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A Synthesis for Testability Scheme for Finite
State Machines Using Clock Control

Kent L. Einspahr, Shashank K. Mehta, and Sharad C. Seth

Abstract—A new method is proposed for improving the testa-
bility of a finite state machine (FSM) during its synthesis. The
method exploits clock control to enhance the controllability and
observability of machine states. With clock control it is possible
to add new state transitions during testing. Therefore, it is easier
to navigate between states in the resulting test machine. Unlike
prior work, where clock control is added to the circuit as a post-
design step, here, clock control is considered in conjunction with a
symbolic scheme for encoding the states of the FSM. The encoding
is shown to result in significant reductions in the interstate
distances in the benchmark FSM’s. Further, the observability
of the encoded states can be improved by adding two primary
outputs to the circuit such that a fixed input sequence forms a
distinguishing sequence for all states. Theoretical results show
that for a large class of FSM’s, the testability improvements are
comparable to those achievable by scan designs. Experimental
results show that available test pattern generation tools are able
to take advantage of the enhanced testability in producing shorter
test sequences, particularly for machines with poor connectivity
of states.

Index Terms— Automatic test pattern generation (ATPG),
design-for-testability (DFT), test synthesis, testing

I. INTRODUCTION

T HIS paper proposes a new technique for improving the
testability of a finite state machine (FSM) during its

synthesis. The technique exploits the clock-control concept
[2] to enhance the controllability and observability of machine
states. With clock control it is possible to augment the orig-
inal state transition graph (STG) with new transitions during
testing. The resultingtest machinecan, therefore, have a better-
connected STG, making it easier to navigate between states.
Prior work on clock control has mainly been concentrated
on using it as a design-for-testability (DFT) tool [3], [7]–[9],
[17]. Here, clock control is employed in conjunction with a
symbolic state encoding scheme (calledsplit-coding) to serve
as a synthesis-for-testability (SFT) method. The synthesized
circuits are shown to have shorter test sequences than the
circuits synthesized without clock control.

Furthermore, these gains are achievable by standard se-
quential automatic test pattern generation (ATPG) tools. In
the proposed scheme, the test machine embeds the STG
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of the original FSM. The embedding concept has appeared
before (see [4]–[6], and [11]) but has not been explored
in the context of state assignment and clock control. The
distances between the states can be reduced by adding new
transitions between distant states [11], [17], but this approach
may entail significant logic overhead. Instead, we propose to
effect new transitions by simply disabling the clock to a group
of flip-flops (FF’s) in the circuit. The resulting scheme affords
state controllability comparable to scan designs. The idea of
disabling the clock has been used before in BALLAST [16]
which is a DFT scheme applicable to pipelined circuits with
limited feedback and feedforward connections. In contrast, the
work proposed here represents a SFT technique for circuits
with behavior described by FSM’s.

A potential advantage of the proposed scheme over scan
is that efficient navigation between states is possible without
entering illegal (nonfunctional) states. Test pattern generators
may exploit this feature by discarding the faults that require
entering an illegal (nonfunctional) state for their detection as
such faults are functionally-redundant.

The state observability is improved by judiciously adding
two primary outputs to the circuit such that a fixed input
sequence forms a distinguishing sequence (DS) for all (split-
coded) states. The DS is of length 1 where is
the number of valid states, and returns the good machine to
the state at the beginning of the sequence. The latter property
can be very helpful in reducing the test length in circuits with
poor observability.

The proposed technique can be used directly to enhance
the testability of FSM controllers with and without data paths.
Usually, data paths have good controllability and observability
and are easier to test than controllers [13]. Therefore, the focus
here on simplifying test generation for a FSM controller is
justified.

Preliminary ideas related to this work were reported earlier
[14]. The original approach has been substantially extended to
apply to arbitrary FSM’s and extensive experimental results
have been added in support of its usefulness.

The rest of the paper is organized as follows. Section II
provides the background on clock control to enhance state
controllability. This is followed in Section III by a formal
definition of split-codes that form the basis for the state
assignment using clock control. Several properties of the split-
codes relevant to our work are also discussed. Section IV
shows how split-codes can be used in state assignment so as to

1In this paper, logN will always be assumed to belog
2
N:
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improve navigation between states through clock control. Two
schemes for implementing the clock control are also described
in this section. For some circuits with poor observability it may
not be enough to improve controllability of states, therefore,
Section V proposes a scheme to enhance the state observ-
ability. Section VI provides experimental data in support of
the theoretical results in Sections IV and V and concluding
remarks appear in Section VII.

II. STATE CONTROLLABILITY AND TWO CLOCK APPROACH

Time-frame-based test generation is an iterative process in
which, after an uncovered fault is chosen as target, the test
generator passes through two phases: thestate controlphase
wherein a search is made for an input sequence that takes the
circuit to a state in which the fault can be excited, and the
state observationphase wherein a search is made for an input
sequence which propagates the fault effect to a primary output.
The state controllability of a FSM refers to the ease with
which the test generator can navigate to the desired state. The
better the connectivity of the STG, the easier is the navigation.
Thus, the controllability of a FSM can be improved by adding
new transitions to its STG during testing. The well-known
DFT methods, such as scan and partial-scan, can be viewed
as improving controllability by improving the connectivity
of the STG. Other suggestions along the same line include:
adding new transitions to the STG [1], [10], [12], adding new
(illegal) states and transitions to the STG [15], adding reset
to a “central” state to minimize interstate distances [11], and
using clock control [2], [8], [14]. The clock control technique
is further elaborated in this section as it forms the basis for
this paper. We shall return to the issue of state observability
in Section V.

A. Clock Control

The basic idea of clock control is to divide the FF’s in
the circuit into two or more groups and disable the clock to
some groups of FF’s during testing. For simplicity of design
and test application, a fixed grouping of FF’s is preferable.
The normal circuit behavior is realized by enabling the clock
to all FF groups. However, during testing, new transitions
may be realized because the states of the FF’s in the disabled
group(s) cannot change. As an example, suppose that the FF’s
are divided into two groups and and that it is possible
to independently control the clock signals, and to the
two groups. Fig. 1(a) schematically shows how new transitions
may result from a normal transition because of the clock
control. Assume that the assigned state changes to
the assigned state under some input in the original
FSM, where and denote the values of the corresponding
group of FF’s. When is disabled in a test mode,
the new state under the same initial state and input would be

When the clock to both groups is disabled,
the current state of the circuit will be held. Because the clock
to each group is being independently controlled, two binary
control signals are required in this example.

In the general case, a circuit withFF groups will have
clock-control modes, which is the number of subsets of the

(a)

(b)

Fig. 1. State transitions under clock control.

groups that may be turned off. Thus, each transition in the
original FSM generates a spectrum of transitions, one for
every clock-control mode. The circuit will requireadditional
controls, one for each FF group. In this paper we restrict
discussion to just two FF groups and assume the clock control
of only one group. Specifically, it is assumed that a control
signal, , either enables or disables the
clock to the group of FF’s; the clock to the group of FF’s
is assumed to always be active. The transitions in the two clock
modes and will be denoted, respectively, as

-transitions and -transitions, as shown in Fig. 1(b). Both
of these modes will be assumed to be available during testing
and the termtest machinewill be used to refer to the FSM
which includes both the and transitions in its STG.
Normal machineor original machinewill refer to the STG
consisting only of the original transitions.

Fig. 2(a) shows an example STG of a modulo-4 counter
under two-clock control. Here, the first bit corresponds to the

group and the second bit corresponds to thegroup. The
transitions corresponding to the normal counter

function are shown in solid and the-transitions
are shown by broken lines. Because of the addition of the
latter transitions, the worst-case distance between two states
is reduced from 3.0 to 2.0 and the average distance between
two states is reduced from 1.5 to 1.125.

B. The Role of State Assignment Versus FF Partitioning

Consider again the example of the modulo-4 counter im-
plemented with two-clock control, but this time with the state
assignment shown in Fig. 2(b). In this case, the test machine
turns out to have the same maximum and average interstate
distances as the original counter, i.e., 3.0 and 1.5, respectively.
This shows that the effectiveness of the two-clock approach
not only depends on the FF partitioning but also on the state
assignment.

FF partitioning by itself is a design-for-testability scheme
which, like scan, can be applied to an existing design, i.e.,
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(a)

(b)

Fig. 2. Test machine of modulo-4 counter.

after the design and synthesis have taken place. Alternatively,
clock control can be considered at the time of state assignment
as a SFT scheme. In the latter case, the state assignment as
well as the FF partitioning can be optimally determined for
maximum reduction in the interstate distances. In the case of

FF’s there are ways to partition the FF’s. But the
presynthesis options are much larger in number. There are
ways to assign a binary code to the states (assumingstates)
and for each state assignment there are ways to partition
the FF’s. It is natural to ask whether the choices under the DFT
scheme (FF partitioning only) are sufficient to improve the
controllability. Although it is difficult to answer this question,
the following examples show that for some state assignments
only negligible improvement is possible, no matter how the
FF’s are partitioned.

Consider a modulo- counter in which the
states are connected in the cycle: The
average distance between two states in the original counter
is For the first example, assume that successive
states of the cycle are assigned the successive Gray codes.
Irrespective of how the FF’s are partitioned, either the-bits
or the -bits of state and will be the same
for all because successive Gray codes differ in only one
bit. The -transition will either loop back to the initial state of
the transition or coincide with the corresponding-transition
[see Fig. 2(b)]. Thus, the distances between the states in the
original STG and the test machine will be identical.

For the second example, consider the binary number encod-
ing in the modulo-N counter, i.e., the binary code of number
is assigned to state with FF’s ordered as If we
are restricted to partitions and
for an arbitrary then the average distance cannot be re-
duced to less than in the test machine. For proof
see Observation 2 in the Appendix. This reduction can be
considered negligible compared to that due toscanningwhere

the distance between the states in the test machine is
In this paper, we present a state encoding calledsplit-coding
which ensures distance between the states in the
test machine for a large class of circuits synthesized with two
clocks.

III. SPLIT-CODES

In order to motivate the definition of split-codes, we make
certain simplifying assumptions which will be relaxed later.
Assume the FSM under consideration has states,
where and are integers, , and the states of the ma-
chine are connected in a Hamiltonian cycle (HC) of transitions.
The objective of split-coding is to allow the implementation
of a test machine with desirable state controllability. If we
squeeze the successivestates in the cycle intosuper nodes,
then the test machine defined by the split-code will reduce
to the barrel shifter network. In this network all the super
nodes are in a directed cycle and further, each super node is
directly connected to the super nodes at distancefor all

In this network, the maximum distance between nodes is
and within a super node, the split-code ensures

that the maximum distance between states iswhich can be
chosen to be Fig. 3 (presented later in this section)
illustrates the super nodes SN0,, SN3 for a specific example
discussed below.

A split-code, is defined for any pair of integers:
It is a sequence of pairs of integers

where and
defined recursively by

1) ;
2) , , ,

for all

Simplification of the expression for , leads to
the equation (proved as Observation 4 in the Appendix)

This observation establishes that
so there are only distinct pairs, namely,

Table I shows
the elements of Refer to the Appendix for a rigorous
definition and properties of split-codes.

For notational simplicity, arithmetic operations on the values
of and will be understood to be modulo-and modulo- ,
respectively. Similarly, arithmetic operations on the indexes of

will be understood to be modulo-

A. A Property of Sequences

We present a result on the split-code sequences which will
be used to show the bound on the distances between
the states in the test mode for a large class of circuits when
synthesized with two clocks. For convenience, we first define
the notions ofunit-stepand unit-step sequence.

Definition: The following pairs of code-pairs, for all, will
be calledunit-steps:

1) -step: ;
2) -step:
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Fig. 3. �� (solid) and� (dashed) transitions forS(3; 2):

TABLE I
THE SPLIT-CODE FOR m = 3; k = 2

Definition: A sequence
will be called aunit-stepsequence if each pair of successive
elements, , is a unit-step -step or

-
Theorem 1: For any sequence of successive code-pairs of

there exists a unit-step sequence

with Further, this sequence is contained in
The desired sequence is constructed in two steps. First,

an -step sequence is constructed from to
which is the first code starting from such that
Second, a unit-step sequence of lengthis constructed which
transforms to Since the length of the first subsequence
cannot exceed , the total length is bounded by
Refer to the Appendix for a proof.

Example: For the split-code shown in Table I, let
and A possible unit-step sequence is

The successive steps in this unit-step sequence are, , ,
and .

Fig. 3 illustrates possible - and -steps for by the
solid and dashed edges, respectively. The super node concept
described earlier is also shown by grouping the successive

states.

B. Parameters m and k

In Section IV we illustrate how binary codes are generated
for the states of a FSM using a split-code. As preparation
toward that end, we discuss here how the parameters of the
split-code are selected. Since the total number of pairs in

is it is necessary that this number is at least as
large as the number of states. Thus, two necessary conditions
for any pair of parameters are as follows:

C1) (by definition of ;

TABLE II
OPTIMUM PARAMETERS FORN � 3072; WITH m = maxfk; dN=2keg

C2) where denotes the number of
states.

We shall also see in the next section that the choice of m
will determine the bound for the interstate distance in the test
machine. Thus two desirable conditions for the parameters to
satisfy are as follows:

D1) , i.e., the split-code-based
assignment could be done with bits;

D2) .
The following observation shows that, for any integer,

parameters can be chosen that satisfy conditionsand at
least one of the conditions

C. Observation 1

1) For any positive integer there exist integers and
satisfying such that:

a) ;

b) .

2) For any positive integer there exist integers and
satisfying , such that:

a) ;

b) .

It is interesting to note that, for optimum
parameters satisfy conditions D1 and D2. Table II shows
how to determine the optimum values of the parameters for

For example, if , then (from
the table) and

This choice of parameters ensures that split-
code-based encoding can be accomplished with a minimum
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TABLE III
STATE ASSIGNMENT FOR MODULO-10 COUNTER USING SPLIT-CODING

Fig. 4. Modulo-10 counter: split-code-based state assignment with added
transitions shown by broken lines.

possible number of bits because condition D1 is satisfied as

Also, condition D2 is satisfied as follows:

IV. SYNTHESIS WITH SPLIT-CODES

In this section we describe the split-code assignment to the
states of an arbitrary STG, reducing the distances between the
states in the test machine and improving the state controlla-
bility. We begin with an example of state assignment for a
modulo-10 counter using the split-code (see Table I).
Subsequently, we address the state assignment problem for
arbitrary FSM’s.

A. Example of State Assignment with Split-Codes

Split-code state encoding is performed in two steps. In
the first step, the split-code code-pairs are assigned to the
successive states in the cycle as shown in Table III. In the
second step a binary assignment is generated by arbitrarily
assigning binary codes to’s and ’s. Fig. 4 illustrates the
binary state assignment to the modulo-10 counter when
values are encoded as 0:00, 1:11, and 2:01 andvalues
are encoded as 0:11, 1:01, 2:10, and 3:00. The figure shows
the STG of the test machine where solid arrows represent

-transitions and broken arrows represent-transitions. The
maximum and the average distances between the states in
the normal machine (solid arrows only) are 9.0 and 4.5,
respectively; the distances reduce to 6.0 and 2.7, respectively,
when the -transitions are added. Observe that the new
transitions depend only upon the split-code assignment to the
states, i.e., the first step. Thus, the distances between the states
in the test machine are independent of the choice of binary
encoding of the and components, although this choice
can affect the complexity of the synthesized logic.

B. State Assignment

In the example above we observe that the topology of the
test machine depends only upon the normal machine topology
and the split-code assignment; it does not depend on the binary
encoding of and components. To understand how the split-
code pairs are assigned to the states, let us first assume that
the STG has a HC: Let us further assume
that for some suitable values of the parameters. If
each state is assigned the code-pair , then every -
step coincides with a transition in the normal machine. Thus,
every unit-step coincides with a transition in the test machine.
Consequently, every unit-step sequence is a path in the test
machine. From Theorem 1 and Observation 1, there must exist
a path of length between any pair of states. This
observation regarding the ideal case leads to the following
criterion for the state assignment in the general case: The
number of -steps that do not coincide with the transitions
in the normal machine should be minimum.

A formal description of the state assignment algorithm is
as follows.

1) Find a minimum nonintersectingpath-cover, i.e., a set of
nonintersecting paths,

etc., covering all states in the STG
of the given FSM.

2) Determine optimum values of parametersand from
Table II.

3) Assign code-pair to state for all
4) Independently assign binary codes to the elements

of the and fields, and
, respectively.2

This method of state assignment results in the minimum
number of -steps that do not coincide with transitions in
the normal machine because the number of such steps is equal
to the number of paths in the path-cover.

C. State Controllability

One of the consequences of the split-code assignment algo-
rithm given above is that each path,, used in the assignment
is a sequence of nodes with successive code-pairs. Application
of Theorem 1 to any path of the cover readily leads to the
following result.

Theorem 2: In a sequential circuit synthesized as described
above, if states and belong to the same path (of the
path-cover) with , then in the test machine there exists a
path from to of length no more than Further,
this path is confined to the states of

Proof: By construction, all -steps coincide with
transitions of the original STG, except the -steps

2A state assignment method, such as [18], that attempts to optimize logic
can be developed for this step. However, in this paper arbitrary binary codes
are assigned to the elements of the� and� fields.
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for all which are associated with the end nodes of the paths.
Consequently, the corresponding-steps also coincide with
transitions in the test machine. Thus, the unit-step sequence
promised in Theorem 1 is a path in the test machine.

Recall Observation 1 in Section III which ensures that the
parameters can be chosen so thatis less than or equal to

Therefore, the length of the path from to will
be bounded by This result has a significant
implication for the FSM’s which have a HC in their STG. It
is noteworthy that of the 53 MCNC benchmarks, 16 STG’s
have a HC and, in the remaining STG’s, only a very small
number of additional edges need to be added to achieve the
same property [14].

Corollary: If the path cover is a HC, then there exists a
path from any state to any state of length no more than

in the test mode. Furthermore, this path does not leave
the functional states of the FSM. The average length of the
path between the states will be

Proof: From Theorem 2, if , then there is a path
of length no more than If , then the path is
constructed in three steps because
is not a unit step (unless The path is the
concatenation of the following:

1) a path from to of length less than (assured
by the theorem);

2) a transition from to (since it is a HC);
3) a path from to which is less than in length

(from Theorem 2).

Thus, the total length of the path is less than

D. Implementation of Two-Clock Control

As mentioned in Section II, a new input,, is required
to enable or disable the clock to the FF’s. Two possible
implementations of this function are as follows.

The first approach is direct and affects the clock-distribution
logic. In this approach, the input is used to control a tri-state
buffer along the path from the clock source to each FF in the
group, see Fig. 5(a). No timing penalty and only a small area
penalty will be involved in such an implementation. However,
because of its impact on the clock-tree design, the approach
may not be readily acceptable to the designers.

The second way of implementing the clock control does
not affect clock distribution. Instead, the control signalis
connected as the select input of a two-input mux feeding each
FF in the group [see Fig. 5(b)]. When , the normal
data input is steered to the FF input; when , the FF
state is recirculated through the mux. The overhead of this
scheme is somewhat similar to scan, however, there may be
less area/time penalty because, unlike scan, one of the inputs
to the mux is internal to the mux-FF combination.

V. OBSERVABILITY

The preceding section was devoted to the synthesis of
circuits using split-coding to improve the state controllability
during testing. In this section we develop a method to improve
the observability of a circuit which is synthesized using a split-

(a)

(b)

Fig. 5. Implementations of clock control.

code. As in the case of state controllability, the method is ideal
for FSM’s with HC but is also quite effective, in general.

In Section II we observed that in the second phase of each
iteration a test generator tries to propagate the fault effect to
a primary output. If the fault effect cannot be propagated to
the output in the current time frame, it may be necessary to
propagate the fault effect to one or more secondary outputs
in the current time frame and propagate the effect from the
state line(s) to a primary output in subsequent time frames. In
general, the second phase requires a search for an input vector
sequence which can distinguish (through the output sequence)
between the target state in the good and the faulty machines.
An input sequence which can identify a state from all other
states is called adistinguishing sequence(DS). A circuit will
have high state observability if it has a short DS for all of
its states.

The observability of a circuit does not depend on the state
assignment during synthesis; rather, the DS is a characteristic
of the underlying STG. There are two ways to improve the
state observability of a FSM: 1) add new transitions between
the states of the STG with carefully chosen outputs, and
2) expand the observation space, i.e., add new output bits
and prudently choose their values for every transition (Mealy
outputs are assumed here). The former is possible only when
there are input patterns not used in the specification of the
FSM. In this paper we focus only on the second option.

The objective of improving the state observability is to
determine the state identity using a short DS while incurring
minimal additional hardware cost. We present a method to
achieve this goal by adding two new primary outputs,
and (see Fig. 6). As suggested in [15] and elsewhere,
these outputs may be multiplexed with other available outputs
without incurring any pin overhead. In synthesizing the circuit
with a split-code, the DS should generate enough information
to identify the and values of the code assigned to the
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Fig. 6. Logic to enhance observability.

initial state. To do this, we define (the th bit of
and (i.e., when

As discussed in Section IV, when the normal machine of the
FSM has a HC and , all unit steps are transitions
in the test machine. Consider successive -step transitions
from an arbitrary state with the code where values of

and for each transition are shown above the arrow

Observe that the value of is where occurs at
the th position in the sequence. Also note that the sequence
of values is the result of right circular shifts of -
reverse (i.e., Therefore, these outputs uniquely
identify the initial state leading to the conclusion that
successive -step transitions constitute the DS for any state.
For example, in the modulo-12 counter encoded with
the output of the DS from state is

In this example occurs at step two (counting from
zero), i.e., Thus, Further,

-reverse can be obtained by left circular shifts
on the output sequence of , i.e., 101. So -reverse ,
and . Therefore, the initial state is correctly
determined to be

The advantage of this DS is that its length is m (approxi-
mately for all states. In other words, it is short and
identical for all states. Furthermore, the characteristic that it
returns to the initial state could be useful for some applications.
Although this sequence is a DS only in ideal circuits (with
HC and , it provides significantly improved state
observability in the general case, as we shall see in the next
section.

VI. EMPIRICAL EVALUATION OF THE METHOD

To evaluate the impact of the suggested method of circuit
synthesis on testing, two experiments were performed on the
MCNC benchmark FSM’s. The objective of the first experi-
ment was to compare the shortest distances between states in
the STG’s of the original and the test machines. The change
in shortest distances was expected to provide a measure of the
improvement in state controllability, independent of a specific
automatic test pattern generation (ATPG) system. The second

experiment involved the use of existing ATPG programs on
circuits synthesized with and without testability enhancements.
The objective was to determine the extent to which such
programs can exploit the improved state controllability and
observability to produce shorter test sequences for clock-
controlled circuits.

The 53 MCNC FSM benchmarks were considered for the
experiments. Of these, ten were eliminated for the following
reasons: four FSM’s had a dead state (ex2, ex3, ex5, ex7),
three (bbsse, scf, sse) had more than one unreachable state
(if there was only one such state it was turned into an
explicit reset state), two FSM’s (donfile, s1a) reduced to
combinational circuits when synthesized, andplanet1 was
indistinguishable fromplanet. Experiments were done with
the remaining 43 FSM’s.

As discussed in Section IV, split-code code-pairs were
assigned to states by computing a path cover for the states.
First, a HC was computed in the FSM by temporarily adding
the fewest possible edges; the added edges were subsequently
dropped after this step. Starting at a randomly selected state,
successive split-code code pairs were assigned to the states in
the order of their appearance in the HC.

Path covers were generated for all 43 FSM’s tested. The
following list summarizes the results in terms of the number
of benchmarks and, within parentheses, the number of edges
required to form a HC: 13 (0), 12 (1), 4 (2), 6 (3), 4 (4),
and The list shows that in less than 10% of the cases
the path cover required more than four paths. Further detailed
analysis of the results shows no apparent relationship between
the percentage of the extra edges required and the number of
machine states.

A. Shortest Distance Analysis

The shortest distance was computed between every pair of
distinct states in the normal machines and the test machines
with the assumption that the shortest distance between a
state and itself is zero. Table IV shows the average and the
maximum shortest-distances between the states in the STG’s
of the original machine and the test machine (i.e., the machine
with transitions). The numbers within parentheses express
the percentage reduction (Red) in the distance. For reference,
the number of states and transitions are also shown for each
original FSM.

The magnitude of reduction in the distances between the
states should depend on the connectivity of the original FSM.
Greater improvement should be expected in graphs with poorer
connectivity. In the directed cycles (which are the strongly
connected graphs with poorest connectivity), if one outbound
edge can be added from each state to any other state, then
the average case shortest-distance between the states can be
reduced, at best, to , where is the number of
states in the FSM. To put the results in this context we also
show the average distance as a multiple of

We only report the results for FSM’s with greater than 14 states
because the results for small FSM’s are difficult to interpret.
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TABLE IV
COMPARISON OF SHORTEST DISTANCES

Table IV shows that the normalized average distance re-
duces to less than one in all cases. This indicates that the
method is as effective in reducing the interstate distances as
a method that adds edges by analyzing the STG topology.
The entries of the table are sorted based on the normalized
average distance in the original STG to highlight the fact that
graphs with poorer connectivity (higher value) show greater
reduction in the distances.

B. ATPG Performance on Circuits Synthesized
with and Without Testability Enhancements

1) Circuit Synthesis:Four different circuits were synthe-
sized for each FSM as follows:

a) usingjedi (distributed withsis) with algorithmic option
o;

b) using split-coding without clock control;
c) using split-coding with clock control using multiplexers;
d) using split-coding (with clock control) and the additional

logic for observability enhancement.

In all four cases, synthesis was performed using therugged
(area optimization) script. The first circuit, therefore, would
be the one obtained by a designer using the synthesis system
in the standard way.

The split-code assignment for the synthesis of the second
circuit of each FSM is described in the beginning of this
section. The states were encoded in binary by randomly
assigning codes to the’s and ’s. No attempt was made
to optimize these codes in order to obtain a minimum area
of the synthesized circuits. Although this second circuit of
each FSM was synthesized with the split-code assignment, no
multiplexers were added for clock control. Consequently, the
functionality of the -steps of the split-code was not utilized.

The purpose of presenting this set of results is to provide a
baseline for the FSM’s when the-steps are utilized.

The third circuit for each FSM was synthesized using the
same split-code assignment as in the second circuit. However,
in the third circuit the -steps are utilized by inserting a
multiplexer to control the -bits.

The fourth circuit for each FSM was synthesized to include
observability enhancement in addition to split-coding (with
clock control) as described in Section V. Since the added
primary outputs, and , are dependent on the state code,
it was necessary to assign codes to the states before specifying
the new outputs. Using the same state assignment as the second
and third circuits, the specifications of and were added
to the FSM specifications. The circuit was synthesized from
the enhanced specification which led to the absorption of the
added logic into the circuit.

2) Test Generation:For each FSM, test sequences were
generated usingatpg andshort_tests(packages available with
sis) for the four synthesized circuits. In each case, complete
tests (100% fault efficiency) were generated.

Table V gives the performance ofshort_testson the four
circuits synthesized for each FSM. These circuits are identified
in the table header byjedi, split-code wo/clk-cntrl, split-code
w/clk-cntrl, and split-code obs. There are three column
entries for each circuit, providing information about the total
number of faults (#Flts), the length of the test sequence (Len),
and the total time (Time) required for test generation (with
100% efficiency). The entries in the table, as in Table IV,
are ordered by the normalized average distance in decreasing
order. Table VI provides analogous data for the performance
of atpg on the synthesized circuits.

We will focus on test length as the measure of performance
for split-coding in order to show improved controllability and
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TABLE V
SYNTHESIS AND short_testsTEST-GENERATION RESULTS

TABLE VI
SYNTHESIS AND atpg TEST-GENERATION RESULTS

observability. Of the 22 circuits, 16 circuits in theshort_tests
experiment and 14 circuits in theatpg experiment show
improvement over thejedi results when the circuits are syn-
thesized with a split-code (with clock control) but without
observability enhancement. The numbers marginally increase
to 17 and 15 for the circuits synthesized with observability
enhancement.

A comparison of the circuits synthesized without and with
clock control shows that 15 circuits in both theshort_tests

andatpg experiments improved when the functionality of the
-steps is utilized. Likewise, the numbers increase to 17 and

19 for the two experiments when synthesis with observability
enhancement is compared to the circuits synthesized without
clock control.

The reduction in the test lengths is significantly high, as
expected, for the FSM’s which had poor connectivity in the
original machine, i.e., high normalized average distance (top
half of the table). The average reduction in the test length for
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Fig. 7. short_tests test generation results—Comparison of test lengths.

Fig. 8. atpg test generation results—Comparison of test lengths.

the top 11 circuits which were synthesized with clock control
but without observability enhancement is 39.46% (short_tests)
and 25.57% (atpg). With observability enhancement, these
numbers are 39.39% (short_tests) and 30.89% (atpg), showing
significant further improvement inatpg generated tests. Like-
wise, in comparison to the circuits synthesized without clock
control, the average reduction in the test length for the top 11
circuits which were synthesized with clock control but without
observability enhancement is 36.04% (short_tests) and 42.68%
(atpg). With observability enhancement, these numbers are
35.96% (short_tests) and 46.79% (atpg).

To help visualize the magnitude of the improvement in
the test length, thenormalized improvementis displayed for
the circuits in Figs. 7 and 8. The charts in each figure are
normalized with respect to the first circuit, i.e., thejedi-
synthesized circuit. The light and dark bars correspond to

the split-code w/clk-cntrland thesplit-code observability
circuits, respectively. Bars that extend above the 1.00 line on
the charts indicate an improvement over thejedi-synthesized
circuit. It is clear that the improvement is significantly high for
the circuits in which the corresponding original circuit exhibits
poor connectivity. The improvement is marginally higher for
the circuits with enhanced observability.

A careful analysis of the data indicates that the circuits
which showed no significant improvement in split-code-based
synthesis had a large increase in the area of synthesis (see
Table VII) as well as in the number of faults. This leads to
our belief that the gains due to split-codes were offset by the
larger fault set.

There are two ways to reduce the number of faults and the
area cost in split-code-based circuits. In this experiment the
binary encoding of the and fields was done randomly.
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TABLE VII
AREA OF SYNTHESIZED CIRCUITS

A tool to select these encodings can be developed which
optimizes the synthesis area. Another approach would be to
use tri-state buffers as shown in Fig. 5(a). This would add no
logic overhead and only a minor overhead for routing control
line

VII. CONCLUSION

As the practice of design moves toward high-level synthesis,
it becomes feasible to consider schemes aimed at enhancing
testability through synthesis. One such scheme is proposed
here as a systematic way to improve the testability of FSM’s
by a novel scheme for symbolic state-encoding and clock
control. We show, both theoretically and through experimental
evidence, that the resulting gains in testability could lead to
substantially shorter test sets with the same fault efficiency.
The full benefits of split-coding can be realized by integrating
the knowledge about enhanced navigability between states in
the ATPG tool.

APPENDIX

PROOFS

Here, we present the proofs of several claims made in the
paper.

Observation 2: A modulo- counter is synthe-
sized using two clocks (as described in Section II) with theth
state in the cycle, , assigned to the binary code of integer
. If FF’s are partitioned linearly, then the average distance

between the states in the original machine and the test machine
are approximately and , respectively.

Proof: Suppose the left-most bits are -bits. If
is a transition with , then

is the corresponding
-transition.
The average distance between any pair of states in the

normal machine is
The -transitions, created by , coincide with the

corresponding -transitions except for the states encoded
In these cases the new transitions are

With these additional
edges, the STG of the circuit transforms to a cycle of super-
nodes where each super-node is itself a cycle of length

The average distance between two states in the same sub-
cycle is The average distance between the two
states separated by sub-cycles is

, where
Thus, the average distance between any pair of states is

The minimum average
distance is approximately when

A. Split-Codes and Their Properties

Here, we present various properties of split-codes and their
proofs leading to the proof of Theorem 1. For completeness
and rigor we restate the definition of a split-code.

Consider the mapping , where
denotes the set and are some positive
integers with , defined inductively as follows:

i

ii

where (1)

Here and subsequently, arithmetic operations on the ele-
ments of and are understood to bemodulo- and
modulo- , respectively.

Observation 3: If then

Proof: From the definition of function

Since the exponents are modulo-m numbers, upon rearranging
them we obtain

The last equation is due to the fact that divides as
Thus, by the repeated application of this result

Observation 4: i) and ii)
is a one-to-one correspondence.

Proof: i) From Observation 3

ii) Assume that there are indexes
such that Let From the
definition of function , So must be divisible
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by , i.e., for some integer From the assumption,
From Observation 3,

Since should be divisible by But since
is strictly less than , Thus, or

Once again for convenience, we will assume that arithmetic
operations on the indexes of are modulo-

Definition: For any positive integers with , the
bijection given by (1) (alternatively,
the range of the function ) is called a split-code with
parameters .

Definition: If and , then their
difference, , is denoted by ,

Example: For a split-code of ,
and , so , and

Observation 5: i)
ii) So, in particular, for

the difference will be one.
Proof: i) Suppose Due to the cyclic

nature of the first component, for
some From Observation 3,
giving Thus,

ii) Let and Thus,
where From the first part

of the proof, , ,
So

Definition: A sequence is
monotonicif , where
the summation isnot modulo

Example: In the split-code shown in Table I, the sequence
is monotonic but the sequence

is not monotonic.
Lemma 1: All unit-step sequences of the form

are monotonic.
Proof: If step is an -

step (i.e., adjacent codes), then from the definition

On the other hand, if is an -
step, then From Observation 5,

In case , the distance
reduces to one since is divisible by

Thus

Note that the inequality will be strict if and
are different.

Corollary: For any two codes and that differ
only in the second component, there exists a monotonic unit-
step sequence

Proof: Construct the sequence
with the following

stipulation: for all , if the th bit of
(mod is zero, otherwise, Here, the th
and the higher bits of (mod are zero.

From the construction, From the lemma this
sequence is monotonic.

Theorem 1: For any sequence of split-code pairs
, there exists a

unit-step sequence

with Further, this sequence is contained in
Proof: Let and

The desired sequence can be constructed in two parts. The
initial subsequence is where

is the first code with the first component say
for some So

The final subsequence, from to
with no more than -steps is assured by

Lemma 1.
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