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Bulk and interfacial properties of a dipolar-quadrupolar fluid in a uniform electric field:
A density-functional approach

V. B. Warshavsky and X. C. Zeng
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

~Received 17 February 2003; published 14 July 2003!

We have studied the bulk and interfacial properties of a dipolar-quadrupolar fluid based on an extended
modified mean-field density-functional theory. Effects of a uniform electric field on the bulk and interfacial
properties are also studied. Results of the coexisting vapor-liquid densities, interfacial profiles of the density
and orientation order parameters, the surface tension, and their dependence on the temperature, magnitude of
molecule dipole and quadrupole moment, and the applied field are obtained. In general, we find that the applied
field increases the critical temperature, broadens the vapor-liquid coexistence curves, and reduces the surface
tension. We also find that if the quadrupole moment is positive, the reduction in the surface tension is greater
when the applied field is in the direction from the vapor to the liquid phase than the reduction when the field
is in the opposite direction. This apparent symmetry breaking by reversing the field direction may offer a
molecular mechanism to explain the phenomenon of thesign preferencein liquid droplet formation on charged
condensation centers.

DOI: 10.1103/PhysRevE.68.011203 PACS number~s!: 68.03.2g, 82.60.Nh, 92.60.Jq, 92.60.Ls

I. INTRODUCTION

Many molecular fluids such as water, methanol, and hy-
drogen chloride possess both large molecular dipole and
quadrupole moments. It is of both fundamental and practical
importance to gain more knowledge of the bulk and interfa-
cial properties of the molecular fluids as well as their depen-
dence on the strength of the dipole and quadrupole moments,
particularly when the fluids are subject to an external electric
field. Theoretically, however, one can construct purely dipo-
lar models such as the Lennard-Jones~LJ! plus a point dipole
~known as the Stockmayer model!, or purely quadrupolar
models such as the the LJ plus a point quadrupole. With the
purely dipolar or quadrupolar models, one can separately
study the effects of dipole moment or quadrupole moment on
the bulk and interfacial properties of the fluids. For example,
a perturbation theory for both purely dipolar and quadrupolar
fluids was developed by Haileet al. @1# to calculate the sur-
face tension. More thorough reviews of the theoretical stud-
ies of purely dipolar fluids can be found in Refs.@2–4#. Bulk
properties of dipolar fluids in an external field have been
studied by many workers@5–9#.

Several theoretical and computer-simulation studies of the
properties of dipolar-quadrupolar fluids, including the free
energy @10,11#, liquid structure@12#, and phase equilibria
@13#, have been reported for model dipolar-quadrupolar fluid
systems. Patey and Valleau@11# calculated the free energy
and radial distribution function by using a Monte Carlo~MC!
simulation method. Phase equilibria of the LJ dipolar-
quadrupolar fluids with various dipole and quadrupole mo-
ments were obtained by Dubey and O’Shea@14# from MC
simulation. These workers found that increasing multipole
strength will increase the critical temperature and broaden
the vapor-liquid coexistence curves~the binodals!. There
have also been some theoretical studies aimed at understand-
ing the mechanism of the formation of the spontaneous po-
larization at the surface of the dipolar-quadrupolar liquids

@15–17#. It was pointed out that this spontaneous polariza-
tion is responsible for the ‘‘sign effect’’ on the surface ten-
sion due to an external electric field@18# as well as the ad-
sorption of ions with a preferred sign at the surface of the
liquids @19#. For purely dipolar fluids, the spontaneous mo-
lecular orientation at the liquid surface has been studied on
the basis of the integral equation@20# and ‘‘f -expansion’’
theory @21#.

The density functional theory~DFT! is perhaps one of the
most successful theoretical tools for studying vapor-liquid
interfaces of polar fluids@2–4,20,22,23#. The DFT allows
both the structural~the density and orientation profiles! and
thermodynamical~surface tension! properties to be deter-
mined in a self-consistent way. For weakly dipolar fluids, the
modified mean-field~MMF! DFT developed by Teixeira and
co-workers@2,4,24# has been employed by several workers
@25,26,9#. A more sophisticated DFT has also been devel-
oped for strongly dipolar fluids@3,23#. In a previous paper
@9# we employed the MMF-DFT to show that for a purely
dipolar fluid subject to an external uniform electric field,
changing the direction of the field has no effects on the sur-
face tension. In a recent letter@27#, we extended the MMF-
DFT to treat a dipolar-quadrupolar fluid. We find that chang-
ing the direction of the field does have an effect on the
surface tension. We showed that for two given external fields
with the same strength but exactly opposite direction, the
magnitude of the field-induced change in the surface tension
is different.

In this paper, we present full theoretical formalism of the
extended MMF-DFT and detailed results of the properties of
the dipolar-quadrupolar fluid and their dependence on the
applied electric field. As noted in the previous letter@27#, the
study of the electric field effects on the interfacial properties
of dipolar-quadrupolar fluids can be useful to our under-
standing of thesign-preferencephenomenon observed in the
ion-induced heterogeneous nucleation experiments@28–33#
and computer simulation@34#. These experiments and com-
puter simulation have shown that in the heterogeneous
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vapor-to-liquid nucleation on charged condensation centers
the sign of the charge can affect appreciably the rate of
nucleation. For example, it was found that water droplets
nucleate faster on negative ions~anion preference! whereas
methanol droplets nucleate faster on positive ions~cation
preference!, provided that the magnitude of all charges are
identical. Several theoretical approaches have been devel-
oped to explain this phenomenon. Approaches include ther-
modynamics @35–37#, MC @8# and molecular dynamics
simulation @38,39#, and the DFT@40,41#. In essence, the
sign-preference behavior can be attributed to certain asym-
metry in molecular interaction. The dipolar-quadrupolar mo-
lecular model considered here does entail an intrinsic asym-
metry of the charge distribution in the molecule. Thus, the
dipolar-quadrupolar fluid should show sign preference in the
ion-induced heterogeneous nucleation.

The rest of the paper is organized as follows. In Sec. II the
MMF-DFT is extended to treat a dipolar-quadrupolar fluid
subject to a uniform electric field. Results of bulk fluid prop-
erties are presented in Sec. III. Results of interfacial proper-
ties including the density and orientation order-parameter
profiles, the surface polarization, and surface tension are
shown in Sec. IV. The effects of the field direction on the
order-parameter profiles and the surface tension are also dis-
cussed. Conclusions are given in Sec. V.

II. DENSITY-FUNCTIONAL THEORY
FOR DIPOLAR-QUADRUPOLAR FLUIDS

We consider a single-component molecular fluid that con-
sists of spherical particles each having a point dipole and a
point quadrupole. In the body-fixed coordinate, the vector of
the dipole is set to be thez8 axis. The dipole thus has only
one nonzero componentmz85m0. For simplicity, we only
consider that the quadrupole tensor has one nonzero compo-
nent Qz8z85Q. The intermolecular interaction is described
by a pairwise intermolecular potentialu(rW1 ,rW2 ,v1 ,v2),
whererW1 and rW2 denote the positions of two molecules and
v1 and v2 are the orientations of the molecularz8 axes.
We employed a perturbation approach to separate the
intermolecular potential into two parts: a strongly repulsive
interaction ure f(rW1 ,rW2 ,v1 ,v2) and a relatively small per-
turbative attraction uper(rW1 ,rW2 ,v1 ,v2)5u(rW1 ,rW2 ,v1 ,v2)
2ure f(rW1 ,rW2 ,v1 ,v2). The former is treated as a reference
system. Here, the reference potential is chosen to be the
hard-sphere potential

ure f~r 12!5H 1`, r 12<d

0, r 12.d
~1!

and the perturbative potential is in the form

uper~rW12,v1 ,v2!5@u00~r 12!1udd1udq1uqd1uqq#

3H~r 122d!. ~2!

In Eqs. ~1! and ~2! d is the hard-sphere diameter,r 125urW12u
5urW22rW1u is the intermolecular distance, andH(r ) is the

Heaviside step function. The isotropic part of the attractive
interactionu00 is taken to be the augmented Sutherland po-
tential @42,43#

u00~r 12!524e~d/r 12!
6, ~3!

wheree is the energy parameter. Such choices of separation
of the reference and perturbative potentials have been used in
many previous studies@2,9,46–48#. The choice of the Suth-
erland potential@Eq. ~3!# as the isotropic part of the attractive
potential is mainly for mathematical simplicity in the calcu-
lation of the interfacial properties of the polar fluid. Termudd
refers to the dipole-dipole interaction, i.e.,

udd~rW12,v1 ,v2!5
m0

2

r 12
3 ~c1223c1c2!, ~4!

udq1uqd is the dipole-quadrupole interaction, i.e.,

udq~rW12,v1 ,v2!1uqd~rW12,v1 ,v2!

5
3

2

m0Q

r 12
4 ~c12c2!~115c1c222c12!, ~5!

anduqq is the quadrupole-quadrupole interaction@44#, i.e.,

uqq~rW12,v1 ,v2!5
3

4

Q2

r 12
5 ~125c1

225c2
212c12

2

135c1
2c2

2220c1c2c12!, ~6!

whereci5nW i•nW , c125nW 1•nW 2 (nW 1 andnW 2 are the unit vectors
along the molecular axes!, andnW 5rW12/r 12 is the unit vector
along the intermolecular axis.

Let r(rW,v)5r(rW) f̂ (rW,v) denoting the number density of
molecules, wherer(rW) is the total number density of mol-
ecules without specifying the orientation andf̂ (rW,v) denotes
the distribution function of the molecular orientationv
5(u,w), with *dv f̂ (rW,v)51. The grand canonical poten-
tial of the system in the external fieldVext(rW,v) can be ex-
pressed as@2,25,23#

V@r~rW,v!#5E
V
drW f hs„r~rW !…1~1/b!S1V int

2E
V
drWE dvr~rW,v!@m2Vext~rW,v!#, ~7!

where m is the chemical potential of the system,b
51/(kBT) (kB is the Boltzman constant andT is tempera-
ture!, f hs„r(rW)… is the free energy density of the hard-sphere
reference system, andV is the volume of the system. The
term

S5E
V
drWr~rW !^ ln@4p f̂ ~rW,v!#& ~8!
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accounts for the loss of orientational entropy in the reference
system, and̂•••&[*dv¯ f̂ (rW,v).

The orientation distribution functionf̂ (z,v) can be writ-
ten as a sum of an isotropic part 1/4p and a small anisotropic
correctionD f̂ (z,v) due to intermolecular and molecule-field
interactions, i.e.,

f̂ ~rW,v!51/4p1D f̂ ~rW,v!, D f̂ / f̂ !1. ~9!

Keeping the terms up touD f̂ u2, Eq. ~8! can be rewritten as

S52pE
V
drWr~rW !E dvuD f̂ ~rW,v!u2. ~10!

In Eq. ~7!, term V int denotes the contribution due to the
long-ranged perturbative part of the potentialuper and thus it
is dependent on the geometry of the dielectric system. A
commonly used approximation to the pair correlation func-
tion that appears in the expression ofV int is the MMF ap-
proximation that approximates the correlation function by
the Boltzmann factor@2,25,23#. As a result,V int is given by

V int5
1

2bEV
drW1E

V
drW2E dv1dv2r~rW1 ,v1!r~rW2 ,v2!

3e2bure f(r 12)$12exp@2buper~rW12,v1 ,v2!#%.

~11!

For weakly dipolar fluids, Teixeira and Telo da Gama@2#
proposed to expand the second exponential term in Eq.~11!
in powers ofbuper . If only the first-order term in the expan-
sion is kept, it essentially gives the random phase approxi-
mation~RPA! to the correlation function. As shown in Refs.
@2,25# the RPA cannot account for the multipolar contribu-
tion to the bulk and interfacial properties of the fluid; the
second-order terms in the expansion are needed for this pur-
pose. Thus, in the present work, we also truncate the expan-
sion after the second-order term. Finally, if the external elec-
tric field is uniform and has a magnitudeE, Vext is given by

Vext~rW,v!52m0E cosu, ~12!

where angleu is measured relative to the field direction.
To describe the planar vapor-liquid interface, we consider

a slab-shaped infinite system in which thex-y plane is in
parallel with the surfaces of the slab and the uniform electric
field EW is applied along thez direction. Thus, the system is
inhomogeneous only in thez direction and the density profile
r(z) and the orientation distribution functionf̂ (z,v) de-
pends only on the spatial variablez.

It has been shown previously@7# that in the presence of an
external field the free energy of a homogeneous dipolar sys-
tem depends on the shape of the system. Hence, we first
consider that the system is contained in a finite cylindrical-
shape volumeV. We then take the thermodynamical limit
V→` such that the system assumes the slab shape. Note that
the slab-shaped system considered here can be viewed as a
planar capacitor subject to an electric field. A nice and simple

feature of the planar capacitor is that the electric field de-
pends only on the surface charge density of the two parallel
plates, but not on the distanceL between the two plates. The
expression forV int /A in the thermodynamical limit can be
written as

lim
V→`

V int

A
5 lim

L→`
A→`

1

2AE2L/2

L/2 E
2L/2

L/2

dz1dz2r~z1!r~z2!

3E dv1dv2 f̂ ~z1 ,v1! f̂ ~z2 ,v2!E
A
E

A
dA1dA2

3S uper2
b

2
uper

2 D ~rW12,v1 ,v2!, ~13!

whereA is the area of the cylinder base andL is the axial
length of the cylinder.

Substituting Eqs.~1!–~6! into Eq. ~13!, and carrying out
the limit A→`, we obtain the following form ofV int /A
after a lengthy derivation~see Appendix A for mathematical
details!:

lim
V→`

V int

A
5

1

2
lim

L→`
E

2L/2

L/2 E
2L/2

L/2

dz1dz2r~z1!r~z2!

3c~z12,v1 ,v2!, ~14!

where

c~z12,v1 ,v2!5E dv1dv2 f̂ ~z1 ,v1! f̂ ~z2 ,v2!

3fe f f~z12,v1 ,v2! ~15!

and

fe f f~z12,v1 ,v2!5 (
i ,k50(i<k)

4

@Pi Pk8f ik~z12!

1~12d i ,k!Pi8Pkf ik~z21!#. ~16!

Here z1252z215z22z1 , Pi5Pi(cosu1) and Pi8
5Pi(cosu2) are the Legendre polynomials of thei th order,
andd i ,k is the Kronecker delta function. Functionsf ik(z) are
polynomials ofm0 andQ up to the fourth order. The explicit
expressions forf ik(z12) are given by the Eq.~A24! in Ap-
pendix A. In the following section, we will discuss how to
carry out the thermodynamical limitL→` in Eq. ~14!, for
the bulk phases.

Since the planar system is invariant in thex-y plane, the
anisotropic part of the orientation distribution function
D f̂ (z,v) is independent of the axial anglew. Expanding
D f̂ (z,v) in terms of the Legendre polynomial of cosu yields

D f̂ ~z,v!5
1

4p (
k51

`

~2k11!hk~z!Pk~cosu!, ~17!

where the expansion coefficients
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hk~z!5^Pk~cosu!& ~k51,2, . . .! ~18!

are the orientation order parameters. We also defineh051,
which is consistent with Eqs.~9! and ~18!.

Inserting Eqs.~9!, ~12!, and ~17! into Eqs.~10! and ~15!
with using the orthogonality relation for the Legendre poly-
nomials, the grand potential@Eq. ~7!# in the thermodynami-
cal limit can be written as a functional ofr(z) and$h i(z)%,
i.e.,

V@r~z!,$h i~z!%#/A

5E
2`

`

dz fhs„r~z!…1
1

2bE2`

`

dzr~z!(
i 51

`

~2i 11!h i
2~z!

1
1

2E2`

` E
2`

`

dz1dz2c~z1 ,z2!r~z1!r~z2!

2E
2`

`

dzmr~z!2E
2`

`

dzm0Er~z!h1~z!, ~19!

where

c~z1 ,z2!5 (
i ,k50(i<k)

4

@h i~z1!hk~z2!f ik~z12!

1~12d i ,k!hk~z1!h i~z2!f ik~z21!#. ~20!

Applying the variational principle to the grand potential@Eq.
~19!# with respect tor(z1) and $h i(z1)% yields a set of
coupled integral equations:

m5mhs„r~z1!…1
1

2b (
i 51

4

~2i 11!h i
2~z1!2m0Eh1~z1!

1E
2`

`

dz2c~z1 ,z2!r~z2!, ~21!

h i~z1!5d i ,1

1

3
bm0E2

1

~2i 11!
bE

2`

`

dz2

3F (
k50(i<k)

4

f ik~z12!hk~z2!

1 (
k50(i .k)

4

f ik~z21!hk~z2!G
3r~z2! ~ i 51, . . . ,4!, ~22!

and

h i~z1!50 ~ i .4!, ~23!

wheremhs„r(z)… is the local chemical potential of the hard-
sphere fluid, which can be accurately evaluated by using the
Carnahan-Starling formula@45#.

III. BULK FLUID PROPERTIES

For bulk phases, densityr and the order parametersh1 ,
h2 , h3, andh4 are constant. The expression for the interac-
tion part of the grand canonical potentialV int /V in the ther-
modynamical limit can be written, on the basis of Eqs.~14!
and ~20!, as

lim
V→`

V int

V
5

r2

2
lim

L→`

1

LE2L/2

L/2 E
2L/2

L/2

dz1dz2c~z12!, ~24!

where

c~z12!5 (
i ,k50(i<k)

4

@f ik~z12!1~12d i ,k!f ik~z21!#h ihk .

~25!

With the new variableszs5(z11z2)/2 andz125z22z1 the
integral on the right-hand side of Eq.~24! can be transformed
as follows:

E
2L/2

L/2 E
2L/2

L/2

dz1dz2c~z12!5E
2L/2

L/2

dzsE
2L

L

dz12c~z12!

5LE
2L

L

dz12c~z12!. ~26!

Using this expression, after carrying out the limitL→`, Eq.
~24! can be written as

lim
V→`

V int

V
5

r2

2 (
i ,k50(i<k)

4

@11~21!( i 1k)2d i ,k#F ikh ihk ,

~27!

where

F ik5E
2`

`

f ik~z!dz. ~28!

All F ik are finite, because for any indexesi and k with z
→` the integrand in Eq.~28! converges to zero asf ik
→1/zn (n>4) ~see Appendix A!. Finally, in the thermody-
namical limit the expression forV/V of the bulk can be
written as

lim
V→`

V

V
5 f hs~r!1

1

2b
r(

i 51

4

~2i 11!h i
21

r2

2

3 (
i ,k50(i<k)

4

@11~21!( i 1k)2d i ,k#F ikh ihk

2mr2m0Erh1 . ~29!

We provide detailed expressions for allF ik in Appendix
B. Moreover, noting thatF01, F02, F03, F04, F12, F14,
F23, F24, andF34 are all equal to zero@see Eq.~B1!#, the
minimization of limV→`V/V @Eqs.~29!# with respect to$h i%
yields the order parameters
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h15

m0E

3kBT

11
rF11

3kBT

, h352h1

F13r

7kBT

S 11
F33r

7kBTD , ~30!

and

h250, h450. ~31!

With these results, after the minimization of limV→`V/V
with respect tor, the chemical potential of the bulk fluid can
be written as

m

kBT
5

mh~r!

kBT
2

3

2
h1

22
7

2
h3

21
r

kBT
F00. ~32!

Using Eqs.~30!–~32! the grand potential of the bulk fluid
@Eq. ~29!# in the thermodynamical limit can be written as

V

V
52ph~r!2

1

2kBT
r2~F001h1

2F111h3
2F33

12h1h3F13!, ~33!

whereph5rmh2 f h is the hard-sphere pressure. At a given
temperatureT, the coexisting vapor-liquid densitiesr l and
rv can be calculated by finding the simultaneous solution of
the grand potential equationV(r l ,T)5V(rv ,T) and the
chemical potential equationm(r l ,T)5m(rv ,T).

A. Zero field

In the zero field (E50), it follows from Eq.~30! that the
order parametersh1 andh3 become zero. This is consistent
with the fact that there is no favorable orientation for the
dipolar-quadrupolar molecules in the bulk fluid phase. Here-
after, we will use dimensionless quantitym0* 5m0 /(ed3)1/2

for the dipole moment,Q* 5Q/(ed5)1/2 for the quadrupole
moment,T* 5kBT/e for the temperature,h5(pd3/6)r for
the density, andE* 5E(d3/e)1/2 for the electric field. Be-
cause the MMF-DFT is only applicable for weakly dipolar-
quadrupolar fluids, the values of multipolar moment are cho-
sen within the range 0<m0* <1 and 0<Q* <1. In Fig. 1,
we plot the vapor-liquid coexistence curves for various given
m0* andQ* . One can see that for a givenT* , increasingm0*
or Q* broadens the coexistence curves, decreases the vapor
density hv , and increases the liquid densityh l . For the
given (m0* ,Q* )5(1,0), (0,1), (1,0.8), (0.8,1), and (1,1)
the critical temperaturesTc* is 2.06, 2.10, 2.15, 2.17, and
2.22, respectively. It is found that the difference in the criti-
cal temperature between the polar fluid and the nonpolar
counterpart can be approximately correlated with the relation

Tc* ~m0* ,Q* !2Tc* ~0,0!;m0*
41 9

5 m0*
2Q* 21 9

5 Q* 4,
~34!

and the correlation is better for smaller values ofm0* and
Q* . Obviously, the right-hand side of Eq.~34! stems from
those terms having multipolar moment dependence in the
grand potential@Eq. ~33!#. Equation~34! indicates that the

critical temperature difference grows faster with increasing
Q* than increasingm0* . Indeed, the fact that the critical
temperature for the fluid with (m0* ,Q* )5(0.8,1) is higher
than that with (m0* ,Q* )5(1,0.8) confirms thatTc* has a
stronger dependence onQ* than onm0* . This can be under-
stood on the basis of the contribution of the attraction energy
F00 @Eq. ~B2!# to the grand potential@Eq. ~33!#: the contri-
bution of dipolar interaction is (m0* )4/12, whereas the con-
tribution of quadrupolar interaction is (3/20)(Q0* )4 ~in addi-
tion to the contribution due to the dipolar-quadrupolar
interaction toF00). Given the same dimensionless values of
m0* and Q* the quadrupolar interaction is 9/5 time larger
than the dipolar interaction. Note that for the limiting case of
purely dipolar (Q* 50) and purely quadrupolar fluid (m0*
50), Eq. ~34! reduces to the known relation@2,23,46#
Tc* (m0* )2Tc* (0);m0*

4 and Tc* (Q* )2Tc* (0);Q* 4, re-
spectively.

Our results are in qualitative agreement with the MC
simulation of the LJ dipolar-quadrupolar fluids by Dubey and
O’Shea@14#. For the given values of dipole and quadrupole
moments, the critical temperatures determined from the MC
simulation are given as follows@14#: Tc* @(m0* ,Q* )5(1,0)#
51.41, Tc* @(m0* ,Q* )5(0,1)#51.60, and Tc* @(m0* ,Q* )
5(1,1)#51.79, which indicate thatTc* has a stronger depen-
dence onQ* than onm0* . Furthermore, Dubey and O’Shea
showed that form0* 51, increasingQ* from 0 to 1 raisesTc*
by 27%, whereas forQ* 51, increasingm0* from 0 to 1
only raisesTc* by 12%. They@14# also plottedTc* versus
Q* 2 for m0*

251 andQ* 251.0,1.5,2.0,2.5, and found a lin-
ear relation betweenTc* and Q* 2, which is consistent with
our result@Eq. ~34!#, but only for Q* !1. It appears to us
that some points in Fig. 7 of Ref.@14# could be also con-
nected via a parabola, which would agree better with our
results for higher values ofQ* .

We also examined whether the coexistence densities sat-
isfy the law of corresponding states. In Fig. 2, the coexist-
ence curves in Fig. 1 are replotted with a rescaled axis
T* /Tc* (m0* ,Q* ). It can be seen that the curves nearly col-

FIG. 1. Vapor-liquid coexistence densities for the dipolar-
quadrupolar fluid with various given multipolar moments
(m0* ,Q* ).
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lapse onto a single master curve~except at the high densi-
ties!, indicating that the law of corresponding states is largely
satisfied for weakly dipolar-quadrupolar fluids. This satisfac-
tion of the law of corresponding states was also seen in the
MC simulation of dipolar-quadrupolar fluids~see Figs. 8 and
9 of Ref.@14#!. Moreover, we find that near the critical point
the difference in the coexistence liquid and vapor densities
also satisfies the mean-field scaling relation

h l2hv;t1/2, ~35!

wheret[12T/Tc(m0* ,Q* ).

B. Nonzero field

Here we consider the effects of a uniform electric field on
the vapor-liquid coexistence for (m0* ,Q* )5(1,0.8). In Fig.
3, we plot the vapor-liquid coexistence curves for two given
magnitudes of the electric fieldE* 50.2 and 0.5. Compared
to the zero-field curves, it can be seen that increasing the
magnitude of the electric field narrows the coexistence
curves, enlarges the coexistence vapor density, and reduces
the coexistence liquid density. This behavior is opposite to
that due to increasing the multipolar moments. As shown in
the preceding section, in the zero field all the order param-
eters are zero. In contrast, in a nonzero field the order pa-
rametersh1 andh3 became finite@Eq. ~30!#. It is found that
h1 is more sensitive to change in the magnitude of the elec-
tric field ~Fig. 4! compared toh. Note that in Fig. 4, the
larger values ofh1 correspond to the coexisting vapor phase
and smaller values correspond to the liquid phase@9#. Note
also that although the coexistence density curves are not af-
fected by changing the direction of the field,h1 does depend
on the field direction. The order parameterh3 is not plotted
here since it is about two orders of magnitude smaller than
h1. Finally, we also find that near the critical point not only
the coexistence-density difference satisfies the mean-field
scaling relation Eq.~35!, but also the difference in the order
parameterh1v andh1l at phase coexistence satisfies a similar
relation for the given values ofE* :

h1v2h1l;t1/2, ~36!

wheret512T/Tc(m0* ,Q* ,E* ). The difference in the coex-
istence densitiesh l andhv in the electric field still obeys the
power law of Eq.~35!.

IV. PLANAR INTERFACIAL PROPERTIES

The density and orientation order-parameter profiles of
the planar vapor-liquid interface can be calculated by nu-
merically solving the integral equations~21! and ~22! using
the iterative method@9#. Generally, the initial input for the
iteration is taken to be a step function having the bulk coex-
istence values. However, we found that the iteration becomes
unstable for low values ofT* . This numerical problem be-
comes more serious if them* or Q* value is large. The
nature of this iteration instability at low values ofT* has

FIG. 2. The same as Fig. 1 except the temperature is rescaled
based on the critical temperature.

FIG. 3. The vapor-liquid coexistence curves for (m0* ,Q* )
5(1,0.8) and given electric fieldE* 50.2;0.5:~a! the vapor branch
and ~b! the liquid branch.
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been previously discussed in Ref.@47#. It appears to be a
specific problem associated with the MMF-DFT.

It has been shown that for purely dipolar@20,2,23# or
purely quadrupolar fluids in the zero field@21,46#, the lowest
nonzero order-parameter profile ish2(z). In a nonzero field,
however, the lowest nonzero order-parameter profile ish1(z)
for purely dipolar fluid @9#. On the other hand, for the
dipolar-quadrupolar fluid the lowest nonzero order-parameter
profile is still h1(z) even in the zero field. This can be seen
from Eq. ~22! whose solution gives the order-parameter pro-
files h1(z), h2(z), h3(z), and h4(z), assuming that the
functionsf01, f02, f03, andf04 appearing in the integrals
are nonzero. In particular,f01 contains termsxdd,dq

01 and
xdq,qq

01 @Eq. ~A24!#, which account for the coupling effect of
dipoles and quadrupoles, i.e.,xdd,dq

01 ;m0
3Q @Eq. ~A21!# and

xdq,qq
01 ;m0Q3 @Eq. ~A23!#. If either m0 or Q is zero, both

xdd,dq
01 andxdq,qq

01 will be zero and so willf01. This explains
why the order-parameter profileh1(z) is zero for purely di-
polar or quadrupolar fluids. On the other hand, functionf02
in the integral equation forh2(z) @Eq. ~22!# is a sum of
functionsD, E, F, xdq,dq

02 , andxqq,qq
02 @see Eq.~A24!#. Since

D, E, and F ;m0
4, xqq,qq

02 ;Q4 ~see Appendix A!, and

xdq,dq
02 ;m0

2Q2 @Eq. ~A19!#, if m0 or Q is nonzerof02 will be
nonzero, and so will the order-parameter profileh2(z).

A. Zero field

First, we consider the temperature dependence of the in-
terfacial profiles. In Figs. 5~a!–5~c!, we plot the number den-
sity and order-parameter profiles for (m0* ,Q* )5(1,1) and
various givent. Figure 5~a! shows that the density profile
h(z) is broadened with decreasingt. For t!1 the interfa-
cial 10-90 widthW diverges as

W;t21/2. ~37!

FIG. 4. The orientation order parameterh1 at vapor-liquid co-
existence for (m0* ,Q* )5(1,0.8) andE* 50.2,0.5. At a fixedE*
the branch with the larger values ofh1 corresponds to the vapor
phase and the branch with the smaller values ofh1 corresponds to
the liquid phase.

FIG. 5. ~a! The density profileh(z), and order-parameter profile
~b! h1(z) and ~c! h2(z) for (m0* ,Q* )5(1,1) and various givent
[12T/Tc(m0* ,Q* ).
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Figures 5~b! and 5~c! show that the two leading orientation
order-parameter profiles,h1(z) andh2(z), are flattened and
broadened with decreasingt. Recall thath1 andh2 are de-
fined aŝ cosu& and^P2(cosu)&, respectively@Eq. ~18!#. The
fact thath1(z) is negative across the interface indicates that
dipoles at the interface tend to align themselves pointing
towards the liquid@47#; the fact thath2(z) is negative on the
liquid side but positive on the vapor side indicates that mol-
ecules tend to orient their molecular axis in parallel with the
interface on the liquid side but normal to the interface on the
vapor side@2,23#.

As a measure of the interfacial orientation order on the
basis ofh1(z), we define parameterDh1

[umin(h1)u. We find

that for smallt, Dh1
scales witht as

Dh1
;t. ~38!

Denoting the position of the minimum ofh1(z) to bezmin
(1) ,

i.e., minh1(z)5h1(zmin
(1) ), the width of theh1(z) profile can be

defined asWh1
5z2

(1)2z1
(1) , wherez1

(1) and z2
(1) are defined

from equation h1(z2
(1).zmin

(1) )5h1(z1
(1),zmin

(1) )50.1h1(zmin
(1) ).

As such, we find thatWh1
diverges witht as

Wh1
;t21/2. ~39!

The interfacial orientation order measured on the basis of
h2(z) can be given by the differenceDh2

5max(h2)

2min(h2). We find thatDh2
scales witht as

Dh2
;t3/2. ~40!

Denoting the positions of the maximum and minimum of
h2(z) to bezmax

(2) andzmin
(2) , i.e., maxh25h2(zmax

(2) ) and minh2

5h2(zmin
(2) ), the widthWh2

of theh2(z) profile can be defined

by z2
(2)2z1

(2) , where h2(z1
(2),zmin

(2) )50.1h2(zmin
(2) ) and

h2(z2
(2).zmax

(2) )50.1h2(zmax
(2) ). We find that widthWh2

scales

with t as

Wh2
;t21/2. ~41!

The mean-field scaling relations, Eqs.~40! and ~41!, have
been previously obtained for purely dipolar fluid@3# as well
as for purely quadrupolar fluid@46#. To summarize, all the
scaling relations Eqs.~37!–~41! seem to hold for all the con-
sidered m0* and Q* , and they hold particularly well for
smaller values ofm0* andQ* .

Second, we consider the multipole moment dependence of
the interfacial profiles at a fixed temperature. In Fig. 6~a! we
show the density profilesh(z) for T* 51.95 and various
given (m0* ,Q* ). It can be seen that increasing the multipole
moments makes the density profile steeper and reduces the
surface thickness. In the second column of Table I we show
the numerical values of the 10-90 interfacial width for the
given (m0* ,Q* ). We find that form0* 51, increasingQ*
from 0 to 1 reducesW by 41%, but forQ* 51 increasing
m0* from 0 to 1 reducesW only by 30%. Figures 6~b! and
6~c! show the the orientation order-parameter profilesh1(z)

FIG. 6. ~a! The density profileh(z), and order-parameter profile
~b! h1(z) and~c! h2(z) for T* 51.95 and various given (m0* ,Q* ).
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and h2(z) for T* 51.95 and the same given (m0* ,Q* ). In-
creasing the multipole moments increases the orientation or-
dersDh1

andDh2
, and reduces the widthWh1

andWh2
. One

can also see in Table I that the values ofDh1
, Dh2

, Wh1
, and

Wh2
have a stronger dependence onQ* than onm0* . Finally,

we find that the even-numbered order parametersh2(z) and
h4(z) are independent of the sign ofQ* , whereas the odd-
numbered order parametersh1(z) and h3(z) will change
their sign if the sign ofQ* is changed.

Third, we consider the electric potential jumpDw5wv
2w l across the interface. This spontaneous surface potential
jump is attributed to both dipoleDwp and quadrupoleDwq
contributions, i.e.,@16,17,48#

Dw5Dwp1Dwq , Dwp54pE
2`

1`

dzm0h1~z!r~z!,

Dwq5
2p

3
Q~r l2rv!. ~42!

The quadrupole contributionDwq depends only onQ and the
difference in the coexisting liquid and vapor densities, and
not on the orientation ordering at the interface. However, the
dipole contributionDwp is strongly dependent on the orien-
tation ordering. In Fig. 7~a! we plot the dimensionless poten-
tial Dwq* [Dwq(d/e)1/2 on the scaled temperaturet for
given (m0* ,Q* ). It can be seen that for fixedt, increasing
m0* andQ* enlargesDwq* , andDwq* is much more sensitive
to the change ofQ* thanm0* . This is because for fixedt the
electric potentialDwq* is nearly independent ofm0* , but is
linearly dependent onQ* as shown by Eq.~42!. Near the
critical point the density differencer l2rv obeys the scaling
relation Eq.~35!. Thus, on the basis of Eq.~42! we find that
for fixed (m0* ,Q* ), potential Dwq* satisfies the same
mean-field scaling relation as the Eq.~35!, i.e.,

Dwq* ;t1/2. ~43!

The inset to Fig. 7~a! displays the dipole contribution to
the surface potential,Dwp* , as a function oft for the given
(m0* ,Q* ). Note thatDwp vanishes for purely dipolar fluids
because theh1(z) profile is zero@see Eq.~42!#. Moreover,
becauseh1(z) is entirely negative across the interface, the

potentialDwp* is also negative@see Eq.~42!#. In contrast to
Dwq* , Dwp* for given t is more sensitive to the change of
m0* than Q* . In Fig. 7~b! we plot the full surface potential
Dw* versus t for the given (m0* ,Q* ). BecauseuDwp* u
,Dwq* , the full surface potentialDw* is always positive for
the givent and (m0* ,Q* ). Changing the sign ofQ* to nega-
tive will result in negativeDwq* andDw* , but Dwp* will be
positive.

Specifically, the surface potential of water can be calcu-
lated by using two popular water models: the ST2@49# and
TIP4P@50#. The reduced dipole and quadrupole moments for
the ST2 and TIP4P water models arem0* 51.85 andm0*
53.68, andQ* 50.19 andQ* 50.78, respectively. It can be
seen thatm0* of the TIP4P model is almost twice larger than
m0* of the ST2 model, andQ* of the TIP4P is almost four
times larger thanQ* of the ST2. Assuming the present DFT
can be extrapolated to treat strongly dipolar-quadrupolar
fluid such as ST2 and TIP4P water models, one would

TABLE I. The 10-90 width of the interfaceW/d, the degree of
orientation orderDh1

, the width ofh1(z) profile Wh1
/d, the degree

of orientation orderDh2
, and the width ofh2(z) profile Wh2

/d for
T* 51.95, and various given (m0* ,Q* ).

(m0* ,Q* ) W/d Dh1
Wh1

/d Dh2
(31023) Wh2

/d

(1,0) 7.19 0.00 0.26 16.69
(0,1) 6.03 0.00 0.47 12.72

(1,0.8) 5.14 1.28 8.79 1.01 11.63
(0.8,1) 4.81 1.61 8.27 1.24 11.06
(1,1) 4.23 2.74 7.36 2.31 8.93

FIG. 7. The scaled temperature (t) dependence of~a! the scaled
quadrupole surface potentialDwq* and~b! the total surface potential
Dw* for various given (m0* ,Q* ). The inset to~a! shows the tem-
perature dependence of the dipole surface potentialDwp* .
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predict that Dwp(TIP4P)/Dwp(ST2).1, Dw(TIP4P)/
Dw(ST2).1, and Dwq(TIP4P)/Dwq(ST2).1. For both
water models,Dw andDwp would have opposite signs. This
prediction will be in qualitative agreement with previous
computer simulation@51# and theory@52# on the spontaneous
surface potential of water@53#.

Fourth, we consider the dependence of the surface tension
on the multipole moment (m0* ,Q* ). The thermodynamical
surface tensions is defined as the excess of the grand po-
tential per unit area

s5~V2Vbulk!/A. ~44!

In Fig. 8~a! we show the dimensionless surface tensions*
[s(d2/e) versusT* for various given (m0* ,Q* ). It can be
seen that for fixedT* , increasingm0* or Q* enlarges the
surface tensions* . It can be also seen thats* is more
sensitive to the change ofQ* thanm0* . Haile et al. @1# de-
veloped a perturbation method to study the effects of aniso-

tropic intermolecular forces on the surface tension. Based on
the Fowler model interface~abrupt vapor-liquid transition!,
they showed that for a given temperature the surface tension
of a pure quadrupolar fluid is higher than that of the purely
dipolar fluid, assuming the value ofm0* is the same asQ*
~see Fig. 2 in Ref.@1#!. Their results are consistent with ours
@Fig. 8~a!#.

In Fig. 8~b! we plot the surface tension versus the scaled
temperaturet for various given (m0* ,Q* ). Because these
surface tension curves do not collapse onto a single master
curve, we conclude that the principle of corresponding states
is not satisfied as far as the surface tension of the dipolar-
quadrupolar fluid is concerned. In contrast, for a purely di-
polar fluid, Teixeira and Telo da Gama@2# find that the sur-
face tensions* does obey the principle of corresponding
states. Near the critical point the surface tension still satisfies
the mean-field scaling relation

s* ;t3/2. ~45!

Finally, we note that the surface tensions* is independent of
the sign ofQ* .

B. Nonzero field

The electric field effects on the interfacial order-parameter
profiles h1(z) and h2(z) are shown in Fig. 9 forT* 51.9
and (m0* ,Q* )5(1,0.8). Figure 9~a! shows that when the
applied field is in the direction from the liquid to vapor~re-
ferred as the positive fieldE* .0), values ofuh1(z)u are
always less than or equal to those if the direction of the field
is reversed~i.e., the negative fieldE* ,0). Note that this
‘‘symmetry breaking’’ behavior by reversing the field direc-
tion never occurs in purely dipolar fluids. In the dipolar-
quadrupolar fluid, however, the positive field induces a local
orientational ordering that offsets the spontaneous ordering
~produced in the zero field! at the interface. On the other
hand, in the case of negative field the field-induced ordering
enhances the spontaneous interfacial ordering. Indeed, as
shown in Fig. 9~b!, the positive field increases values of
h2(z) @compared toh2

(0)(z)] on the vapor side and decreases
h2(z) on the liquid side. In contrast, the negative field re-
ducesh2(z) on the vapor side and enlarges it on the liquid
side. This contrast becomes more pronounced as the magni-
tude of the field becomes greater.

In Fig. 10, we plot thes* -T* curve for three given values
of E* . It can be seen that for fixedT* the electric field
reduces the surface tensions* . However, the reduction in
the surface tension is larger for the negative field~for ex-
ample, when negative charges are put in the liquid! than the
positive field ~when positive charges are put in the liquid!.
This result is consistent with the conclusion about the depen-
dence of the surface tension on the external field for a liquid
having a negative spontaneous surface potentialDwp ~see
Refs.@18,37#!. As an example, forT* 51.9 the positive field
changes the surface tension by about 0.4%, whereas the
negative field changes it by about 1.3%. As a result, the
Gibbs-Volmer critical nucleus formed on a positive-charge

FIG. 8. ~a! Temperature (T* ) and~b! the scaled temperature (t)
dependence of the scaled surface tensions* [sd2/e for various
given (m0* ,Q* ).
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center will be bigger than that formed on a negative-charge
center. As the Gibbs-Volmer critical nucleus is produced via
the thermal fluctuation, the formation of the critical nucleus
on the negative-charge particle will be more probable and the
homogeneous nucleation will proceed faster on negative-
charge condensation centers assuming their quadrupole mo-
mentQ* is positive. If Q* is negative, the reduction in the
surface tension will be larger in the positive field, thereby
promotes faster nucleation on the positive-charge condensa-
tion centers.

V. CONCLUSIONS

We have extended the modified mean-field density-
functional theory@2# to study the bulk and interfacial prop-
erties of a dipolar-quadrupolar fluid in a slab-shaped system.
We have explored the effects of a uniform electric field on

the bulk and interfacial properties of the fluid. Specifically,
we assumed the field is normal to the surfaces of the slab. We
find that increasing the multipole~dipole or quadrupole! mo-
ment will increase the critical temperature and broaden the
vapor-liquid coexistence curve. The enhancement of critical
temperature and broadening of the coexistence curve is more
sensitive to the change in quadrupole momentQ* than the
dipole momentm0* , as also shown in previous work@11,14#.
When a uniform electric field is applied perpendicular to the
surfaces of the slab, we find that the field reduces the critical
temperature and narrows the coexistence curve. We also find
that in the electric field and near the critical temperature the
difference in the coexistence densityr l2rv and order pa-
rameter h1v2h1l both scales as t1/2 @t[1
2T/Tc(m0 ,Q,E)#. For small values ofm0* andQ* , the co-
existence densities satisfy the law of the corresponding
states. The sign of quadrupole momentQ* and field direc-
tion have no effect on the coexistence curve but the order
parameterh1 is dependent on the field direction.

For the planar vapor-liquid interface, even in the zero
field the dipolar-quadrupolar molecules have preferred orien-
tation at the interface. The fact that the order parameter
h2(z)5^P2& is negative on the liquid side and positive on
the vapor side indicates that molecules tend to lie in parallel
with the interface on the liquid side but tend to lie in perpen-
dicular to the interface on the vapor side. Moreover, the fact
that the order parameterh1(z)5^P1& is negative across the
interface indicates that the molecules prefer to point the di-
pole towards the liquid. The interfacial ordering character-
ized by ^P1& is due to the coupling effect of molecular di-
poles and quadrupoles; the ordering is nonexistent for purely
dipolar or quadrupolar fluids. In contrast, the interfacial or-
dering characterized bŷP2& exists even for purely dipolar
and purely quadrupolar fluids. Near the critical point, the
degree of the orientation order described by parameterDh1

approaches to zero ast, and the degree of the orientation
order described by the parameterDh2

ast3/2.

FIG. 9. The order-parameter profile~a! h1(z) and ~b! h2(z)
at the interface forT* 51.9, (m0* ,Q* )5(1,0.8), and various
given E* .

FIG. 10. Temperature (T* ) dependence of the surface tension
s* for (m0* ,Q* )5(1,0.8) in the zero field and in a positive and a
negative field, respectively, with the same magnitudeE* 50.5.
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At a fixed temperature we find that increasing the multi-
polar ~dipolar or quadrupolar! moment will lessen the width
of interfaceW, as well as the widths of the order-parameter
profilesWh1

andWh2
; it will result in a sharp change in the

density profile, increase the degrees of the molecular orders
Dh1

and Dh2
, enhance the surface potential due to quadru-

polesDwq* and the absolute value of surface potential due to
dipolesuDwp* u, and the surface tensions* . Near the critical
point, we find thatDwq* scales ast1/2 ands* ast3/2. These
mean-field scaling relations hold better for small values of
m0* andQ* . We also find that many interfacial characteris-
tics (W, Dh1

, Dh2
, Wh1

, Wh2
, Dw* , and s* ) are more

sensitive to the change of the dimensionless valueQ* than
m0* . Moreover, changing the sign ofQ* has no effects on
the order-parameter profileh2(z) and the surface tension
s* , but it does affect the order-parameter profileh1(z) and
the spontaneous surface potentialDw* .

Finally, we find that at a fixed temperature the applied
electric field reduces the surface tensions* . For a given
positive Q* the reduction in the surface tension due to the
field is greater if the field is in the direction from vapor to
liquid, compared to the field in the opposite direction. This
surface tension dependence on the field direction does not
occur for purely dipolar fluids. We conclude that this appar-
ent ‘‘symmetry breaking’’ by reversing the field direction
suggests a molecular mechanism, without invoking explicit
anisotropic molecular structure, to explain the sign prefer-
ence in droplet formation on charged condensation center.
This can be understood as follows: when a negative charge
~anion! is introduced into a liquid droplet, the anion yields a
negative field, that is, the direction of the field is from vapor
to the liquid droplet. Obviously, the cation counterpart will
yield an opposite positive field from the droplet to vapor.
Since the anion yields a smaller surface tension than the
cation counterpart~assumingQ* .0), the classical nucle-
ation theory@37# should predict that the anion will lead to a
smaller barrier to the droplet formation (DG* ) than the cat-
ion counterpart. Because the rate of heterogeneous nucle-
ation is proportional toe2DG* /kBT, the ion-induced critical
nuclei are more likely to form on negative charged particles.
Consequently, the fluid will have a negative sign preference
in the droplet formation on charged condensation center. On
the other hand, ifQ* ,0, the dipolar-quadrupolar fluid will
have a positive sign preference in droplet formation.
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APPENDIX A

In this section we derive the effective potentialfe f f aris-
ing in Eqs.~15! and~16!. Expressing vectorrW12 in the cylin-
drical coordinates@rW125(R12,z12,w12)#, from Eqs.~13! and
~14! we obtain Eq.~15!, in which fe f f is given by@2#

fe f f~z12,v1 ,v2!5E
0

2p

dw12E
0

1`

R12dR12

3H uper~R12,z12,w12,v1 ,v2!

2
b

2
uper

2 ~R12,z12,w12,v1 ,v2!J .

~A1!

Using the expression foruper @Eq. ~2!#, Eq. ~A1! can be
rewritten as

fe f f~z12,v1 ,v2!5u001udq1uqd1udd1uqq2
b

2
@u00

2 1udd
2

12u00udd12udduqq12u00uqq1uqq
2

1~udq1uqd!
212u00~udq1uqd!

12udd~udq1uqd!12uqq~udq1uqd!#,

~A2!

where the bar notation

ȳ~z12,v1 ,v2![E
0

2p

dw12E
0

1`

dR12R12

3y~R12,z12,w12,v1 ,v2!H~r 122d!.

~A3!

Some terms in Eq.~A2! have been derived before~for
purely dipolar and quadrupolar fluids! and can be found in
Refs.@2,46#:

u005A, udd5BP1P18 , uqq5wqqP2P28 ,

u00
2 5C, u00udd5~H/2!P2P28 ,

udd
2 5~ 16

9 D1 16
3 E!1~ 4

9 D18E2 8
3 F1G!P2P28

1~ 8
9 D2 8

3 E1 1
3 F !~P21P28!,

u00uqq5x00,qq
22 P2P28 ,

uqq
2 ~z,v1 ,v2!5xqq,qq

00 1xqq,qq
22 P2P281xqq,qq

44 P4P48

1xqq,qq
02 ~P21P28!1xqq,qq

04 ~P41P48!

1xqq,qq
24 ~P2P481P28P4!, ~A4!

where the expressions forA, C, B, H (B andH are propor-
tional tom0

2), D, E, F, G (D, E, F, andG are proportional to
m0

4), wqq ~proportional toQ2) are given by Eq.~A14! in Ref.
@2#; the expressions forx00,qq

22 ~proportional to Q2) and

xqq,qq
00 , xqq,qq

22 , xqq,qq
44 , xqq,qq

02 , xqq,qq
04 xqq,qq

24 ~these six func-
tions are proportional toQ4) are given by Eqs.~A10! and
~A14! in Ref. @46# Note that in Eq.~A4! those terms that
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involve cos@n(w12w2)# are not considered here because the
orientation distributionf̂ is independent ofw and thus the
integration overw for those terms vanishes.

Now we present the results for the rest terms in Eq.~A2!.
These terms are due to coupling effects of dipoles and qua-
drupoles. To this end, we write the interaction energyul 1l 2
between the multipoles of orderl 1 and l 2 ~for linear mol-
ecules! as a sum of spherical harmonicsYlm @44#,

ul 1l 2
5

Al 1l 2

r 12
l 311 Ql 1

Ql 2 (
m1 ,m2 ,m3

C~ l 1l 2l 3 ;m1 ,m2 ,m3!

3Yl 1m1
~v1!Yl 2m2

~v2!Yl 3m3
* ~v12!, ~A5!

where um1u< l 1 , um2u< l 2 , m35m11m2 , l 35 l 11 l 2 , Q1
5m0 , Q25Q, C( l 1l 2l 3 ;m1 ,m2 ,m3) are the Clebsch-
Gordan coefficients in the Rose convention@54#, and v12
denotes the orientation of the intermolecular axis in the
space-fixed coordinate system. CoefficientsAl 1l 2

are given
by @44#

Al 1l 2
5

~21! l 2

~2l 311! F ~4p!3~2l 311!!

~2l 111!! ~2l 211!! G
1/2

. ~A6!

We now consider the terms involving multipoles to the
second order. Substituting Eq.~A5! with l 151, l 252 into
Eq. ~A3!, we obtain

upq5
~4p!3/2

71/2
m0Q (

m3523
m11m25m3

3

C~123;m1 ,m2 ,m3!

3Y1m1
~v1!Y2m2

~v2!E
0

1` R12dR12

r 12
4

3H~r 122d!E
0

2p

Y3m3
* ~v12!dw12. ~A7!

Using the relation between the spherical harmonics and as-
sociated Legendre polynomials

Ylm~u,w!5~21!mS ~2l 11!

4p D 1/2S ~ l 2m!!

~ l 1m!! D
1/2

3Pl
m~cosu!eimw,

the relation

Yl ,2m~v!5~21!mYlm* ~v!

and

Pl
2m~x!5~21!m

~ l 2m!!

~ l 1m!!
Pl

m~x!,

and the orthogonal relation*0
2pei (m2m8)wdw52pdmm8 , Eq.

~A7! can be written as

upq~z12,v1 ,v2!58p2m0Q (
m11m250

C~123;m1 ,m2,0!

3Y1m1
~v1!Y2m2

~v2!E
0

1` R12dR12

r 12
4

3H~r 122d!P3~cosu12!. ~A8!

SinceP3(cosu12) in the above integrand is a polynomial of
cosu125z12/r 12 of order 3, the integral in Eq.~A8!
can be reduced to a sum of the integral
*0

1`R12dR12/r 12
n H(r 122d), where n is an integer greater

than 2. Withr 125AR12
2 1z12

2 we obtain

E
0

1` R12dR12

r 12
n

H~r 122d!5
1

~n22! 5
1

dn22
, uz12u<d

1

uz12un22
, uz12u.d.

~A9!

Substituting Eq.~A9! into Eq. ~A8! gives

udq5xdq
12P1P28 , ~A10!

where

xdq
125

pm0Q

d2 H 3S z3

d3
2

z

dD , uzu<d

0, uzu.d.

~A11!

Equations~A5! and ~A6!, and the relationC(213;m2m1m)
5C(123;m1m2m) @44# together result in the relation
ū12(z12,v1 ,v2)52ū21(z12,v2 ,v1). Thus,

uqd52xdq
12P18P2 . ~A12!

A derivation of u00(udq1uqd) is straightforward because it
has the same angular dependence as(udq1uqd), that is

u00~udq1uqd!5x00,dq
12 ~P1P282P18P2!, ~A13!

where

x00,dq
12 52e

pm0
2Q2

d2
72A19

7 5
5

11

z3

d3
2

1

3

z

d
, uzu<1

4

33

zd8

uz9u
, uzu.d.

~A14!

Derivation of other terms, udduqq, (udq1uqd)
2,

udd(udq1uqd), and uqq(udq1uqd) requires the expression

of ul 1l 2
ul

18 l
28
. Substituting Eq.~A5! twice into Eq.~A3! and

taking the integration over the anglew12 yields
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ul 1l 2
ul

18 l
28
5Al 1l 2

Al
18 l

28
Ql 1

Ql 2
Ql

18
Ql

28
@~2l 311!~2l 3811!#1/2

2 (
m352 l 39

l 39 F ~ l 32m3!! ~ l 382m3!!

~ l 31m3!! ~ l 381m3!!
G 1/2

3C~ l 1l 2l 3 ;m1 ,m2 ,m3!C~ l 18l 28l 38 ;m18 ,m28 ,2m3!Yl 1m1
~v1!Yl

18m1
* ~v1!Yl 2m2

~v2!Yl
28m2
* ~v2!

3E
0

1` R12dR12

r
12
l 31 l 3812

H~r 122d!Pl 3

m3~cosu12!Pl
38

2m3~cosu12!, ~A15!

where m11m25m3 , m181m2852m3, and l 395min(l3,l38).

Pl 3

m3(cosu12)P
l
38

2m3(cosu12) are polynomials of cosu12

5z12/r 12 with the highest orderl 31 l 38 . With the necessary
l 1 , l 2 , l 18 , l 28 , Eq. ~A9! and some relevant relations for the
Clebsch-Gordan coefficients and spherical harmonics@44#,
all the requiredul 1l 2

ul
18 l

28
can be obtained after some lengthy

algebraic manipulation. The results are detailed below:

udduqq5xdd,qq
11 P1P181xdd,qq

33 P3P381xdd,qq
13 ~P1P381P18P3!,

~A16!

where

xdd,qq
11 52

pm0
2Q2

d6

3

5 5
9

5

z2

d2
2

4

5
, uzu<d

d6

z6
, uzu.d,

xdd,qq
33 52

pm0
2Q2

d6

3

80

35 350
z6

d6
2580

z4

d4
1

1239

5

z2

d2
2

84

5
, uzu<d

d6

z6
, uzu.d,

xdd,qq
13 52

pm0
2Q2

d6

3

205 10
z4

d4
2

51

5

z2

d2
1

6

5
, uzu<d

d6

z6
, uzu.d;

~A17!

~udq1uqd!
25xdq,dq

00 1xdq,dq
11 P1P181xdq,dq

22 P2P28

1xdq,dq
33 P3P381xdq,dq

02 ~P21P28!

1xdq,dq
04 ~P41P48!1xdq,dq

13 ~P1P381P18P3!

1xdq,dq
24 ~P2P481P28P4!, ~A18!

where

xdq,dq
00 5

pm0
2Q2

d6

2

3 H 1, uzu<d

d6

z6
, uzu.d,

xdq,dq
11 5

pm0
2Q2

d6

3

505 50
z6

d6
284

z4

d4
145

z2

d2
14, uzu<d

15
d6

z6
, uzu.d,

xdq,dq
22 5

pm0
2Q2

d6

1

6 5
108

7

z4

d4
218

z2

d2
14, uzu<d

10

7

d6

z6
, uzu.d,

xdq,dq
33 5

pm0
2Q2

d6

3

100

35 375
z6

d6
2600

z4

d4
1

513

2

z2

d2
24, uzu<d

55

2

d6

z6
, uzu.d,

xdq,dq
02 5

pm0
2Q2

d6

17

425
9

5

z2

d2
2

4

5
, uzu<d

d6

z6
, uzu.d,

xdq,dq
04 5

pm0
2Q2

d6

1

6 5
9

2

z4

d4
2

135

28

z2

d2
1

9

14
, uzu<d

9

28

d6

z6
, uzu.d,
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xdq,dq
13 5

pm0
2Q2

d6

3

505
25

2

z6

d6
19

z4

d4
2

75

4

z2

d2
11, uzu<d

15

4

d6

z6
, uzu.d,

xdq,dq
24 5

pm0
2Q2

d6

1

6

35
225

4

z6

d6
2

1305

14

z4

d4
1

1593

40

z2

d2
2

27

10
, uzu<d

9

56

d6

z6
, uzu.d;

~A19!

udd~udq1uqd!5xdd,dq
01 ~P182P1!1xdd,dq

03 ~P382P3!

1xdd,dq
12 ~P28P12P18P2!1xdd,dq

23

3~P2P382P28P3!, ~A20!

where

xdd,dq
01 52

pm0
3Q

d5

2

5

12

5 5
z

d
, uzu<d

d5

z5
, uzu.d,

xdd,dq
03 52

pm0
3Q

d5

1

105 5
z3

d3
24

z

d
, uzu<d

d5

z5
, uzu.d,

xdd,dq
12 5

pm0
3Q

d5

1

105 6
z3

d3
24

z

d
, uzu<d

2
d5

z5
, uzu.d,

xdd,dq
23 52

pm0
3Q

d5

1

105 90
z5

d5
2127

z3

d3
138

z

d
, uzu<d

d5

z5
, uzu.d;

~A21!

and

uqq~udq1uqd!5xdq,qq
01 ~P182P1!1xdq,qq

03 ~P382P3!

1xdq,qq
12 ~P1P282P18P2!1xdq,qq

14 ~P1P48

2P18P4!1xdq,qq
23 ~P2P382P28P3!

1xdq,qq
34 ~P3P482P38P4!, ~A22!

where

xdq,qq
01 52

pm0Q3

d7

3

10

35 5
z7

d7
2

19

2

z5

d5
15

z3

d3
1

5

4

z

d
, uzu<d

7

4

d7

z7
, uzu.d,

xdq,qq
03 52

pm0Q3

d7

3

10

35 25
z7

d7
1

19

2

z5

d5
23

z3

d3
2

3

4

z

d
, uzu<d

3

4

d7

z7
, uzu.d,

xdq,qq
12 5

pm0Q3

d7

3

35

35 25
z7

d7
2

95

2

z5

d5
137

z3

d3
2

43

4

z

d
, uzu<d

15

4

d7

z7
, uzu.d,

xdq,qq
14 5

pm0Q3

d7

9

280

35 125
z7

d7
2

335

2

z5

d5
137

z3

d3
1

9

4

z

d
, uzu<d

2
13

4

d7

z7
, uzu.d,

xdq,qq
23 52

pm0Q3

d7

3

35

35 225
z7

d7
185

z5

d5
277

z3

d3
1

39

2

z

d
, uzu<d

5

2

d7

z7
, uzu.d,
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xdq,qq
34 5

pm0Q3

d7

18

560

35 755
z7

d7
2

2859

2

z5

d5
1791

z3

d3
2

439

4

z

d
, uzu<d

27

4

d7

z7
, uzu.d.

~A23!

To expressfe f f in the form of Eq.~16!, we insert Eqs.
~A4!, ~A10!, ~A12!, ~A13!, ~A16!, ~A18!, ~A20!, and~A22!
into Eq. ~A2!. With some arrangement and expressing the
outcome as an expansion ofPi Pk8 terms, we obtain Eq.~16!
in which coefficientsf ik are given by

f005A2~b/2!~C1 16
9 D1 16

3 E1xdq,dq
00 1xqq,qq

00 !,

f115B2~b/2!~xdq,dq
11 1H12xdd,qq

11 !,

f225wqq2~b/2!~xdq,dq
22 1 4

9 D18E

2 8
3 F1G12x00,qq

22 1xqq,qq
22 !,

f3352~b/2!~xdq,dq
33 12xdd,qq

33 !,

f4452~b/2!xqq,qq
44 ,

f0152b~xdd,dq
01 1xdq,qq

01 !,

f0252~b/2!~ 8
9 D2 8

3 E1 1
3 F1xdq,dq

02 1xqq,qq
02 !,

f0352b~xdd,dq
03 1xdq,qq

03 !,

f0452~b/2!~xdq,dq
04 1xqq,qq

04 !,

f125xdq
122b~x00,dq

12 1xdd,dq
12 1xdq,qq

12 !,

f1352~b/2!~xdq,dq
13 12xdd,qq

13 !,

f1452bxdq,qq
14 ,

f2352b~xdd,dq
23 1xdq,qq

23 !,

f2452~b/2!~xdq,dq
24 1xqq,qq

24 !,

f3452bxdq,qq
34 . ~A24!

Here, thef ik(z) coefficients are those withi<k. We can
introduce thef ik(z) coefficient for k. i , such thatf ik(z)
5fki(z). Note that all the coefficients satisfy the condition
f ik(z)5(21)( i 1k)f ik(2z).

APPENDIX B

In this section, we present a list of the calculated integral
F ik5*2`

1`f ik(z)dz which is required to deduce Eqs.~27!
and ~29!:

F015F025F035F045F125F145F235F245F3450,

~B1!

F0052
16

3
ped3H 11

e

kBT S 2

3
1

1

12

m0
4

e2d6

1
3

20

m0
2Q2

e2d8
1

3

20

Q4

e2d10D J , ~B2!

F115
8

3
pm0

2S 12
243

875

Q2

kBTd5D ,

F225
4

3

p

kBTd3 S 1

15
m0

42
3

35

m0
2Q2

d2
1

12

49

Q4

d4 D ,

F3352
108

175
p

m0
2Q2

kBTd5
,

F135
48

875
p

m0
2Q2

kBTd5
. ~B3!
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