5-15-2003

Structure and magnetic properties of sputtered hard/soft multilayer magnets

W. Liu
Shenyang National Laboratory for Materials Science and International Centre for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

Z.D. Zhang
Shenyang National Laboratory for Materials Science and International Centre for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

J. Ping Liu
University of Nebraska-Lincoln, pliu@uta.edu

B.Z. Cui
Shenyang National Laboratory for Materials Science and International Center for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

X.K. Sun
Shenyang National Laboratory for Materials Science and International Center for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicssellmyer

Part of the Physics Commons

http://digitalcommons.unl.edu/physicssellmyer/33

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in David Sellmyer Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Structure and magnetic properties of sputtered hard/soft multilayer magnets

W. Liu and Z. D. Zhang
Shenyang National Laboratory for Materials Science and International Centre for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China

J. P. Liu
Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0113

B. Z. Cui and X. K. Sun
Shenyang National Laboratory for Materials Science and International Centre for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China

J. Zhou and D. J. Sellmyer
Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0113

(Received on 14 November 2002)

The films with HM = (Pr,Dy)(Fe,Co,Nb,B)$_{5.5}$ and SM = Fe, FeCo were prepared by sputtering and subsequent heat treatment. The coercivity of Ti-buffered (Pr,Dy)(Fe,Co,Nb,B)$_{5.5}$ single-layer film with 320 nm thickness is as large as 18.8 kOe at room temperature. X-ray diffraction results reveal that the Pr$_{5}$Fe$_{14}$B-type phase is randomly oriented in almost all the multilayer films. For the multilayers of Ti(30 nm)/[HM(16 nm)Fe(x nm)]$_{x}$Ti(30 nm)/Si(substrate), the remanence increases and the coercivity decreases with the addition of Fe content, in comparison with the results of the single-layer film and the maximum energy product of 14.8 MGOe is obtained at $x = 3.0$. A noticeable shoulder on the demagnetization curve is observed at low temperatures. When Fe$_{65}$Co$_{35}$ is used as the SM component rather than Fe, similar results are found. The enhancement of the magnetic properties in the nanocomposite multilayer films is explained by means of the exchange coupling between the SM and/or HM nanograins of the intra- and interlayers. © 2003 American Institute of Physics. [DOI: 10.1063/1.1558663]

I. INTRODUCTION

Recently, some studies on the exchange coupling were carried out for nanostructured CoSm/FeCo and PrCo/Co multilayers prepared by sputtering and subsequent heat treatment. Magnetic properties of exchange-coupled α-Fe/Nd–Fe–B multilayer magnets were investigated by Shindo and Ishizone and the observations for Nd–Fe–B/Fe/Nd–Fe–B multilayer magnets were investigated by Shindo et al. In our recent work, we investigated the magnetic properties of nanocomposite multilayer magnets of Ti(30 nm)/[HM(16 nm)Fe(x nm)]$_{x}$Ti(30 nm)/Si(substrate), the remanence of the multilayer magnets increases noticeably. Although the behavior at room temperature of the Pr-based R$_{2}$Fe$_{14}$B-type alloy is somewhat similar to that of the Nd-based counterpart, the former is still distinctive from the latter, which stimulates us to study the structural and magnetic properties of nanocomposite (Pr,Dy)(Fe,Co,Nb,B)$_{5.5}$/Fe or Fe$_{65}$Co$_{35}$ multilayer magnets synthesized by sputtering and subsequent annealing.

II. EXPERIMENT

(Pr,Dy)(Fe,Co,Nb,B)$_{5.5}$/Fe (or Fe$_{65}$Co$_{35}$) thin films were prepared with a multiple-gun dc- and rf-sputtering system by depositing the hard magnetic (HM) (Pr$_{0.9}$Dy$_{0.1}$)(Fe$_{0.77}$Co$_{0.12}$Nb$_{0.03}$B$_{0.08}$)$_{5.5}$ alloy and the soft magnetic (SM) Fe or Fe$_{65}$Co$_{35}$ targets onto silicon substrate, covered with a 30 nm Ti buffer. The alloy targets were homemade by sintering powdered compacts and others were commercial products. Purities of all the targets were higher than 99.9%. The base pressure of the sputtering system was 2–3 × 10$^{-7}$ Torr, and the Ar pressure during the sputtering was 5 × 10$^{-3}$ Torr. The thickness of the films was measured by weighing the mass of the films. The as-deposited films were annealed in a furnace with a vacuum of 2 × 10$^{-7}$ Torr. The crystalline structure of the phases in the films was identified by x-ray diffraction (XRD) with Cu Kα radiation. Magnetic properties of the films were measured by an alternating gradient force magnetometer and a superconducting quantum interference device magnetometer. The hysteresis loops, as well as the values for the magnetic properties, were recorded without the demagnetizing correction.

III. RESULTS AND DISCUSSION

For comparison with the results of multilayers, initially, a hard phase single-layer film with composition of Ti (30 nm)/HM (320 nm)/Ti(30 nm)/(Si substrate) was investigated.
Similar to the case of (Nd,Dy)(Fe,Co,Nb,B)\textsubscript{1.5} single-layer films,7 the as-deposited (Pr,Dy)(Fe,Co,Nb,B)\textsubscript{1.5} single-layer films are amorphous. After annealing at 600 °C for 5 min, the main phase of the films is of Pr\textsubscript{2}Fe\textsubscript{14}B type, accompanied by a Pr-rich phase and some Pr\textsubscript{2}O\textsubscript{3}. XRD patterns for the Ti\textsubscript{30} nm/HM\textsubscript{320} nm/Ti\textsubscript{30} nm/(Si substrate) single-layer and Ti\textsubscript{30} nm/[HM(16 nm)Fe(9 nm)]\texttimes20/Ti(30 nm)/(Si substrate) multilayer films annealed at 600 °C for 5 min are shown in Fig. 1. In comparison with the result of the single-layer film, it is clear that adding a 10 nm thick Fe layer in the system with a 16 nm thick hard-phase layer results in the appearance of a large amount of α-Fe and the disappearance of the Pr-rich phase in the sample after annealing. Almost all of the XRD peaks of the films correspond to randomly oriented Pr\textsubscript{2}Fe\textsubscript{14}B-type phase, except for α-Fe.

Figure 2 gives hysteresis loops at room temperature for the single-layer and multilayer films, whose structures are shown in Fig. 1. The magnetic properties of \(H_c = 18.8\) kOe, \(4\pi M_r = 6.1\) kG, and \((BH)_{\text{max}} = 8.5\) MGOe are achieved for the single-layer film. For the Ti\textsubscript{30} nm/[HM(16 nm)Fe(9 nm)]\texttimes20/Ti(30 nm)/(Si substrate) multilayer film, although the coercivity decreases, the remanence is enhanced greatly due to the effective exchange coupling between the nanograins of SM and/or HM phases in the multilayer film.

To understand the effect of the thickness of the Fe layer, the magnetic properties at room temperature of the thin films of Ti\textsubscript{30} nm/[HM(16 nm)Fe(\(x\) nm)]\texttimes20/Ti(30 nm)/(Si substrate) multilayers annealed at 600 °C for 5 min are given in Fig. 3. Compared to the result of the single-layer film (\(x = 0\)), by increasing the thickness of the Fe layer, the intrinsic coercivity decreases, the remanence increases clearly, and the energy products reach the maximum of 14.8 MGOe for \(x = 3\).

Figure 4 shows a hysteresis loop at room temperature and a demagnetization curve at 10 K for Ti\textsubscript{30} nm/[HM(13 nm)Fe(5 nm)]\texttimes20/Ti(30 nm)/(Si substrate) multilayer film annealed at 625 °C for 1 min. The magnetic properties, \(4\pi M_r = 9.5\) kG, \(J H_c = 9.9\) kOe, and \((BH)_{\text{max}} = 14.7\) MGOe are achieved in the multilayer film at room temperature. In comparison with the result of the single-layer film mentioned herein, the remanence and the maximum energy product increase clearly due to the exchange coupling between the SM and/or HM nanograins of the intra- and interlayers. Coercivity up to 37.7 kOe is observed when measured at 10 K for Ti\textsubscript{30} nm/[HM(13 nm)Fe(5 nm)]\texttimes20/Ti(30 nm)/(Si substrate). However, a noticeable shoulder on the demagnetiza-
Multilayer films with different thicknesses of HM and SM layers are chosen as the SM layer component of the multilayer films. Room-temperature hysteresis loops of TiFeCo layers on Si substrate are given in Fig. 5, where sample 1: Ti(30 nm)/HM(18 nm)/FeCo(9 nm)]×20/Ti(30 nm)/[Si substrate], sample 2: Ti(30 nm)/HM(15 nm)/FeCo(7.5 nm)]×20/Ti(30 nm)/[Si substrate], and sample 3: Ti(30 nm)/HM(20 nm)/FeCo(10 nm)]×20/Ti(30 nm)/[Si substrate].

Because the saturation magnetization of Fe_{65}Co_{35} alloy is higher than that of pure Fe, the Fe_{65}Co_{35} alloy is also chosen as the SM layer component of the multilayer films. Room-temperature hysteresis loops of Ti(30 nm) buffered multilayer films with different thicknesses of HM and SM layers are so thick that squareness of the hysteresis loop is relatively small. Because the ratio of the thicknesses of the hard and soft layers is constrained, the mutually dispersed soft and hard phases formed in the multilayer film after annealing may result in incomplete exchange coupling between some hard and soft nanograins in the multilayer films. The maximum energy product of 14.6 MGOe is achieved in Ti(30 nm)/HM(18 nm)/FeCo(9 nm)]×20/Ti(30 nm)/[Si substrate] multilayer film. It is concluded that the proper thickness of hard and soft layers is necessary for the multilayer films to have the complete exchange coupling.

ACKNOWLEDGMENTS

This work has been supported by the U.S. NSF under Grant No. INT-9812082, DOE, AFOSR, DARPA/ARO, and the National Natural Science Foundation of China under Project Nos. 50071062 and 59725103, and the National 863 Project under Grant No. 2002AA302603.