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Hysteresis of Granular FePt:Ag Films
With Perpendicular Anisotropy

M. L. Yan, R. Skomski, A. Kashyap, L. Gao, S. H. Liou, and D. J. Sellmyer

Abstract—Intergranular interactions in nanostructured
FePt:Ag thin films and their effect on magnetic hysteresis are
investigated. The films, produced by multilayer deposition plus
rapid thermal annealing, consist of FePt nanoparticles embedded
in a silver matrix. They are investigated by magnetization mea-
surements and magnetic force microscopy. Analytical model
calculations, supported by micromagnetic simulations, are used
to elucidate the relation between coercivity, hysteresis-loop slope,
and spatial correlations during magnetization reversal. The
analytical calculations yield simple expressions for the loop slope
and the coercivity as a function of the intergranular exchange.
Small intergranular exchange enhances the coercivity, but for
strong exchange there is a self-energy cutoff, associated with the
onset of cooperative reversal and preventing alpha from becoming
negative.

Index Terms—Anisotropy, magnetic recording, magnetization
reversal.

I. INTRODUCTION

HE need for ever-increasing storage densities in magnetic

recording has lead to an intensive search for magnetic thin
films with perpendicular magnetic anisotropy. This refers, in
particular, to materials with FePt or CoPt as the main mag-
netic phase. A key aspect of the magnetism of particulate thin
films is the relation between intergranular interactions, the hys-
teresis-loop shape, and spatial correlations. The specific interest
in spatial correlations is fueled by the envisaged high storage
density of advanced recording media and by the necessity to
control noise. Victora et al. [1] have investigated the role of ex-
change and magnetostatic interactions, focusing on intragrain
and grain-boundary effects. The shape of the hysteresis loop
of magnetostatically interacting particles has been considered
in [2], and various practical implications of the hysteresis-loop
slope have been discussed by Honda et al. [3].

In this paper, we focus on the question how intergranular in-
teractions affect the hysteresis. Particular emphasis is on the
loop-slope parameter « = dM/dH (H.), and its largely unex-
plored relation to the real-space spin structure. We use FePt:Ag
composite thin films [4] as a starting point and use model cal-
culations and simulations to provide a qualitative explanation of
the observed trends. Since full-scale micromagnetic simulations
covering length scales from about 1 nm (grain boundaries) to
several micrometers (macroscopic domains) go beyond present
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Fig. 1. Magnetic-force micrographs of the thermally demagnetized FePt:Ag

films for several Ag contents (vol%).
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Fig. 2. Hysteresis loops for various Ag contents (vol%).

numerical capabilities, we will use model calculations and sim-
plified simulations.

II. STRUCTURAL AND MAGNETIC PROPERTIES

The granular films are produced by multilayer deposition plus
rapid thermal annealing. Details of the processing and charac-
terization of the films can be found in [4]. The films consist
of FePt nanoparticles embedded in a silver matrix, and have
varying particle sizes, packing fractions, and crystalline orien-
tations [4]. Fig. 1 shows MFM micrographs of the films for sev-
eral silver contents, which have been used to deduce average
interaction-domain sizes (correlation lengths). Fig. 2 shows the
hysteresis loops for the films; the loops have been used to deter-
mine the coercivities and the hysteresis-loop slope parameter «.

Fig. 3 summarizes the magnetic properties of the films of
Figs. 1 and 2. With increasing silver content the hysteresis-loop
slope and the correlation length decrease, whereas the coercivity

0018-9464/04$20.00 © 2004 IEEE
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Fig. 3. Loop slope, correlation length, and coercivity for various Ag contents
(vol%).

increases. The silver increases the separation between the parti-
cles, thereby effectively exchange-decoupling the grains.

Figs. 1-3 reveal a close relationship between spatial and mag-
netic aspects of hysteresis. To explain this behavior, as well as
similar features encountered in other particulate nanomagnets
[2], [3], it is necessary to include the main physical proper-
ties of the grains, such as the single-grain hysteresis loops, and
the magnetostatic and exchange interactions between grains. In
terms of interaction fields, the magnetostatic and exchange in-
teractions can be written as -DM and AM, respectively, where
D is an effective demagnetizing factor and )\ is an exchange
constant.

III. HYSTERESIS-LOOP SLOPE

By definition, the hysteresis-loop slope & = dM/dH(H..) is
a susceptibility: @ = x(H.). A convenient and quite general
way of expressing the susceptibility of systems of interacting
particles is to write

Xo
XTTrew W
where X, is the interaction-free or single-grain susceptibility, W
is the interaction strength, and c is a response parameter. Exam-
ples are the Curie-Weiss susceptibility (W = J) and the Stoner
susceptibility (W = I). Physically, 1/x = 1/x0 + cW /x, cor-
responds a sum of local and interparticle interaction fields.
Magnetostatic selfinteractions (the demagnetizing field) re-
duce «. In a different context, this loop-slope modification is
known as the skewing or ‘shearing’ correction of the hysteresis.
Intergranular exchange has the opposite effect, so that (1) be-
comes

Qo

Tt a (DN @

where o, ~ M,/AH, reflects the switching-field distribution
AH, of noninteracting particles, which, in turn, depends on
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Fig. 4. Parameter o as a function of exchange interaction. The solid and

dashed curves are predictions from (3) and (2), respectively. Since the
dependence of the net exchange on the Ag content is unknown, no quantitative

fitting has been attempted.

(a) (b)

Fig.5. Real-space interpretation of magnetization reversal: (a) weak exchange
and (b) strong exchange. The figure shows the nucleation mode for 100 X 100
particles arranged on a square lattice. The mode is obtained by starting from a
saturated state and then applying a reverse field until the saturated state becomes
unstable.

real-structure features such as size distribution, particle shape,
chemical disorder, and crystalline imperfections [S]. For ex-
ample, narrow switching-field distributions correspond to large
slopes. Fig. 4 shows a typical a(\) curve.

The experimental decrease of « with increasing Ag content
(Fig. 3) means that well-separated particles exhibit a very weak
intergranular exchange parameter A\. Magnetostatic self-interac-
tion has the opposite sign, because the demagnetizing factor of
isolated spheres (D = 1/3) is smaller than that of dense thin
films (D = 1).

IV. MEAN-FIELD AND COOPERATIVE EFFECTS

The validity of (2) is restricted to the weak-interaction limit
A — D < AH,/M,. Strong exchange leads to an unphysical
overskewing of the loop, whereas strong demagnetizing fields
lead to vortex and other flux-closure effects going beyond a
simple demagnetizing field [5]-[7].

The main reason for this limitation is the mean-field char-
acter of A and D. It is well-known that mean-field theories work
very well on a local scale but fail to account for long-range spa-
tial correlations. Fig. 5 illustrates this point by showing nucle-
ation modes for a square lattice of 100 x 100 particles with per-
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pendicular anisotropy. (For simplicity, the particle positions are
not shown in the figure.) The particles exhibit some nonequiv-
alence, modeled as anisotropy disorder K (r;) # (K1), so that
the nucleation of reverse domain is localized [7]. The localiza-
tion length, which roughly corresponds to correlation length vis-
ible in Fig. 1, increases with increasing intergranular exchange,
and for strong exchange, as in Fig. 5(b), the mean-field approach
breaks down completely.

Another way of looking at this failure is to consider the onset
of cooperative reversal. In the strong-exchange limit, that is, in
dense films, A is essentially given by the molecular field. This
field, at least a few 100 teslas, is much higher than any other in-
volved field and indicates that (2) can no longer be used. Physi-
cally, strong interactions mean that two or more particles switch
as a single unit, and any excess exchange has very little effect on
the hysteresis loop. In other words, there is a self-energy cutoff
that reduces the effect of very strong exchange on the hysteresis
loop.

As shown for a two-particle model [7], cooperative effects
amount to a narrowing of the switching-field distribution: The
switching fields of individual particles are random quantities,
and exchange interactions lead to an averaging of the switching
fields over the localization length L. In the numerical nucleation
analysis of Fig. 5, this effect is automatically considered, but it
can also be included in the model of (1) and (2). Restricting
the consideration to two dimensions and exploiting well-known
random-field arguments [8], [9] reveals that, for large A\, L ~ A
and AH ~ 1/). The expression

QZL 3)

1
oD+ 1

realizes the above-mentioned cutoff and interpolates between
the weak-coupling and strong-coupling regimes.

V. DISCUSSION AND CONCLUSIONS

Egs. (2) and (3) predict that o approaches a finite value in the
small-exchange limit of well-separated particles, in agreement
with experiment (Fig. 3). Similarly, the decrease of the correla-
tion length in Fig. 3 is explained in terms of the exchange-depen-
dent correlation length visible in Fig. 5. The relation between the
correlation length and the coercivity is less straightforward. In
nearly perfect magnets, the coercivity is nucleation-controlled
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and decreases with decreasing correlation length [7]. However,
it can be shown that the opposite is true for strongly disordered
magnets, whose coercivity is determined by domain-wall pin-
ning. In this explanation, the relatively small drop in H. for
small Ag contents (bottom of Fig. 3) means that continuous
films contain less pinning centers.

From a practical point of view, large values of « are unfa-
vorable for high-density magnetic recording. This is because
D = 1 for thin films and strong exchange tends to enhance
the size of the cooperatively switching regions and therefore to
reduce the storage density. However, there is no straightforward
relationship between the hysteresis-loop shape and the exchange
interaction. For example, ensembles of identical noninteracting
Stoner-Wobhlfarth particles exhibit o = 8, in spite of the absence
of exchange.

In conclusion, our analytical model calculations, supported
by micromagnetic simulations, explain the close relationship
between coercivity, loop shape, and spatial correlation length.
The analytical calculations yield simple expressions for the loop
slope and the coercivity as a function of the intergranular ex-
change. For strong exchange there is a self-energy cutoff, asso-
ciated with the onset of cooperative reversal and preventing o
from becoming negative.
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