Evaluation of Nelore, Canchim, Santa Gertrudis, Holstein, Brown Swiss and Caracu as Sire Breeds in Matings with Nelore Cows. Effects on Progeny Growth, Carcass Traits and Crossbred Productivity

A. G. Razook
Universidade de Sao Paulo

P. R. Leme
Universidade de Sao Paulo

I. U. Packer
Universidade de Sao Paulo

A. Luchiari Filho
Universidade de Sao Paulo

R. F. Nordos
Universidade de Sao Paulo

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/wcgalp

Part of the Animal Sciences Commons

3rd World Congress on Genetics Applied to Livestock Production. 33.
http://digitalcommons.unl.edu/wcgalp/33

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 3rd World Congress on Genetics Applied to Livestock Production by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
EVALUATION OF NELORE, CANCHIM, SANTA GERTRUDIS, HOLSTEIN, BROWN SWISS AND CARACU AS SIRE BREEDS IN MATINGS WITH NELORE COWS. EFFECTS ON PROGENY GROWTH, CARCASS TRAITS AND CROSSBRED PRODUCTIVITY

RAZOOK*, A.G., P.R. LEME, I.U. PACKER, A. LUCHIARI FILHO, R.F. NARDO, C. COUTINHO and W.J. OLIVEIRA (in memorian), BRAZIL

SUMMARY

Over three calf crops, 1096 exposures of 380 Nelore (a Zebu breed) cows to six sire breeds Nelore (N), Canchim (C), Santa Gertrudis (G), Holstein (H), Brown Swiss (S) and Caracu (K), resulted in 644 calves weaned for a 63% calving rate. Sire breed effect was significant for birth weight, weaning weight, 13 mo weight and 18 mo weight. HN and SN calves were the heaviest at all weighing periods, while CN, GN and KN calves were the intermediates. Average daily gain from 13 to slaughter age was measured in 125 males finished in feed lot and 116 on pasture. A significant breed of sire x finishing system interaction was observed. Under feed lot, HN and SN had higher daily gain and dry matter intake per kg of metabolic weight than the others. HN calves showed the worst feed conversion. The average slaughter age was 788 d for feed lot and 989 d for pasture finished steers. Carcass traits were evaluated in 241 slaughtered animals. CN calves had the highest dressing % and edible portion % under both finishing conditions. Crossbred group productivity (calculated as 18 mo weight times the weaning rate %) was greater for locally adapted breeds of sire.

INTRODUCTION

Crossing European breeds with Zebu cattle is considered the best way to increase the genetic potential for beef production under Brazilian conditions. A work conducted by TROVO et al. (1983) showed a great superiority of F1 cows from Brown Swiss x Guzera cross as compared to pure Guzera cows, when they were mated with Nelore or Guzera bulls under pasture conditions. Although crossbreeding has been recommended by several researchers, many questions still remain to be answered.

The project reported herein was undertaken by the Instituto de Zootecnia (a state research institute) at the Experimental Station of Andradina, State of Sao Paulo, to evaluate the effects of six sire breeds in matings under natural service with commercial Nelore (a Zebu breed) cows on reproduction, mortality, progeny growth (on pasture and feed lot conditions) and carcass traits. The following paternal breeds were chosen: Holstein (H), Brown Swiss (S), Santa Gertrudis (G), Canchim (C), Caracu (K) and Nelore (N). Canchim is a synthetic beef breed developed from a 5/8 Charolais:3/8 Zebu foundation, while Caracu, a native breed, which is presently part of a preservation program.

MATERIAL AND METHODS

General Description of the Location

This research was conducted at the Experimental Station of Andradina, State of Sao Paulo, which is located in a typical beef cattle region. The climate is hot and humid, with a dry season from July to September. The pastures are mainly constituted of tropical grasses (Panicum maximum and Brachiaria decumbens).

*Departamento de Zootecnia - ZNR, Universidade De Sao Paulo, Brazil
Plan

In October 1979, 380 Nelore heifers were allotted at random within weight
to form 12 breeding groups. Each sire breed, Nelore (N), Canchim (C),
Gertrudis (G), Holstein (H), Brown Swiss (S) and Caracu (K) was represented
in each year. Artificial insemination was used for H and S bulls in the
year (1979). The number of cows exposed to dairy bulls was greater in the
breeding season (1981). Cows were reallocated at random to the breeding
season in the 2nd and 3rd year.

Duration of breeding season was 90 days, beginning November, 1st. After
weaning, females were kept on pastures until breeding age. Males were
weaned until 18 months old when they were allotted, within breed of
according to weight to two finishing systems: pasture and feed lot. Every
animal per sire breed was assigned to each system. Animals
weighed to feed lot were not castrated. They were kept in individual pens (5 x
partially covered and concreted floor. The concentrate was a mixture of
and cotton seed meal and corn or sorghum silage as the roughage. The
concentrate: roughage ratio in the diets was around 60:40. The amount of
concentrate fed to all animals was adjusted every week, based on the roughage
ake.

Slaughter Procedure

A group of 6 animals was slaughtered weekly, one per breed of sire, after
222 d in the feed lot and average age of 788 d. The animals finished on
were subjected to the same slaughter procedure with average age of 989 d.

Data collected included natality %, mortality %, birth weight (BW),
weaning weight (WW), 13 mo weight (W13), 18 mo weight (W18), and average daily
gain during the finishing period (ADG1). For the feed lot animals, dry matter
intake and daily gain after adaptation (ADG2) were measured. From these values,
ry matter of metabolic weight and feed conversion (FC) were calculated.
arcass traits were: hot carcass weight; hot dressing %; special hindquarter %;
dible portion % on half carcass; fat thickness; trimming % and loin eye area.

Statistical Analysis

Growth and carcass data were analysed according to a model which included
the effects of birth year and month, age of calf, sex, breed of sire and breed
of sire x birth year interaction. Carcass data were analysed within finishing
system. A model including breed of sire, birth year and month, finishing system
and breed of sire x finishing system interaction were used for ADG1 and dressing
. Data on mortality, natality and crossbred group productivity were not
subjected to statistical analysis.

RESULTS AND DISCUSSION

Year of birth, sex and breed of sire had highly significant effects on
WW, W13 and W18. Month of birth affected only the BW. Age of calf at
weaning influenced WW, W13 and W18. Least squares means for these weights are
 presented in the table, all values were heavier than Nelore at all ages
considered. Dairy bulls-sired calves were the heaviest. Calves from CN, CN and KN groups were intermediate in those weights. The breed of sire x birth year interaction was significant for W13, a weight recorded at the end of dry season. Ranking of sire breeds for W13 changed over the years without any consistent pattern.

The sire breed x finishing system was significant for ADGI. The magnitude of sire breed differences in ADGI was greater under feed lot than on pasture conditions; however, in both systems crossbred calves had better growth ability.

Least squares means for feed lot performance are presented in table 2. HN and SN calves had higher average daily gain and dry matter intake per metabolic weight. In addition, HN calves showed the worst FC.

Breed of sire had a significant effect on all carcass traits in both finishing systems. Least squares means for carcass data recorded on 241 slaughtered animals are presented in table 2. Nelore calves were slaughtered with greater finishing degree (higher fat thickness) but smaller slaughter weight than the crossbred calves in both finishing systems. CN calves showed greater dressing % and loin eye area. Average slaughter age was 788 d for feed lot and 989 d for pasture finished steers. Dressing % for feed lot calves was on average 4% greater than on pasture.

Regarding the reproductive data (table 1) the H, S and G breeds of sire had very poor performance, due to the tropical conditions where this work was carried out. A gross evaluation of crossbred group productivity (W18 weaning rate %) indicated higher values for local adapted sire breeds (Canchim, Caracu and Nelore).

Overall, these results indicate that Canchim and Caracu when used as paternal breeds in crossings with Zebu cows could be an alternative for a more efficient beef production in the tropical conditions of Central Brazil.

REFERENCES

TABLE 1. Fertility, mortality and progeny growth performance by breed of sire.

<table>
<thead>
<tr>
<th>Trait</th>
<th>NN</th>
<th>CN</th>
<th>GN</th>
<th>HN</th>
<th>SN</th>
<th>KN</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. exposures</td>
<td>177</td>
<td>171</td>
<td>168</td>
<td>206</td>
<td>204</td>
<td>170</td>
</tr>
<tr>
<td>No. born</td>
<td>141</td>
<td>142</td>
<td>82</td>
<td>97</td>
<td>107</td>
<td>125</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>79.7</td>
<td>83.0</td>
<td>48.8</td>
<td>47.1</td>
<td>51.4</td>
<td>73.5</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>7.80</td>
<td>4.93</td>
<td>13.41</td>
<td>5.15</td>
<td>11.20</td>
<td>6.40</td>
</tr>
<tr>
<td>Birth weight (kg)²</td>
<td>27.7 a</td>
<td>29.0 b</td>
<td>28.3 ab</td>
<td>29.8 ab</td>
<td>30.6 cd</td>
<td>26.0 e</td>
</tr>
<tr>
<td>Birth weight (kg)²</td>
<td>168.9 a</td>
<td>188.9 bd</td>
<td>187.5 bde</td>
<td>195.2 c</td>
<td>189.2 cde</td>
<td>182.9 e</td>
</tr>
<tr>
<td>Wt. (kg)²</td>
<td>164.2 a</td>
<td>183.9 b</td>
<td>185.0 b</td>
<td>202.9 c</td>
<td>191.3 d</td>
<td>183.1 b</td>
</tr>
<tr>
<td>Crossbred group</td>
<td>242.9 a</td>
<td>275.7 be</td>
<td>271.3 b</td>
<td>303.7 c</td>
<td>288.3 d</td>
<td>280.4 e</td>
</tr>
<tr>
<td>Productivity²</td>
<td>174.9</td>
<td>220.6</td>
<td>116.7</td>
<td>136.7</td>
<td>135.5</td>
<td>196.3</td>
</tr>
<tr>
<td>Wean. weight (kg)²</td>
<td>815</td>
<td>907</td>
<td>941</td>
<td>988</td>
<td>995</td>
<td>865</td>
</tr>
<tr>
<td>WD. weight (kg)²</td>
<td>405</td>
<td>442</td>
<td>449</td>
<td>471</td>
<td>446</td>
<td>444</td>
</tr>
</tbody>
</table>

1 NN = Nelore; CN = Canchim; GN = Santa Gertrudis; HN = Holstein; SN = Brown Swiss and KN = Caracu.
2 Wt. = birth weight; WW = weaning weight; W13 = 13 mo weight; W18 = 18 mo weight.
3 Crossbred group productivity = W18 x weaning rate %.
4 ADG = average daily gain from 18 mo to slaughter age.
TABLE 2. Feed lot performance and carcass traits from slaughtered animals finished under pasture and confinement.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Crossbred group</th>
<th>Feed Lot</th>
<th>Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NN</td>
<td>CN</td>
<td>GN</td>
</tr>
<tr>
<td>Number</td>
<td>21</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>ADG (g)</td>
<td>904b</td>
<td>1004ab</td>
<td>1039ab</td>
</tr>
<tr>
<td>DM intake (kg/d)</td>
<td>7.7d</td>
<td>8.3cd</td>
<td>8.4bc</td>
</tr>
<tr>
<td>DM/Kg metabolic weight</td>
<td>96.2b</td>
<td>94.5b</td>
<td>95.9b</td>
</tr>
<tr>
<td>FC (DM/gain)</td>
<td>8.6b</td>
<td>8.2b</td>
<td>8.1b</td>
</tr>
<tr>
<td>Slaughter age, d</td>
<td>791</td>
<td>796</td>
<td>798</td>
</tr>
<tr>
<td>Slaughter wt (kg)</td>
<td>425a</td>
<td>475bc</td>
<td>477cd</td>
</tr>
<tr>
<td>Hot carcass wt (kg)</td>
<td>249a</td>
<td>283c</td>
<td>277c</td>
</tr>
<tr>
<td>Dressing %</td>
<td>58.6ab</td>
<td>59.5b</td>
<td>58.1a</td>
</tr>
<tr>
<td>Special Hind Quarter (%)</td>
<td>44.9cd</td>
<td>45.3d</td>
<td>44.3bc</td>
</tr>
<tr>
<td>Edible Portion (%)</td>
<td>72.4a</td>
<td>74.8b</td>
<td>73.8ab</td>
</tr>
<tr>
<td>Fat Thickness (mm)</td>
<td>4.7b</td>
<td>3.1a</td>
<td>3.4a</td>
</tr>
<tr>
<td>Trimming (%)</td>
<td>11.6b</td>
<td>9.3a</td>
<td>9.8a</td>
</tr>
<tr>
<td>Loin eye area (cm²)</td>
<td>71.0a</td>
<td>87.1c</td>
<td>86.0c</td>
</tr>
</tbody>
</table>

1% calculated for half carcass
2traits are from two years only
3NN = Nelore; CN = Canchim; GN = Santa Gertrudis; HN = Holstein; SN = Brown Swiss and KN = Caracu.