February 2007

Genes and behavior in preschool children: The relation between dopamine genotype and latent executive control

S. A. Wiebe
M. J. Moehr
A. R. Johnson
M. Y. Chang
J. Huggenvik

See next page for additional authors
Authors
Genes and Behavior in Preschool Children: The Relation between Dopamine Genotype and Latent Executive Control

Sandra A. Wiebe, Ph.D. 1, Matthew J. Moehr, M.A. 1, Abigail R. Johnson, M.A. 2, Moh Yin Chang, M.S. 1, Jodi Huggenvik, Ph.D. 1, Travis Jameson, B.S. 1, & Kimberly Andrews Espy, Ph.D. 1

1. Developmental Cognitive Neuroscience Laboratory, Psychology/Office of Research, University of Nebraska-Lincoln
2. Department of Family and Community Medicine, Southern Illinois University School of Medicine

Dopamine and Executive Control

- Dopaminergic neurotransmission is implicated in the executive control of cognition and behavior (Braver & Cohen, 2000).
- The prefrontal cortex is thought to modulate activity in other brain regions through “bias signals” boosting activation of task-relevant neural pathways, likely through the action of dopamine (Montague, 2004).
- A number of studies have found associations between executive control and dopamine-related candidate genes, likely because of variation in the availability of dopamine in the synapse and/or efficiency of dopaminergic neurotransmission (Casey, 2002; Roess-Ely, 2005).
- Furthermore, dopamine genotype has been found to relate to attention problems and attention deficit/hyperactivity disorder (ADHD; Faraone, 2005).
- A better understanding of how variation in dopamine genotype relates to children’s regulation of attention and behavior has significance for clinical practice and possible intervention.

Dopamine Gene Alleles associated with Risk

- **COMT** (catechol-O-methyltransferase): The low-activity genotype is a risk factor for ADHD and other attention problems.
- **DRD2** (dopamine D2 receptor): Low activity and non-competitive activity are risk factors for ADHD.
- **DRD4** (dopamine D4 receptor): A long allele is associated with impulsivity, higher risk of ADHD, and lower cortisol levels.
- **DRD5** (dopamine D5 receptor): Low activity is associated with lower attentional control and negative affect.
- **DRD3** (dopamine D3 receptor): Low activity is associated with lower attentional control and negative affect.

Genes and Executive Control: Model 1

- **First**, a summary variable was calculated by simply adding up “risk scores” for all dopamine genes of interest.
- **This risk score was used to predict latent executive control.**
- **Age** was also included as a covariate, to account for age differences in executive control.

Genes and Executive Control: Model 2

- To look at the contributions of individual genes, individual dummy variables were used to create a latent Genetic Risk variable, in a Multiple Indicator Multiple Cause (MIMIC) model.
- **This model also demonstrated good fit to the data, as evidenced by a non-significant chi-square test.**
- **As shown by the loadings of the individual genetic risk dummy variables on the Genetic Risk latent variable,** the effect can be largely attributed to DRD2 and COMT, as model results do not change substantially when DRD4 and DAT are dropped.

Discussion

We observed a relationship between dopamine genotype risk score and latent executive control in preschool children:

- Children with alleles of dopaminergic genes that have been previously shown to relate to poorer outcomes had lower values on an Executive Control latent variable.
- This effect seems to be specific to DRD2 and COMT.

This study also further demonstrates the utility of a latent variable approach in the study of preschool executive control.

Method

- **133 preschool children (mean age 4 years 1 month, range 2.5 to 6 years)** were administered an executive control battery that included the following tasks: Delayed Alternation, Continuous Performance Task, DAS Digit Span, Delayed Response, Six Boxes, Shape School, and Tower of Hanoi.
- **Children were assigned dummy codes of 0 or 1 for each gene, where 1 indicated the presence of the “risk allele.”**

While this model demonstrated good fit to the data, the effect of genetic risk did not reach significance (p = .15), although the effect was in the predicted direction (higher genetic risk was related to poorer executive control).