written as ∑
=

−+
n

i
ini

1
)12(. Adding these two

summations together gives us 2

11

22)1(
2

)1()1(2)1(2)2(+=
+

+=+=−+++ ∑∑
==

nnnnniniiinii
n

i

n

i

We prove this by mathematical induction.

First observe that P(1) = 4121)1()1(2)1(23 =++=++ is true. Next assume that P(n)

= ...)3(4)2(3)1(2 +++ ++−+++++)2)(1()1)(())(1(nnnnnn

)2(1)12(2)22(3)32(4... nnnn +−+−+−+ = 2)1(+nn is also true (the induction hypothesis).

To assist in the final step of the induction proof, refer to the chart below:

ZONE 1 represents P(n)

ZONE 2,3,4 represents the number of

multiplications added by P(n+1)

above and beyond the number of

multiplications counted by P(n).

I need to prove that P(n+1) = the number of multiplications in: ZONE 1 + ZONE 2 + ZONE 3 +

ZONE 4 = ...)3(4)2(3)1(2 +++

++−+++++)2)(1()1)(())(1(nnnnnn)2(1)12(2)22(3)32(4... nnnn +−+−+−+

+{2[(n+1)+ …+2n+1]+(2n+2)}= 2)11)(1(+++ nn .

On the right hand side of the equation 2)11)(1(+++ nn =)42)(1(2 +++ nnn =

485 23 +++ nnn . On the left hand side of the equation, ZONE 1 = n(n+1)2 . The number of

multiplications for ZONE 2 can be found by finding the sum of the numbers from 1 to (2n+1)

and subtracting the sum of the numbers from 1 to n. Represented by

n(n+1)2

(n+1)

.
.
.

2n+1

(n+1) … 2n+1 2n+2

ZONE 1 ZONE 3

ZONE 2 ZONE 4

 Harrington 10

2
)1(

2
)112)(12(

1

12

1

+
−

+++
=−∑∑

=

+

=

nnnnii
n

i

n

i
. ZONE 3 has the same number of multiplications of

ZONE 2. Finally, ZONE 4 has only (2n + 2) multiplications. Then P(n+1) = [n(n+1)2] +

[
2

)1(
2

)112)(12(+
−

+++ nnnn] + [
2

)1(
2

)112)(12(+
−

+++ nnnn] + [2n+2]

= nnn ++ 23 2 + 2[
2

)1(
2

)112)(12(+
−

+++ nnnn] + 2n + 2

= 232 23 +++ nnn + [)(2244 22 nnnnn +−+++]

= 232 23 +++ nnn + nnnnn −−+++ 22 2244

= 485 23 +++ nnn .

This was what we wanted. Therefore by mathematical induction, P(n) = 2)1(+nn .

 Finally we seek a more efficient way to evaluate this polynomial as well. Below we

describe an approach to factoring our polynomial before evaluating it. The method is similar to

the one used to evaluate a one variable polynomial. Let Q(n) = Number of multiplications needed

if you use this more creative approach to evaluating the polynomial. I will begin by factoring out

the y values in a manner similar to the previous example [x(a1 + x(a2 + x(a3 + x(a4 + x(a5 + …+

x(a(n-1) + x(an))…)]. Let Gn(x) equal the number of multiplications needed to evaluate

(n
nnon xaxa ++ ...0). Then G0(x) would equal the number of multiplications needed to evaluate

(n
no xaxa ++ ...0

00) and so on. Then rewriting the polynomial in the form y(G0(x) + y(G1(x) +

y(G2(x) + … + y(Gn(x))…). G0(x) to Gn(x) is n+1 individual polynomials that have to be

evaluated since G0(x) adds one more polynomial. In addition, each G(x) has n multiplications

and since there are n+1 of them, n(n+1) represents the number of multiplications needed to

evaluate G0(x) to Gn(x). Finally each G(x), except G0(x), is multiplied by y which adds another n

multiplications to the total. Therefore Q(n) = n(n+1) + n = n2 + 2n.

 Harrington 11

 If we compare the number of operations needed to evaluating the expression using this

method to that of the previous method, we see that this algorithm is much faster. Suppose we

want to evaluate the polynomial when n = 10, with the first algorithm I need count every

individual multiplication operation, it would have (10)3 +2(10)2 + 10 = 1210 operations. With

this new algorithm the number of multiplications decreases to (10)2 + 2(10) = 120. When n = 10,

this new algorithm would save the evaluator 1090 multiplication operations.

After trying different methods for factoring this polynomial and because it was found

with a similar procedure for ∑
=

n

i

i
i xa

0
, I feel that this is the most efficient evaluation algorithm

available for ∑∑
= =

n

i

n

j

ji
ij yxa

0 0
. However at this time, a proof showing that it is in fact the most

efficient is unavailable.

 Harrington 12

Reference

Cohen, M., Gaughan, E. D., Knoebel, A., Kurtz, D. S., & Pengelley, D. (1991) Student research
projects in calculus. USA: The Mathematical Association of America.

http://en.wikipedia.org/wiki/Computational_complexity

http://en.wikipedia.org/wiki/Exponential_time

http://en.wikipedia.org/wiki/Integer_factorization

http://en.wikipedia.org/wiki/Polynomial_time

http://en.wikipedia.org/wiki/RSA-200

Acknowledgments

I would like to thank Mr. David Milan from the Math Department at the University of
Nebraska-Lincoln for proofing my work.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	7-1-2007

	Evaluating Polynomials
	Thomas J. Harrington

