Genes and behavior in preschool children: The relation between dopamine genotype and latent executive control

S. A. Wiebe
M. J. Moehr
A. R. Johnson
M. Y. Chang
J. Huggenvik

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/dcnlfacpub

Part of the Neurosciences Commons

http://digitalcommons.unl.edu/dcnlfacpub/34

This Article is brought to you for free and open access by the Developmental Cognitive Neuroscience Laboratory at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Developmental Cognitive Neuroscience Laboratory - Faculty and Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Genes and Behavior in Preschool Children: The Relation between Dopamine Genotype and Latent Executive Control
Sandra A. Wiebe, Ph.D.1, Matthew J. Moehr, M.A.1, Abigail R. Johnson, M.A.2, Moh Yin Chang, M.S. 1, Jodi Huggenvik, Ph.D. 2, Travis Jameson, B.S. 2, & Kimberly Andrews Espy, Ph.D. 1
1. Developmental Cognitive Neuroscience Laboratory, Psychology/Office of Research, University of Nebraska-Lincoln
2. Department of Family and Community Medicine, Southern Illinois University School of Medicine

Dopamine and Executive Control
- Dopaminergic neurotransmission is implicated in the executive control of cognition and behavior (Braver & Cohen, 2000).
- The prefrontal cortex is thought to modulate activity in other brain regions through “biases signals” boosting activation of task-relevant neural pathways, likely through the action of dopamine (Montague, 2004).
- A number of studies have found associations between executive control and dopamine-related candidate genes, likely because of variation in the availability of dopamine in the synapse and/or efficiency of dopaminergic neurotransmission (Casey, 2002; Roesch-Ely, 2005).

Method
- 133 preschool children (mean age 4 years 1 month, range 2.5 to 6 years) were administered an executive control battery that included the following tasks: Delayed Alternation, Continuous Performance Task, DAS Digit Span, Delayed Response, Six Boxes, Shape School, NEPSY Statue, NEPSY Visual Attention, and Tower of Hanoi.
- Children were genotyped on the COMT, DAT, DRD2, and DRD4 polymorphisms of interest from cheek swabs obtained using a preschooler-friendly “lipswab” game procedure (Espy, 2002).
- Children were assigned dummy codes of 0 or 1 for each gene, where 1 indicated the presence of the “risk allele.”

Genes and Executive Control: Model 1
- First, a summary variable was calculated by simply adding up “risk scores” for all dopamine genes of interest.
- This risk score was used to predict latent executive control.
- Age was also included as a covariate, to account for age differences in executive control.

Genes and Executive Control: Model 2
- To look at the contributions of individual genes, individual dummy variables were used to create a latent Genetic Risk variable, in a Multiple Indicator Multiple Cause (MIMIC) model.

Dopamine Gene Alleles associated with Risk

References
Bakermans-Kranenburg, M. & van Ijzensoorn, M. (2006). Gene-environment interaction of to look at the contributions of individual genes, individual dummy variables were used to create a latent Genetic Risk variable, in a Multiple Indicator Multiple Cause (MIMIC) model.

Discussion
- This model also demonstrated good fit to the data, as evidenced by a non-significant chi-square test.
- However, the effect of genetic risk was statistically significant (p < .05).
- As shown by the loadings of the individual genetic risk dummy variables on the Genetic Risk latent variable.
- The effect can be largely attributed to DRD2 and COMT, as model results do not change substantially when DRD4 and DAT are dropped.

Acknowledgments
This research was supported by NIH grant MH 065668, DA 014661, and HD 038051 to Kimberly Andrews Espy. We would like to thank Megan Huset, Mary CW, Heather Kaiser, and Jessica Martin for assistance with data collection, and the children and families who made this work possible. Correspondence regarding this poster may be addressed to Sandra Wiebe (swiebe2@unl.edu).