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Production and purification of a chimeric monoclonal antibody 

against botulinum neurotoxin serotype A 

Abstract. 

Production of recombinant antibodies against botulinum neurotoxin is necessary for the development of a post-

exposure treatment. CHO-DG44 cells were transfected with a plasmid encoding the light and heavy chains of a 

chimeric monoclonal antibody (S25) against botulism neurotoxin serotype A. Stable cell lines were obtained by 

dilution cloning and clones were shown to produce nearly equivalent levels of light and heavy chain antibody 

by an enzyme-linked immunosorbent assay (ELISA). In suspension culture, cells produced 35 μg/ml of chi-

meric antibody after 6 days, corresponding to a specific antibody productivity of 3.1 pg/cell/day. A method for 

the harvest and recovery of an antibody against botulism neurotoxin serotype A was investigated utilizing 

ethylenediamine-N,N′-tetra(methylphosphonic) acid (EDTPA) modified zirconia and MEP-hypercel, a hydro-

phobic charge interaction chromatography resin. Purification of the S25 antibody was compared to that 

achieved using rProtein A–Sepharose Fast Flow resin. After the direct load of culture supernatant, analysis by 

ELISA and gel electrophoresis showed that S25 antibody could be recovered at purities of 41 and 44%, from 

the EDTPA modified zirconia and MEP-hypercel columns, respectively. Although the purity obtained from 

each of these columns was low, the ability to withstand high column pressures and nearly 90% recovery of the 

antibody makes EDTPA modified zirconia well suited as an initial capture step. Combining the EDTPA modi-

fied zirconia and HCIC columns in series resulted in both purity and final product yield of 72%.  
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An increasing number of recombinant monoclonal antibodies are being developed for the treatment of medical 

conditions such as cancer, arthritis, and autoimmune diseases [1] and [2]. To meet the increased demand for 

monoclonal antibodies, all aspects of antibody production and purification need to be improved. Another poten-

tial use of monoclonal antibodies is the treatment for exposure to toxins, such as botulism neurotoxin (BoNT), 

one of the most poisonous substances known [3]. BoNT has been classified by the Centers of Disease Control 

(CDC) as one of the six highest risk threats for use in bioterrorism due to its potency, lethality, and ease of pro-

duction [4]. BoNT is produced by the spore forming bacteria Clostridium botulinum and consists of seven sero-

types (A–G) that cause the human disease botulism [5]. Botulism is characterized by flaccid paralysis and often 

results in death. The paralytic ability of the toxin has led to medical treatments for muscle conditions such as 

cervical distonias, cerebral palsy, and posttraumatic brain injury, in addition to its use for cosmetic purposes [6]. 

The potential use of BoNT in bioterrorism requires either a vaccine or other treatment for exposure. Currently, 

there are no small molecule drugs available to prevent botulism, although a pentavalent toxoid is available from 

the CDC. In addition to the pentavalent toxoid a recombinant vaccine is being developed [7] and [8]. Regardless 

of the availability of a recombinant vaccine, mass vaccination is unlikely due to the rarity of exposure and the 

fact the vaccination would prevent medical uses of BoNT. Antibodies, however, can be used for the post-

exposure treatment of botulism. Equine antitoxin and human botulism immune globulin have been used for the 

post-exposure treatment of botulism [9] and [10]. Recombinant monoclonal antibodies are currently being de-

veloped for the treatment of botulism. Three monoclonal antibodies have been combined to neutralize 450,000 

50% lethal doses of BoNT serotype A [3]. Half of the mice treated with a combination of three monoclonal an-

tibodies were able to survive exposure to 450,000 times the amount of BoNT serotype A that would normally 

kill 50% of mice. 



Post-exposure treatment of botulism would consist of a mixture of monoclonal antibodies against each of the 

seven BoNT serotypes. To produce large quantities of these recombinant monoclonal antibodies, it is necessary 

to improve production and purification methods. Several mammalian expression systems have been used for the 

high-level expression of monoclonal antibodies, including the use of dihydrofolate reductase (dhfr) deficient 

Chinese hamster ovary (CHO) cells [11]. These cells allow for amplification of gene expression upon the addi-

tion of methotrexate [12], [13], [14] and [15]. It has been shown that the productivity of CHO cells increases 

with gene copy number [16]. Upon selection in medium containing stepwise increases in methotrexate, CHO 

cells with monoclonal antibody productivities (qAb) as high as 100 pg/cell/day have been obtained [17]. 

After a production cell line is established, it is necessary to develop techniques for purification of the mono-

clonal antibody. The most common method of antibody purification is affinity chromatography based on Pro-

tein A or Protein G [18], [19], [20], [21], [22] and [23]. These purification methods are effective, but the sorbent 

is expensive and the leakage of Protein A results in the need for further purification processes. The expense and 

harsh elution conditions of affinity sorbents such Protein A have led to the search for alternative purification 

processes. These include hydrophobic interaction chromatography [24] and [25], hydroxyapatite [26], and ion-

exchange chromatography [27]. Many of these purification techniques require significant treatment of the cul-

ture supernatant prior to purification. We have focused our efforts on purification using two different chroma-

tography resins, MEP-hypercel, and ethylenediamine-N,N′-tetra(methylenephosphonic) acid (EDTPA) modified 

zirconia. 

In the present study, we have developed and characterized production of a monoclonal antibody in a dhfr defi-

cient CHO cell line and have analyzed a purification scheme that uses EDTPA modified zirconia as an initial 

capture and purification step followed by a secondary purification using MEP-hypercel, a hydrophobic charge 

interaction chromatography (HCIC) resin. EDTPA modified zirconia has previously been used for the separa-

tion of antibody from bovine serum albumin, a common component of mammalian cell culture medium [28] 



and [29]. Zirconia based resins provide excellent thermal and chemical stability compared to more typical res-

ins. The zirconia surface is modified with EDTPA to block direct binding of antibody to the zirconia, which can 

lead to tailed elution bands and irreversible binding [30]. Hydrophobic charge induction chromatography 

(HCIC) has been used to purify antibodies directly from cell culture supernatant [31]. HCIC takes advantage of 

the pH behavior of the ionizable ligands. A decrease in the pH causes both the ligand and the protein to become 

positively charged, overcoming the hydrophobic interactions [32]. To obtain purified antibody against BoNT 

serotype A, CHO-DG44 cells were transfected with the genes for the light and heavy chains of the S25 anti-

body, and a purification scheme utilizing EDTPA modified zirconia and HCIC was compared to that obtained 

using a Protein A based resin. 

Materials and methods 

Cell line, media, transfection, and expression vectors 

CHO-DG44 cells, which are dhfr negative, were obtained from Dr. Larry Chasin (Columbia University). This 

host cell line was maintained in α-MEM media (Invitrogen, Carlsbad, CA) supplemented with 8% fetal bovine 

serum (FBS) (Invitrogen). The pS25 plasmid (Fig. 1) was constructed by inserting the chimeric light and heavy 

chain IgG genes against BoNT serotype A, along with the gene for dhfr into the plasmid pcDNA3.1(+) (Invitro-

gen).  

CHO-DG44 cells were transfected with the pS25 plasmid using Lipofectamine 2000 (Invitrogen). Cells were 

seeded at 0.5 ml in 24-cell plates at a density of 2 × 105 cell/ml in α-MEM media containing 8% FBS and grown 

overnight. One microgram plasmid DNA and 0.5–2.0 μl Lipofectamine 2000 were combined in 0.1 ml Opti-

MEM media (Invitrogen) and equilibrated for 20 min. Plasmid DNA was added to the transfection mix either 

uncut or linearized with NruI placing the amplifiable gene (dhfr) between the heavy and light chains, increasing 

the likelihood that both the light and heavy chains would be amplified upon methotrexate addition. The 



DNA/Lipofectamine 2000 solution was added to the 24-well plates and the plates were incubated at 37 °C over-

night. Stably transfected cells were selected in α-MEM media lacking ribonucleotides and deoxyribonucleo-

tides, which prevent cells lacking dhfr from growing. Cells were passed several times and individual clones 

were obtained by dilution cloning at 0.5 cells/well in 96-well plates. 

ELISA 

The concentration of the whole antibody, as well as the concentration of the light and heavy chain portions, was 

determined using an enzyme-linked immunosorbent assay. Affinity purified rabbit anti-human IgG antibodies 

were diluted to 5 μg/ml in coating buffer (100 mM NaHCO3, 100 mM NaCl, pH 9.3). One hundred microliters 

of diluted antibody was added to 96-well plates (Nunc, Rochester, NY) and incubated overnight at 4 °C. The 

plates were washed twice with Tris buffer (20 mM Tris–HCl, 50 mM NaCl, pH 7.2) containing 0.1% Tween 20 

and then twice with Tris buffer alone. Blocking buffer (Tris buffer containing 0.5% BSA or casein) was added 

to the 96-well plates and incubated at 37 °C for 1 h. Supernatant samples were diluted in blocking buffer and 

samples were loaded into the 96-well plates in triplicate. Plates were incubated for 1 h at 37 °C and the washing 

procedure was repeated. One hundred microliters of a goat anti-human IgG-HRP conjugate antibody diluted to 

0.5–2 μg/ml in the dilution buffer was added to the plates. The plates were incubated for 1 h at 37 °C and the 

washing procedure was repeated. Lastly, 100 μl of 1 mg/ml ABTS in ABTS buffer (Roche Applied Science, 

Indianapolis, IN) was added to the plates. The absorbance was determined at 405 nm using an ELx800 plate 

reader (Bio-Tek, Winooski, VT) after 30 min incubation. This procedure was used for whole antibody, heavy 

chain (Fc specific), and light chain (κ specific). Whole, Fc, and κ rabbit anti-human IgG coating antibodies and 

whole, Fc, and κ goat anti-human IgG-HRP conjugated antibodies were used in the ELISAs (Sigma, St. Louis, 

MO). 

Transfer to suspension culture 



After screening the clones for antibody production, nine clones that reached 0.5 μg/ml antibody after three days 

were transferred to suspension culture. Initially, cells were seeded in the spinner flasks at 2–3 × 105 viable 

cells/ml in CHO-S-SFMII media (Invitrogen) containing 1% FBS. The cells were then passed every 2–4 days 

into fresh media containing decreasing amount of FBS. After 8–10 passages, the cells were frozen in 1.5 ml ali-

quots in α-MEM media containing 10% FBS and 10% dimethyl sulfoxide (DMSO) at a cell density of 

107 cells/ml. 

Growth of cells in suspension culture 

The CHO-DG44 S25 #56 cell line was grown in batch culture to analyze antibody production in suspension cul-

ture and to produce a sufficient amount of S25 antibody for purification and analysis. Frozen cells were resus-

pended in 40 ml CHO-S-SFMII at a seeding density of 3–4 × 105 cells/ml. The spinner flasks were incubated at 

37 °C and 5% CO2. The cells were fed every 3–4 days for several passages and were then seeded at 2 × 105 vi-

able cell/ml in 350 ml CHO-S-SFMII media in a 1 L controlled spinner flask. The dissolved oxygen (DO), pH, 

and temperature were controlled using a Cellferm-Pro control system (DAS-GIP, Julich, Germany). The pH 

was controlled by addition of CO2 and 1 M NaOH. Samples were taken every day and viability and cell density 

were determined by trypan blue exclusion and counting on a hemocytometer. Cell suspensions were centrifuged 

at 1200 rpm for 5 min and supernatant samples were frozen for later analysis. 

Protein purification 

EDTPA modified zirconia (Zirchrom, Anoka, MN), MEP-hypercel (Ciphergen, Fremont, CA), and rProtein A–

Sepharose Fast Flow (Amersham Biosciences, Piscataway, NJ) resins were compared for the purification of S25 

antibody. The supernatant from the CHO-DG44 S25 #56 cells was harvested after 6 days in batch culture. Su-

pernatant was harvested by centrifugation at 300g for 5 min followed by a fivefold diafiltration with PBS 



(20 mM Na2HPO4, 150 mM NaCl, pH 7.4) using a Pellicon XL50 ultrafiltration device containing 0.005 m2 of a 

10 kDa MWCO Biomax membrane. 

Supernatant samples were purified using an AKTA FPLC (Amersham Biosciences). Diafiltered samples were 

purified using a 100 mm × 4.6 mm diameter column containing Protein A–Sepharose Fast Flow resin (Amer-

sham Biosciences). Alternatively, culture supernatant was directly loaded onto the rProtein A–Sepharose Fast 

Flow column, an MEP-hypercel column (100 mm × 4.6 mm diameter), or an EDTPA modified zirconia column 

(Zirchrom) (50 mm × 4.6 mm diameter). Prior to loading the EDTPA modified zirconia column, the supernatant 

was diluted 1:1 in 40 mM Mes buffer containing 8 mM EDTPA (TCI America, Portland, OR). 

After loading, the columns were washed with 5 column volumes (CV) of equilibration buffer. The rProtein A–

Sepharose Fast Flow resin was loaded using PBS (pH 7.2) and eluted in 50 mM sodium citrate (pH 3.0). The 

MEP-hypercel column was equilibrated and washed with PBS (pH 7.2) and eluted using 50 mM sodium citrate 

(pH 4.0). The EDTPA modified zirconia column was equilibrated and washed with Mes buffer (20 mM Mes, 

4 mM EDTPA, and 50 mM NaCl, pH 5.5) and eluted in Mes buffer containing 1 M NaCl. Samples were loaded 

and eluted at flowrates ranging from 0.25 to 0.5 ml/min. The pH of the elution was immediately increased to 7 

using 500 mM Tris buffer (pH 9.0). The antibody was later concentrated and transferred into PBS by 10-fold 

diafiltration using a separate Pellicon XL50 ultrafiltration device. The S25 antibody was quickly frozen in liquid 

nitrogen at 1 mg/ml (BCA Assay) and was stored at −80 °C for long-term storage. 

Bradford/BCA assays 

The total protein content for the purified chimeric antibody and the culture supernatant were determined using 

either a Bradford reagent (Sigma) or BCA reagent (Pierce, Rockford, IL). The Bradford assay was used to de-

termine the S25 antibody concentration in the culture supernatant and flowthrough, while the BCA assay was 

used to determine the concentration of the eluate. For the Bradford assay, a 1 ml sample was mixed with 1 ml 



Bradford Reagent (Sigma). The samples were incubated for 30 min at 37 °C and the absorbance at 595 nm was 

determined on a spectrophotometer. The BCA assay was used to determine the concentration of the S25 anti-

body product during the purification. For the BCA assay, 50 μl sample or standard was mixed with 1 ml BCA 

reagent mixture (Pierce), containing a 1:50 dilution of reagents A and B. The samples were incubated for 

30 min at 37 °C and the absorbance at 562 nm was determined on a spectrophotometer. BSA, a major compo-

nent of the growth media, was used as a standard for both assays. The BCA assay was used to determine the 

protein content of the eluate samples since IgG and BSA have a similar absorbance/mg in that assay. However, 

the Bradford assay was used to estimate protein content of other samples since components in the growth media 

interfered with the BCA assay. 

SDS–PAGE/Western blotting 

Samples were diluted in phosphate-buffered saline (PBS) to 60 and 20 μl loading buffer (0.5 M Tris–HCl, 20% 

SDS, 40% glycerol, 10% β-mercaptoethanol, and 0.1% bromophenol blue) was added. For non-reducing gels, 

the loading buffer lacked β-mercaptoethanol. Samples were boiled for 2 min and resolved on 10–12% Tris–

glycine polyacrylamide gels (Invitrogen). The gels were run for 2–4 h at 125 V using an XCell SureLock Mini-

Cell (Invitrogen) containing running buffer (50 mM Tris, 300 mM glycine, and 0.1% SDS). The gels were 

transferred to nitrocellulose in an XCell SureLock Mini-Cell module for 6 h at 25 V in transfer buffer (25 mM 

Tris, 190 mM glycine, and 20% methanol, pH 8.3). Blots were blocked with 5% nonfat dried milk in TD buffer 

(140 mM NaCl, 5 mM KCl, 0.4 mM Na2HPO4, and 25 mM Tris) for 2 h at room temperature. Recombinant 

chimeric monoclonal antibody was detected by incubating with 0.5 μg/ml goat anti-human IgG (whole molecule 

specific) (Sigma) in 5% nonfat dried milk in TD buffer for 1 h at room temperature. The protein bands were de-

tected by incubating with ECL (Amersham) and exposing to film. Human IgG (Sigma) was used as a positive 

control. 

BIAcore activity assay 



The S25 antibody affinity and binding kinetics were measured by surface plasmon resonance in a BIAcore 

(Biacore AB, Piscataway, NJ). The method for determination of antibody affinity was previously published [3]. 

Briefly, purified IgG in 10 mM acetate (pH 3.5–4.5) was coupled to a CM5 sensor chip using N-

hydroxysuccinimide-N-ethyl-N′-(dimethylaminopropyl)-carbodiimide chemistry. The association constant (kon) 

for purified BoNT serotype A Hc was measured under continuous flow of 15 μl/min. The dissociation constant 

(koff) was determined at a high buffer flowrate of 30 μl/min to prevent rebinding. The equilibrium dissociation 

constant (Kd) was calculated as koff/kon. 

Results and discussion 

Isolation of recombinant CHO-DG44 cells with high S25 antibody production 

Nearly 200 clones were screened for antibody using an ELISA specific for the Fc portion of the heavy chain of 

human IgG. Seventeen of the cell lines had antibody titers greater than 0.1 μg/ml, with one having an antibody 

titer greater than 2 μg/ml (Fig. 2). This clone (CHO-DG44 S25 #56) had the highest expression level throughout 

the selection process. Nine clones showed expression levels greater than 0.5 μg/ml after three days in adherent 

cultures (Fig. 3) using an Fc specific ELISA. Fig. 3 shows the concentrations of light, heavy, and whole anti-

body determined from separate ELISAs for each of the nine high expressing clones. It should be noted that only 

an Fc specific ELISA was performed for each of clones 160, 180, and 181. Similar light and heavy chain anti-

body concentrations were determined for each of six clones tested. It is important to have similar expression 

levels of both the heavy and light chains to ensure full antibody is obtained upon purification. The cell line 

CHO-DG44 S25 #56 had light and heavy chain concentrations greater than 2 μg/ml and was therefore used for 

the initial production of S25 antibody in suspension culture. Each of these nine clones was transferred to in-

creasing levels of methotrexate for gene amplification (data not shown) and into serum-free media (CHO-S-

SFM II, Invitrogen) to ensure culture stability and productivity in suspension culture.  



 

Production of a S25 antibody in batch culture 

CHO-DG44 cells were transferred to suspension culture in CHO-S-SFM II and were grown in batch culture for 

the production of S25 anti-BoNT serotype A antibody. The CHO-DG44 S25 #56 cell line reached a maximum 

cell density of 4 × 106 cells/ml after 5 days in suspension culture (Fig. 4A). The viability of the cultures stayed 

above 90% until day 6 at which point it had dropped to 80% (Fig. 4B). This was confirmed by a corresponding 

decrease in the oxygen uptake rate. The cells reached a maximum growth rate (μmax) of 0.95 day−1, and the S25 

antibody reached a final average concentration of 35 μg/ml, ranging from 21 to 53 μg/ml in four separate runs 

(Fig. 5). This corresponds to an average specific antibody productivity of 3.1 pg/cell/day, which is similar to 

that found for other recombinant antibodies prior to gene amplification [33].  

Purification of S25 antibody using rProtein A–Sepharose fast flow resin 

S25 antibody was purified from culture supernatant after a diafiltration step. Two hundred and ninety milliliters 

of supernatant was concentrated to 40 ml and was then transferred to PBS (pH 7.2) using a Pellicon XL50 ul-

trafiltration device. Diafiltered sample was loaded onto 2 ml rProtein A Fast Flow resin and eluted by gravity 

flow. The flowthrough was collected and the column was washed twice with 25 ml PBS (pH 7.2). The S25 anti-

body was eluted in 50 mM sodium citrate (pH 4), followed by a second elution at pH 3. Samples were analyzed 

by SDS–PAGE and Western blotting (Fig. 6). Faint bands can be observed for the light and heavy chains of the 

chimeric S25 antibody (lanes 6 and 7), corresponding to the supernatant from the CHO-DG44 S25 #56 cells and 

the dialyzed sample, respectively. Little antibody was lost in the flowthrough and wash step. Elution at reduced 

pH resulted in highly purified antibody. These results were confirmed by Western blotting using a goat anti-

human IgG (whole molecule specific) (Sigma) (Fig. 6B).  



The purification of S25 antibody with Protein A–Sepharose Fast Flow provided a 76% yield (Table 1). There 

was little loss of antibody during the ultrafiltration step. The S25 antibody had a purity of greater than 95%, 

which was confirmed by Coomassie stained SDS–PAGE (Fig. 6A). The total protein concentrations were de-

termined by BCA assay for the eluate samples and a Bradford assay for the rest (Table 1).  

Purification of S25 antibody using rProtein A–Sepharose Fast Flow resin  

 
Volume 

(ml) 

S25 IgG 

(μg/ml) 

Total S25 

IgG (mg) 

Total protein concentra-

tion (μg/ml) 

Total protein 

(mg) 

Yield 

(%) 

Purity 

(%) 

Supernatant 290 52.5 15.2 374 112.2 100 14 

Diafiltration 39 373 14.5 2689 104.9 96 14 

Flowthrough 39 3.6 0.14 1444 56.3 1 0 

Wash 1 25 2.6 0.07 207 5.2 0 1 

Wash 2 25 0 0.0 4 0.1 0 0 

Elution 1 (pH 

4)a
27.1 347 9.4 370 10.0 62 94 

Elution 2 (pH 

3)a
22.6 96.5 2.2 99 2.2 14 98 

Eluate (Total)a 49.7 233 11.6 246 12.2 76 95 

a BCA assay was used to determine the concentration of eluate samples. Absorbance/mg protein was nearly identical for IgG and BSA 

using the BCA assay, however components in the supernatant interfered with the BCA assay and therefore the Bradford assay was 

used to estimate protein concentration in the other samples. 
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BIAcore activity assay 

S25 antibody activity was analyzed after purification using the rProtein A–Sepharose Fast Flow resin. The equi-

librium binding kinetics were determined by BIAcore to ensure that the chimeric S25 antibody was active and 

had improved binding kinetics in comparison to the single chain variable fragment from which it was derived. 

The Kd of the S25 antibody was 2.0 × 10−9 M−1, with a kon of 6.0 × 105 M−1 s−1 and a koff of 1.2 × 10−3 s−1. This 

Kd is much better than that determined for the single chain variable fragment. The previously reported Kd of the 

single chain variable fragment was 7.30 × 10−8 M−1, with a kon of 1.10 × 104 M−1 s−1 and a koff of 

8.10 × 10−4 s−1[3]. These values are also similar to those previously determined for both the S25 antibody and 

other antibodies [3], [34] and [35]. 

Comparison of S25 antibody purified using EDTPA modified zirconia, MEP-hypercel, and 

rProtein A–Sepharose Fast Flow resins 

Culture supernatant was directly loaded onto EDTPA modified zirconia, MEP-hypercel, and rProtein A–

Sepharose Fast Flow chromatography columns (Figs. 7A–C). The loading of S25 antibody was well below the 

binding capacity of the rProtein A–Sepharose resin. The low maximum pressure drop (3 bar) of the rProtein A–

Sepharose Fast Flow resin limits the flowrates to 90 cm/h. Approximately 6 mg of total protein containing 

1.25 mg S25 antibody was loaded onto the column in 26.4 ml culture supernatant. The S25 antibody was eluted 

off the rProtein A column with 50 mM sodium citrate (pH 3.0) in 0.6 column volumes (CV) neutralized to pH 

7.0 with 0.17 CV of 500 mM Tris base (Table 2). The Protein A–Sepharose Fast Flow column provided a yield 

of 75% as determined by a whole antibody ELISA. The purity of the antibody was determined to be 99% based 

on the concentration of IgG in the elution fraction determined by an ELISA divided by the total protein concen-

tration determined by a BCA assay.  



Fig. 7. Absorbance (280 nm) of S25 antibody separated on various chromatography columns. (A) rProtein A–Sepharose Fast Flow, 

(B) EDTPA modified zirconia, (C) MEP-hypercel, and (D) MEP-hypercel (loaded with elution from EDTPA modified zirconia col-

umn). 

Purification of S25 antibody using various chromatography resins  

Sample 
Volume 

(ml) 

S25 IgG 

(μg/ml) 

Total S25 IgG 

(mg) 

Protein 

(μg/ml) 

Total protein 

(mg) 

Yield 

(%) 

Purity 

(%) 

rProtein A–Sepharose 

Supernatant 26.4 47.4 1.25 228 6.03 100 21 

Flowthrough 26.4 0 0 81.4 2.15   

Wash 8.3 0 0 42.0 0.35   

Eluatea 1.28 731 0.94 738 0.95 75 99 

        

rPEZ 

Supernatant 53.2 23.7 1.26 114 6.08   

Flowthrough 53.2 0 0 42.1 2.24   

Wash 8.3 0 0 20.0 0.17   

Eluatea 2.08 542 1.13 1312 2.73 89 41 

        

MEP 
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Sample 
Volume 

(ml) 

S25 IgG 

(μg/ml) 

Total S25 IgG 

(mg) 

Protein 

(μg/ml) 

Total protein 

(mg) 

Yield 

(%) 

Purity 

(%) 

Supernatant 48.5 47.4 2.30 228 11.07   

Flowthrough 48.5 0 0 53.6 2.60   

Wash 8.3 0 0 25.3 0.21   

Eluatea 5.4 319 1.72 729 3.94 75 44 

        

rPEZ/MEP 

Diafiltration 8.5 57.5 0.49 283 2.41   

Flowthrough 8.5 0 0 12.9 0.11   

Wash 8.3 0 0 7.8 0.06   

Eluatea 2.4 164 0.39 229 0.55 72 72 

a BCA assay used to determine the concentrations of the eluate samples. 

 

The EDTPA modified zirconia column was loaded with approximately 50 ml solution consisting of a 1:1 dilu-

tion of CHO-DG44 culture supernatant and Mes loading solution (40 mM Mes, 8 mM EDTPA) at a pH of 5.5. 

The EDTPA modified zirconia column has a smaller particle size (40 μm), which resulted in a higher initial 

pressure drop. However, the EDTPA modified zirconia resin can handle pressure drops exceeding 400 bar. The 

S25 antibody was eluted off the EDTPA modified zirconia column by increasing the NaCl concentration to 1 M 

in 20 mM Mes buffer containing 4 mM EDTPA. The S25 antibody eluted in 2.4 CV (Fig. 6B) and neutralized 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WPJ-4CYGRVJ-1&_user=437158&_handle=V-WA-A-W-BC-MsSAYZW-UUW-U-AAVVVDDAZU-AAVWUCDEZU-DAWAAZVVV-BC-U&_fmt=full&_coverDate=10%2F01%2F2004&_rdoc=18&_orig=browse&_srch=%23toc%236992%232004%23999629997%23519346%21&_cdi=6992&view=c&_acct=C000020840&_version=1&_urlVersion=0&_userid=437158&md5=84e3e17e04b08be39f1f18aab1d391be#tblfn2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WPJ-4CYGRVJ-1&_user=437158&_handle=V-WA-A-W-BC-MsSAYZW-UUW-U-AAVVVDDAZU-AAVWUCDEZU-DAWAAZVVV-BC-U&_fmt=full&_coverDate=10%2F01%2F2004&_rdoc=18&_orig=browse&_srch=%23toc%236992%232004%23999629997%23519346%21&_cdi=6992&view=c&_acct=C000020840&_version=1&_urlVersion=0&_userid=437158&md5=84e3e17e04b08be39f1f18aab1d391be#tblfn2


to pH 7.0 with 80 μl of 500 mM Tris base. The elution fraction had a S25 antibody concentration of 542 μg/ml 

and a protein concentration of 1312 μg/ml, which corresponds to a purity of 41%, a 1.9-fold increase. The yield 

for the EDTPA modified zirconia column was 89% (Table 2). 

The MEP-hypercel column was loaded with approximately 50 ml supernatant from the CHO-DG44 S25 cells. 

The column was washed with 5 CV PBS (pH 7.2) and eluted using 50 mM sodium citrate (pH 4.0). The S25 

antibody was eluted from the MEP-hypercel column in 2.7 CV (4.5 ml), similar to the EDTPA modified zirco-

nia column. The elution fraction had an S25 antibody concentration of 319 μg/ml and a total protein concentra-

tion of 729 μg/ml, which corresponds to a purity of 44%, a 2.1-fold increase. The yield for the MEP-hypercel 

column was 75% which is similar to that achieved using the rProtein A column. The loss of S25 antibody ap-

pears to be due to irreversible binding onto the resin since there was little antibody in either the flowthrough or 

the wash fractions. 

Analysis of purification by Western blotting 

A non-denaturing SDS–PAGE gel was run to compare purity of the EDTPA modified zirconia and MEP-

hypercel purified samples to that purified using rProtein A–Sepharose Fast Flow (Fig. 8). Both rProtein A puri-

fied samples were very pure with no visible bands corresponding to non-IgG proteins. There are numerous 

bands that correspond to contaminating proteins from the CHO-DG44 S25 culture supernatant purified using 

EDTPA modified zirconia column. The S25 elution peak from the MEP-hypercel column is significantly 

broader than that obtained from the other columns and has a shoulder on the front. The peak was collected in 

three fractions, which were compared by SDS–PAGE (Fig. 8, lanes 9–11). All three fractions contain a high 

amount of contaminating proteins and therefore were combined. This shoulder suggests that an improvement in 

purity could be obtained by elution at several pH steps. Comparing the EDTPA modified zirconia and MEP-

hypercel peaks it was observed that the contaminating bands in the MEP-hypercel column were different from 



those occurring on the EDTPA modified zirconia column. As a result, the EDTPA modified zirconia column 

and MEP-hypercel column were run in series to improve the purity of S25 antibody.  

 

Fig. 8. Comparison of S25 antibody purification using rProtein A–Sepharose Fast Flow, MEP-hypercel, and EDTPA modified zirco-

nia resins. (1) Human IgG (10 μg), (2) Human IgG (2 μg), (3) Human IgG (0.4 μg), (4) CHO-S-SFM II media, (5) CHO-DG44 S25 

supernatant, (6) rProtein A pooled peak fraction (ultrafiltered load), (7) rProtein A pooled peak fraction, (8) EDTPA modified zirconia 

(9–11), MEP-hypercel fractions, and (12) See Blue Protein Standard. 

 

Combination of EDTPA modified zirconia and MEP-hypercel purification 

The EDTPA modified zirconia column was chosen as the first purification step since it can be operated at 

higher pressure drops and higher flowrates. In addition, the high antibody recovery makes it the preferred 

choice for an initial purification step. Neither the MEP-hypercel nor the EDTPA modified zirconia columns 

achieved purification efficiencies close to that achieved using the rProtein A–Sepharose Fast flow column. Nu-

merous impurities that result in large bands in the S25 antibody elute taken from the EDTPA modified zirconia 

column were removed in the MEP-hypercel column. As a result, the product from the EDTPA modified zirco-

nia column was loaded onto the MEP-hypercel column. The S25 antibody from the EDTPA modified zirconia 

column was dialyzed into PBS (pH 7.2) using an 8000 kDa MWCO dialysis membrane (Spectrum Laboratories, 

Rancho Dominguez, CA). The dialyzed sample was loaded onto the MEP-hypercel column followed by a 5 CV 

with PBS. The load onto the MEP-hypercel column was much less than the amount of supernatant previously 

loaded onto the column. The S25 antibody was eluted with 50 mM sodium citrate (pH 4.0). 

The flowthrough of EDTPA modified zirconia purified S25 antibody sample loaded onto the MEP-hypercel 

column had an absorbance of about 70 mAU (Fig. 7D). This corresponds to protein that is being removed using 



the MEP-hypercel column. The S25 antibody is eluted at pH 4.0 and a peak height of 370 mAU is observed, 

which is much lower than those observed in the other columns due to the decreased antibody load. The antibody 

is eluted in 2 ml volume and 0.4 ml of 500 mM Tris base was immediately added to bring the pH to 7.0. The 

final S25 antibody concentration was 164 μg/ml and the final total protein concentration was 229 μg/ml, result-

ing in a final purification of 72%, a significant improvement to the purity obtained using the EDTPA modified 

zirconia column alone. The final yield for the EDTPA modified zirconia/MEP-hypercel purification was 72% 

which is just slightly less than that obtained from a single rProtein A column. 

The S25 antibody purified using the EDTPA modified zirconia/MEP-hypercel columns in series was run on re-

ducing SDS–PAGE gel, along with the samples purified using the EDTPA modified zirconia, rProtein A–

Sepharose Fast Flow, and the MEP-hypercel alone (Fig. 9). Comparison of lanes 6, 7, and 9 shows the im-

provement in S25 antibody purity obtained after running both columns in series.  

 

Fig. 9. Reducing gel of S25 antibody purified using various EDTPA modified zirconia and MEP-hypercel resins. (1) CHO-S-SFM II 

media, (2) CHO-DG44 S25 #56 supernatant, (3) rProtein A–Sepharose Fast Flow resin (dialyzed load), (4) rProtein A–Sepharose Fast 

Flow, (5) EDTPA modified zirconia, (6) MEP-hypercel, (7) EDTPA modified zirconia #2, (8) Dialyzed sample from EDTPA modi-

fied zirconia #2, (9) EDTPA modified zirconia/MEP-hypercel, and (10) See Blue Protein Standard. 

 

Conclusion 

An antibody against BoNT serotype A was produced in CHO-DG44 cells and was then purified. The combina-

tion of EDTPA modified zirconia and MEP-hypercel provided an initial purification of monoclonal antibodies, 

but further downstream processing steps or improvements in separation conditions are needed to approach the 

purity achieved using a single Protein A resin. While EDTPA modified zirconia does not approach Protein A 



resins for purity, the ability to operate at increased pressures, the high yield, and the ease of cleaning make it an 

ideal capture step for the purification of monoclonal antibodies from culture supernatant. In addition, EDTPA 

modified zirconia and MEP-hypercel prove to be complementary purification steps as demonstrated by the large 

increase in purity obtained when running these steps in series.  
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