1-2-2007

Spectroscopic Ellipsometer and Polarimeter Systems

John A. Woollam
Lincoln, NE (US)

Blaine D. Johs
Lincoln, NE (US)

Craig M. Herzinger
Lincoln, NE (US)

Ping He
Lincoln, NE (US)

Martin M. Liphardt
Lincoln, NE (US)

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the [Electrical and Computer Engineering Commons](http://digitalcommons.unl.edu/electricalengineeringfacpub)

http://digitalcommons.unl.edu/electricalengineeringfacpub/34

This Article is brought to you for free and open access by the Electrical Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A spectroscopic ellipsometer or polarimeter system having a source of a polychromatic beam of electromagnetic radiation, a polarizer, a stage for supporting a material system, an analyzer, dispersive optics and a detector system which comprises a multiplicity of detector elements, there being apertures before the stage for supporting a material system, and thereafter, the system being present in an environmental control chamber.

28 Claims, 24 Drawing Sheets
U.S. Patent Documents

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,770,895 A</td>
<td>9/1988</td>
<td>Hurley</td>
<td>350/403</td>
</tr>
<tr>
<td>4,772,104 A</td>
<td>9/1988</td>
<td>Buhre</td>
<td>350/403</td>
</tr>
<tr>
<td>4,875,773 A</td>
<td>10/1989</td>
<td>Burns et al.</td>
<td>356/328</td>
</tr>
<tr>
<td>4,917,461 A</td>
<td>4/1990</td>
<td>Goldstein</td>
<td>350/286</td>
</tr>
<tr>
<td>4,961,634 A</td>
<td>10/1990</td>
<td>Chipman et al.</td>
<td>350/403</td>
</tr>
<tr>
<td>5,091,320 A</td>
<td>2/1992</td>
<td>Aspnes et al.</td>
<td>437/8</td>
</tr>
<tr>
<td>5,166,752 A</td>
<td>11/1992</td>
<td>Spanier</td>
<td>356/369</td>
</tr>
<tr>
<td>5,229,833 A</td>
<td>7/1993</td>
<td>Stewart</td>
<td>356/364</td>
</tr>
<tr>
<td>5,329,357 A</td>
<td>7/1994</td>
<td>Bernoux et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>5,337,446 A</td>
<td>9/1994</td>
<td>Azram</td>
<td>356/367</td>
</tr>
<tr>
<td>5,373,350 A</td>
<td>12/1994</td>
<td>Woollam et al.</td>
<td>356/328</td>
</tr>
<tr>
<td>5,475,525 A</td>
<td>12/1995</td>
<td>Tournois et al.</td>
<td>359/245</td>
</tr>
<tr>
<td>5,504,582 A</td>
<td>4/1996</td>
<td>Johns et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>5,521,706 A</td>
<td>5/1996</td>
<td>Green et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>5,581,350 A</td>
<td>12/1996</td>
<td>Chen et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>5,596,406 A</td>
<td>1/1997</td>
<td>Rosencwaig et al.</td>
<td>356/327</td>
</tr>
<tr>
<td>5,666,201 A</td>
<td>9/1997</td>
<td>Johns et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>5,706,212 A</td>
<td>1/1998</td>
<td>Thompson et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>5,793,480 A</td>
<td>8/1998</td>
<td>Lacey et al.</td>
<td>356/367</td>
</tr>
<tr>
<td>5,818,596 A</td>
<td>10/1998</td>
<td>Imai et al.</td>
<td>356/381</td>
</tr>
<tr>
<td>5,872,630 A</td>
<td>2/1999</td>
<td>Johns et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>5,929,995 A</td>
<td>7/1999</td>
<td>Johns</td>
<td>356/369</td>
</tr>
<tr>
<td>5,946,098 A</td>
<td>8/1999</td>
<td>Johns et al.</td>
<td>356/364</td>
</tr>
<tr>
<td>5,963,325 A</td>
<td>10/1999</td>
<td>Johns et al.</td>
<td>356/364</td>
</tr>
<tr>
<td>5,973,787 A</td>
<td>10/1999</td>
<td>Aspnes et al.</td>
<td>356/364</td>
</tr>
<tr>
<td>6,031,619 A</td>
<td>2/2000</td>
<td>Wilkens et al.</td>
<td>356/419</td>
</tr>
<tr>
<td>6,084,674 A</td>
<td>7/2000</td>
<td>Johns et al.</td>
<td>356/364</td>
</tr>
<tr>
<td>6,084,675 A</td>
<td>7/2000</td>
<td>Herzinger et al.</td>
<td>356/364</td>
</tr>
<tr>
<td>6,100,981 A</td>
<td>8/2000</td>
<td>Johns et al.</td>
<td>356/364</td>
</tr>
<tr>
<td>6,118,537 A</td>
<td>9/2000</td>
<td>Johns et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>6,134,012 A</td>
<td>10/2000</td>
<td>Aspnes et al.</td>
<td>356/364</td>
</tr>
<tr>
<td>6,141,102 A</td>
<td>10/2000</td>
<td>Johns et al.</td>
<td>356/364</td>
</tr>
<tr>
<td>6,181,421 B1</td>
<td>1/2001</td>
<td>Aspnes et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>6,320,657 B1</td>
<td>11/2001</td>
<td>Aspnes et al.</td>
<td>356/369</td>
</tr>
<tr>
<td>6,414,302 B1</td>
<td>7/2002</td>
<td>Freeouf</td>
<td>250/225</td>
</tr>
<tr>
<td>6,493,097 B1</td>
<td>12/2002</td>
<td>Ivarsson</td>
<td>356/630</td>
</tr>
</tbody>
</table>

Other Publications

- **Characterisation of Thin Films and Multilayers in the VUV Wavelength Range Using Spectroscopic Ellipsometry and Spectroscopic Photometry**, Boher et al., 157nm Symposium, May 2000.
- **Multichannel Ellipsometer for Real Time Spectroscopy of Thin Film Deposition for 1.5 to 6.5 eV**, Zapien et al., Rev. Sci. Instrum. vol. 71, No. 9, (Sep. 1991).
- * cited by examiner
FIG. 9p2

FIG. 9q
COMPARISON OF SINGLE VS. DUAL WAVEPLATE COMPENSATOR DESIGN

TWO 1/4 WAVEPLATES
ROTATED AZIMUTHAL ANGLE 45 DEGREES
AT $\lambda c = 266$ & 633 NM

SINGLE WAVEPLATE
$\lambda c = 240$ NM

FIG. 10a
RETARDANCE CHARACTERISTICS OF WAVEPLATES
USED IN DUAL ELEMENT COMPENSATOR DESIGN

FIG. 10b

PRESENT INVENTION DUAL ELEMENT DESIGN
FOR $\lambda c = 266, 633$ nm & $\phi = 45$ DEGREES

FIG. 10c
DUAL ELEMENT COMPENSATOR DESIGN FOR
UV-VIS SPECTRAL RANGE 245-850 NM

\[\lambda_c = 266, 780 \text{ NM} \]
\[\phi = 50 \text{ DEGREES} \]

FIG. 10f

DUAL ELEMENT COMPENSATOR DESIGN FOR
UV-VIS SPECTRAL RANGE 390-1700 NM

\[\lambda_c = 532, 1550 \text{ NM} \]
\[\phi = 50 \text{ DEGREES} \]

FIG. 10g1
Compensator Retardance

Fit Parameter: R

FIG. 10h

Input Polarizer Azimuth (includes rotary effect of compensator)

Fit Parameter: P

FIG. 10i

Compensator Effective Fast Axis Azimuthal Orientation

Fit Parameter: C

FIG. 10j
Depolarization Parameter 'C'

Parameter Value

-0.04 -0.00 0.00 0.04 0.08

Wavelength (nm)

100 300 500 700

FIG. 10k

Depolarization Parameter 'B'

Parameter Value

0.00 0.10 0.20 0.30

Wavelength (nm)

100 300 500 700

FIG. 10l
1μm Thick SiO₂ Film on Si
Generated and Experimental

250Å Thick SiO₂ Film on Si
Generated and Experimental

Native (25Å) SiO₂ Film on Si
Generated and Experimental

FIG. 10m
FIG. 10n
FIG. 10o
This Application is a CIP of application Ser. No. 10/034, 800 Filed Dec. 28, 2001 now U.S. Pat. No. 6,922,738 and thereina a CIP of Ser. No. 09/045,862 filed Sep. 4, 2001 now U.S. Pat. No. 7,075,649 and Ser. No. 09/496,011 filed Feb. 1, 2000 (U.S. Pat. No. 6,353,477), which is a CIP of Ser. No. 09/246,888 filed Feb. 8, 1999 (U.S. Pat. No. 6,084,675), which is a CIP of Ser. No. 08/912,211 filed Aug. 15, 1997 (U.S. Pat. No. 5,872,630), which is a CIP Ser. No. 08/530, 892 filed Sep. 20, 1995 (U.S. Pat. No. 5,666,201) and thereina is a CIP of Ser. No. 08/618,820 filed Mar. 20, 1996 (U.S. Pat. No. 5,706,212).

This Application also Claims Benefit of Provisional Application Ser. No. 60/473,615 Filed May 28, 2003; 60/437,023 Filed Dec. 31, 2002, 60/424,589, Filed Nov. 7, 2002; and 60/427,043 Filed Nov. 18, 2002.

TECHNICAL FIELD

The disclosed invention relates to spectroscopic ellipsometer and polarimeter systems, and more particularly to a specific configuration comprising a source of polychromatic beam of electromagnetic radiation, a polarizer, a stage for supporting a material system, an analyzer, a dispersive optics and a detector system which contains a multiplicity of detector elements, said system preferably comprising a rotating compensator, apertures both before and after a sample, and containment within an environmental control chamber.

BACKGROUND

Ellipsometry is a well known means by which to monitor material systems, (samples). In brief, a polarized beam of electromagnetic radiation of one or more wavelengths is caused to impinge upon a material system, (sample), along one or more angles of incidence and then interact with a material system, (sample). Beams of electromagnetic radiation can be considered as comprised of two orthogonal components, (i.e. “P” and “S”), where “P” identifies a plane which contains both an incident beam of electromagnetic radiation, and a normal to an investigated surface of a material system, (sample), being investigated, and where “S” identifies a plane perpendicular to the “P” plane and parallel to said surface of said material system, (sample). A change in polarization state in a polarized beam of electromagnetic radiation caused by said interaction with a material system, (sample), is representative of properties of said material system, (sample). (Note Polarization State basically refers to a magnitude of a ratio of orthogonal component magnitudes in a polarized beam of electromagnetic radiation, and a phase angle therebetween.) Generally two well known angles, (PSI and DELTA), which characterize a material system, (sample), at a given Angle-of-Incidence, are determined by analysis of data which represents change in polarization state. Additional sample identifying information is often also obtained by application of ellipsometry, including layer thicknesses, (including thicknesses for multilayers), optical thicknesses, sample temperature, refractive indices and extinction coefficients, index grading, sample composition, surface roughness, alloy and/or void fraction, parameter dispersal and spectral dependencies on wavelength, vertical and lateral inhomogeneities etc.

Continuing, Ellipsometer Systems generally include a source of a beam of electromagnetic radiation, a Polarizer means, which serves to impose a linear state of polarization, a Slagge for supporting a material system, (sample), and an Analyzer means which serves to select a polarization state in a beam of electromagnetic radiation after it has interacted with a material system, (sample), and pass it to a Detector System for analysis therein. As well, one or more Compensator(s) can be present and serve to affect a phase angle change between orthogonal components of a polarized beam of electromagnetic radiation.

It is noted that Spectroscopic Ellipsometer Systems utilize a Source which simultaneously provides a plurality of Wavelengths, which Source can be termed a “Broadband” Source of Electromagnetic radiation. It is disclosed that sources of ultraviolet wavelength electromagnetic radiation which produce wavelengths between about 245 nm and 1100 nm at usable intensities, without generation of significant levels of ozone are known. A problem inherent in operation, however, is that to increase intensity output therefrom or extend the usable wavelength range lower limit to say 220 nm or even 193 nm and below, results in increased heat production and accompanying production of levels of ozone to which personnel can not be safely exposed. The temperature of the source can be controlled by flowing a gas therearound to dissipate increased heat, but this also serves to unacceptably distribute produced ozone into surrounding atmosphere when it is produced. It has also been discovered that flowing a cooling gas around a source of ultraviolet wavelength electromagnetic radiation serves to modulate intensity output. A source of ultraviolet wavelength electromagnetic radiation which can stably provide increased intensity output and/or shorter wavelengths, while not distributing accompanying produced ozone to surrounding atmosphere, or causing operator accessible outer extents thereof to exceed about 50 degrees C. would therefore be of benefit.

A number of types of ellipsometer systems exist, such as those which include rotating elements and those which include modulating elements. Those including rotating elements include Rotating Polarizer (RP), Rotating Analyzer (RA) and Rotating Compensator (RC). The presently disclosed invention comprises a Rotating Compensator Ellipsometer System. It is noted that Rotating Compensator Ellipsometer Systems do not demonstrate “Dead-Spots” where obtaining data is difficult. They can read PSI and DELTA of a Material System over a full Range of Degrees with the only limitation being that if PSI becomes essentially zero (0.0), one can’t then determine DELTA as there is not sufficient PSI Polar Vector Length to form the angle between the PSI Vector and an “X” axis. In comparison, Rotating Analyzer and Rotating Polarizer Ellipsometers have “Dead-Spots” at DELTA’s near 0.0 or 180 Degrees and Modulation Element Ellipsometers also have “Dead Spots” at PSI near 45 Degrees. The utility of Rotating Compensator Ellipsometer Systems should then be apparent. Another benefit provided by fixed Polarizer (P) and Analyzer (A) positions is that polarization state sensitivity to input and output optics during data acquisition is essentially non-existent. This enables relatively easy use of optic fibers, mirrors, lenses etc. for input/output.

A Search for relevant patents was conducted. Most important is a patent to Johns et al., U.S. Pat. No. 5,872,630, from which the present application is derived as a CIP via intervening CIP applications. Said 630 patent describes:

A spectroscopic rotating compensator material system investigation system comprising a source of a polychromatic beam of electromagnetic radiation, a polar-
izer, a stage for supporting a material system, an analyzer, a dispersive optics and at least one detector system which contains a multiplicity of detector elements, said spectroscopic rotating compensator material system investigation system is used to investigate a material system present on said stage for supporting a material system, said analyzer and polarizer are maintained essentially fixed in position and at least one of said at least one compensator(s) is caused to continuously rotate while a polychromatic beam of electromagnetic radiation produced by said source of a polychromatic beam of electromagnetic radiation is caused to pass through said polarizer and said compensator(s), said polychromatic beam of electromagnetic radiation being also caused to interact with said material system, pass through said analyzer and interact with said dispersive optics such that a multiplicity of essentially single wavelengths are caused to simultaneously enter a corresponding multiplicity of detector elements in said at least one detector system.

Said 630 patent also, amongst other disclosure, describes a Mathematical Regression based Calibration procedure which makes possible the use of essentially any compensator regardless of non-achromatic characteristics.

Another patent to Jobs, from which the 630 patent was Continued-in Part, is U.S. Pat. No. 5,666,201, filed Sep. 20, 1995. The focus in said 201 patent comprises a detector arrangement in which multiple orders of a dispersed beam of electromagnetic radiation are intercepted by multiple detector systems. However, Claim 8 in the 201 patent, in combination with a viewing the Drawings therein, provide conception of the Spectroscopic Rotating Compensator Ellipsometer, as Claimed in Claim 1 of the IAW 630 patent and, in fact, the the 630 patent issued in view of a Terminal Disclaimer based upon the 201 patent. A CIP of the 630 patent, is U.S. Pat. No. 6,353,477 to Jobs et al. which describes preferred multiple element compensators.

Also disclosed is U.S. Pat. No. 5,706,212, Issued Jan. 6, 1998, and Filed Mar. 20, 1996 for an Infrared Ellipsometer System Regression based Calibration Procedure. Said 212 patent describes use of a Substantially Achromatic Rotating Compensator and application of Mathematical Regression in a Calibration procedure which evaluates calibration parameters in both rotating and stationary components. The 212 patent describes that 2 OMEGA and 4 OMEGA associated terms are generated by a detector for a signal which passes through a compensator caused to rotate at a rate of OMEGA.

Said 630 patent was Continued-in-Part therefrom, as is the present application via an intervening patent application. It is noted that the 212 patent application was filed four months prior to the earliest priority patent application, of Aspnes et al. patents. (ie. U.S. Pat. Nos. 6,230,657 B1, 6,134,012, 5,973,787 and 5,877,859, the latter of which was Filed on Jul. 24, 1996.

Relevant patents to Aspnes et al. are U.S. Pat. Nos. 6,320,657 B1, 6,134,012, 5,973,787 and 5,877,859. These patents describe a Broadband Spectroscopic Rotating Compensator Ellipsometer System wherein the Utility is found in the use of a “Substantially Non-Achromatic” compensator, (see Claim 1 in the 657 patent), and selecting a Wavelength Range and Compensator so that “an effective phase retardation value is induced covering at least from 90 degrees to 180 degrees”, (012 patent), over a range of wavelengths of at least 200-800 nm. The 787 and 859 recite that at least one wavelength in said Wavelength Range has a retardation imposed of between 135 and 225 Degrees, and another wavelength in the Wavelength Range has a retardation imposed which is outside that retardation Range. The Utility of the Therma-wave patents derives from the identified conditions being met so that at least one of a 2 OMEGA and a 4 OMEGA coefficient provided by a detector provides usable information at a wavelength, even when said coefficient does not provide usable information at other wavelengths. Again, the identified Aspnes et al. patents recite directly, or describe the presence of a “substantially-non-Achromatic” compensator, while, it is noted at this point, the invention disclosed in this application utilizes what are properly termed substantially-achromatic or Pseudo-Achromatic compensators. It is further noted that the U.S. Pat. No. 5,716,212 patent application, from which this application Continues-in-Part, was filed prior to Jul. 24, 1976 filing date of the 859 Aspnes et al. priority patent application. The disclosed invention then has Priority to simultaneous use of 2 OMEGA and 4 OMEGA signals provided from a detector in a spectroscopic rotating compensator ellipsometer system which utilizes “Other-Than-Substantially Non-Achromatic” Compensators, namely “Substantially-Achromatic” or “Pseudo-Achromatic” Compensators, to characterize samples, emphasis added.

A recently published PCT Application is No. WO 01/90687 A2, which is based on U.S. application Ser. No. 09/575,295 filed May 3, 2001. This Application was filed by Thermawave Inc. and specifically describes separate use of a 2σ and a 4σ term to provide insight to sample thickness and temperature.

Two patents which identify systems which utilize Polychromic light in investigation of materials systems, U.S. Pat. Nos. 5,596,406 and 4,688,086 to Rosencwaig et al. and Redner, respectively, were also identified.

Also identified is a patent to Woollam et al. U.S. Pat. No. 5,373,359 as it describes a Rotating Analyzer Ellipsometer System which utilizes white light. Patents continued from the 359 Woollam et al. patent are, U.S. Pat. No. 5,504,582 to Jobs et al. and U.S. Pat. No. 5,521,706 to Green et al. Said 582 Jobs et al. and 706 Green et al. patents describe use of polychromatic light in a Rotating Analyzer Ellipsometer System.

A patent to Johns et al., U.S. Pat. No. 6,034,777 describes application of ellipsometry in an evacuated chamber comprising windows.

A patent to Johns, U.S. Pat. No. 5,929,995 is disclosed as it describes application of ellipsometry in an evacuated chamber comprising windows.

A patent to Bernoux et al., U.S. Pat. No. 5,329,357 is identified as it describes the use of optical fibers as input and output means in an ellipsometer system.

A patent to Chen et al., U.S. Pat. No. 5,581,350 is identified as it describes the application of regression in calibration of ellipsometer systems.

Additionally, patents pertaining to optical elements, and particularly to compensators retarders per se are:
U.S. Pat. No. 4,917,461 to Goldstein, describes an achromatic infrared retarder comprised of two identical prisms in combination with a reflecting surface.

U.S. Pat. No. 4,772,104 to Buhrer which describes an achromatic optical filler comprised of two birefringent disks;

U.S. Pat. No. 4,961,634 to Chipman describes an infrared achromatic retarder comprised of CdS and CdSe plates aligned with the fast axes thereof perpendicular to one another.

U.S. Pat. No. 6,181,421 to Aspnes et al., describes a tipped Berek Plate Compensator.

U.S. Pat. No. 5,946,098 to Jons, Herzinger and Green, describes numerous optical elements. In addition, patents to Jons et al. U.S. Pat. Nos. 6,084,674; 6,118,537; 6,100,981; 6,141,102; 6,100,981; 5,963,325; 6,084,674 and to Herzinger et al. U.S. Pat. No. 6,084,675, which applications depend from application Ser. No. 68/997,311 filed Dec. 23, 1997, now said U.S. Pat. No. 5,946,098;

And patents to Robert et al., U.S. Pat. Nos. 4,176,951 and 4,179,217 are also disclosed as they describe rotating Birefringent elements in Ellipsometers which produce 2θ and 4θ components.

A PCT patent application, No. WO 01/086257 is also known and is disclosed as it describes a combination of an aperture and lens to define a spot on a sample.

A patent to Lacey et al., U.S. Pat. No. 5,793,480 is disclosed as it describes a field stop and lens combination in an ellipsometer prior to a sample.

A patent to Spanier et al., U.S. Pat. No. 5,166,752 is disclosed as it describes an ellipsometer with lenses and apertures before and after a sample.

A patent to Lessner et al., U.S. Pat. No. 4,054,812 describes a Source of Spectroscopic Electromagnetic radiation which provides heat sink and ozone containment.

A patent to Ellebracht et al., U.S. Pat. No. 4,322,165 is disclosed as it describes purging in a VUV Plasma Atomic Emission Spectroscopic Instrument.

A patent to Burns et al., U.S. Pat. No. 4,875,773 is disclosed as it describes an Optical System for a Multidetector Array Spectrograph.

A patent to Freeouf, U.S. Pat. No. 6,414,302 is disclosed as it describes a High Photon Energy, (up through 10 eV), Range Reflected Light Characterization System.

A patent to Aspnes et al., U.S. Pat. No. 5,091,320 is disclosed as it describes application of ellipsometry with an evacuated chamber.

A patent to Hartley, U.S. Pat. No. 4,770,895 is disclosed as it describes application of ellipsometry with an evacuated chamber.

A Published patent application by McAninch, No. 2002/0149774 A1 is disclosed as it describes purging a measurement region near a substrate in a metrology tool.

A J. A. Woollam CO. Flyer titled VUV-VAISEM, is disclosed as it describes a monochromator based rotating analyzer ellipsomter system in a purged chamber.

A patent to Ivarsson, U.S. Pat. No. 6,493,097 is disclosed as it describes a Detector Array in an analytical instrument using electromagnetic radiation.

A patent to Stewart, U.S. Pat. No. 5,229,833 is disclosed as it describes an optical sensor comprising a CCD Array.

A patent to Azizzum, U.S. Pat. No. 5,337,146 is disclosed as it describes a spectrophotometer comprising a linear array detector.

A patent to Wilkins et al., U.S. Pat. No. 6,031,619 describes an imaging spectrometer with a CCD Matrix or Row detector.

A patent to Imai et al., U.S. Pat. No. 5,818,596 is disclosed as it describes use of purging gas to prevent contaminants on samples, but does not disclose ellipsometry or a multiple detector element detector array.

A Published patent application by McAninch, No. 2002/0149774 A1 is disclosed as it describes purging a measurement region near a substrate in a metrology tool.

A Published patent application by Wang et al., No. 2003/0071996 A1 is disclosed as it involves purging of the environment of one beam in a system involving two beams.

A Published patent application by Eckert et al., No. US 2003/0150997 A1 is disclosed as it describes use of VUV wavelengths and purging.

Regarding Articles,

An article by Jons, titled “Regression Calibration Method For Rotating Element Ellipsometers”, which appeared in Thin Film Solids, Vol. 234 in 1993 is also identified as it predates the Chen et al. patent and describes an essentially similar approach to ellipsometer calibration.

A presentation titled “Characterisation of Thin Films and Multilayers in the VUV Wavelength Range Using Spectroscopic Ellipsometry and Spectroscopic Photometry”, Boher et al., 157 nm Symposium, May 2000) is disclosed as it describes a UV Spectroscopic Ellipsometer.

A paper titled “Atomic Scale Characterization of Semiconductors by In-Situ Real Time Spectroscopic Ellipsometry”, Boher et al., Thin Solid Films 318 (1998) is disclosed as it mentions multichannel detectors.

A paper titled “Feasibility and Applicability of Integrated Metrology Using Spectroscopic Ellipsometry in a Cluster Tool”, Boher et al., SPIE Vol. 4449, (2001) is disclosed as it describes a multichannelellipsometer applied outside an environmental chamber. This application required electromagnetic radiation to pass through windows to reach a sample.

Four papers authored or co-authored by Collins, which describe use of multichannels and rotating element ellipsometers, including rotating compensator, but not in an environmental chamber are:

“Characterization of Wide Bandgap Thin Film Growth Using UV-Extended Real Time Spectroscopic Ellipsometry Applications to Cubic Boron Nitride”, Zapien et al., J. of Wide Bandgap Materials, Vol 9, No. 3 (January 2002);
“Waveform Analysis With Optical Multichannel Detectors: Applications for Rapid-Scan Spectroscopic Ellipsometers”, An et al., Rev. Sci. Instrum. 62(8), (August 1991); and

As well, identified for authority regarding regression, is a book titled Numerical Recipes in “C”, 1988, Cambridge University Press.

No prior art teaches a rotating compensator ellipsometer with a plurality of apertures both before and after a sample material system. Further, while it is known to place ellipsometer systems outside environmental control chambers which require entering an electromagnetic beam through window, no prior art teaches a spectroscopic ellipsometer of any type which comprises a Detector system comprised of a multiplicity of detector elements, which detector elements simultaneously detect a multiplicity of wavelengths, said spectroscopic ellipsometer being contained within an environmental chamber.

DISCLOSURE OF THE INVENTION

The disclosed invention comprises a spectroscopic rotating compensator material system investigation system comprising a source of polychromatic beam of electromagnetic radiation, a polarizer, a stage for supporting a material system, an analyzer, a dispersive optics and at least one detector system which contains a multiplicity of detector elements, said spectroscopic rotating compensator material system investigation system further comprising at least one compensator(s) positioned at a location selected from the group consisting of:

- before said stage for supporting a material system;
- after said stage for supporting a material system; and
- both before and after said stage for supporting a material system;

there being in the path of said polychromatic beam of electromagnetic radiation at least four apertures between said source of polychromatic beam of electromagnetic radiation and said stage for supporting a material system, and at least three apertures between said stage for supporting a material system and said at least one detector system. When said spectroscopic rotating compensator material system investigation system is used to investigate a material system present on said stage for supporting a material system, said analyzer and polarizer are maintained essentially fixed in position and at least one of said at least one compensator(s) is caused to continuously rotate while a polychromatic beam of electromagnetic radiation produced by said source of a polychromatic beam of electromagnetic radiation is caused to pass through said polarizer and said at least one compensator(s) and said at least four apertures between said source of a polychromatic beam of electromagnetic radiation and said stage for supporting a material system. Said polychromatic beam of electromagnetic radiation is then caused to interact with a material system on said stage for supporting a material system, pass through said analyzer and said at least three apertures between said stage for supporting a material system, and interact with said dispersive optics such that a multiplicity of essentially single wavelengths are caused to simultaneously enter a corresponding multiplicity of detector elements in said at least one detector system.

More specifically, the disclosed invention comprises a spectroscopic rotating compensator material system investigation system comprising:

- a polarization state generator comprising:
 - a source of polychromatic, (ie. broadband), beam of electromagnetic radiation;
 - a first aperture with a nominal internal diameter of between 100 and 600 microns;
 - a second aperture with a nominal internal diameter has a nominal internal diameter of 3 to 3.5 millimeters;
 - a fixed polarizer;
 - a rotating compensator;
 - a third aperture with a nominal internal diameter of 3.5 millimeters;
 - a forth aperture with a nominal internal diameter of 3.75 millimeters;
 - a first substantially achromatic lens;
 - a fifth aperture with a nominal internal diameter of 4.8 millimeters;
 - a stage for supporting a material system;
 - and a polarization state detector comprising:
 - a sixth aperture with a nominal internal diameter of 4.8 millimeters;
 - a second substantially achromatic lens,
 - a seventh aperture with a nominal internal diameter of 3.75 millimeters;
 - an eighth aperture with a nominal internal diameter of 3.5 millimeters;
 - a fixed analyzer;
 - a ninth aperture with an adjustable internal diameter;
 - a third substantially achromatic lens;
 - an optical fiber; and
 - at least one detector system which contains a dispersive element and a multiplicity of detector elements;

- there optionally being a UV filter present between said source of a polychromatic beam of electromagnetic radiation and said stage for supporting a material system for the purpose of preventing the effects of UV radiation on a material system.

When said spectroscopic rotating compensator material system investigation system is used to investigate a material system present on said stage for supporting a material system, said fixed analyzer and fixed polarizer are maintained essentially fixed in position and said rotating compensator is caused to continuously rotate while a polychromatic beam of electromagnetic radiation produced by said source of polychromatic beam of electromagnetic radiation is sequentially caused to pass through said first aperture, second aperture, fixed polarizer, rotating compensator, third aperture, forth aperture, first substantially achromatic lens, fifth aperture, said polychromatic beam of electromagnetic radiation also passing through said UV filter, then interact with a material system placed on said stage for supporting a material system, then sequentially pass through said sixth aperture, second substantially achromatic lens, seventh aperture, eighth aperture, fixed analyzer, ninth aperture, third substantially achromatic lens, enter said optical fiber and thereon enter said detector system.

The preferred compensator comprises a selection from the group consisting of:
comprised of at least two zero-order waveplates, said zero-order waveplates and having their respective fast axes rotated to a position offset from zero or ninety degrees with respect to one another; comprised of a combination of at least a first and a second effective zero-order wave plate, said first effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, and said second effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another; the fast axes of the multiple order waveplates in said second effective zero-order wave plate being rotated to a position at a nominal forty-five degrees to the fast axes of the multiple order waveplates and in said first effective zero-order wave plate; comprised of a combination of at least a first and a second effective zero-order wave plate, said first effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, and said second effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another; the fast axes of the multiple order waveplates in said second effective zero-order wave plate being rotated to a position away from zero or ninety degrees with respect to the fast axes of the multiple order waveplates and in said first effective zero-order wave plate; and comprised of a combination of at least one zero-order waveplate and at least one effective zero-order waveplate, said effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, the fast axes of the multiple order waveplates in said effective zero-order wave plate being rotated to a position away from zero or ninety degrees with respect to the fast axis of the zero-order waveplate;

and said compensator causes essentially no deviation or displacement in a polychromatic beam of electromagnetic radiation caused to pass therethrough while caused to rotate.

 Said compensator provides that retardation effected thereby between orthogonal components of a beam of electromagnetic radiation at one wavelength is different than that provided thereby at at least one other wavelength. Said variation is exemplified as being: within a range of thirty (30.0) to less than one-hundred-thirty-five (135) degrees over a range of wavelengths defined by a selection from the group consisting of:

- a. between one-hundred-ninety (190) and seven-hundred-fifty (750) nanometers;
- b. between two-hundred-forty-five (245) and nine-hundred (900) nanometers;
- c. between three-hundred-eighty (380) and seventeen-hundred (1700) nanometers;
- d. within a range of wavelengths defined by a maximum wavelength (MAXW) and a minimum wavelength (MINW) wherein the ratio of (MAXW)/(MINW) is at least one-and-eight-tenths.

The present invention can utilize essentially any compensator, some of which are can be selected from the group consisting of:

- a single element compensator, (which in the context of the disclosed invention could have its optic axis in the plane of a surface thereof, or have its optic axis substantially perpendicular thereto);
- a compensator system comprised of at least two per se. zero-order waveplates (MOA) and (MOB), said per se. zero-order waveplates (MOA) and (MOB) having their respective fast axes rotated to a position offset from zero or ninety degrees with respect to one another, with a nominal value being forty-five degrees;
- a compensator system comprised of a combination of at least a first (ZO1) and a second (ZO2) effective zero-order wave plate, said first (ZO1) effective zero-order wave plate being comprised of two multiple order waveplates (MOA1) and (MOB1) which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another; the fast axes of the multiple order waveplates in said first effective zero-order wave plate being rotated to a position at a nominal value being forty-five degrees;
- a compensator system comprised of a combination of at least a first (ZO1) and a second (ZO2) effective zero-order wave plate, said first (ZO1) effective zero-order wave plate being comprised of two multiple order waveplates (MOA2) and (MOB2) which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another; the fast axes of the multiple order waveplates in said first effective zero-order wave plate being rotated to a position at a nominal value being forty-five degrees;
- a compensator system comprised of a combination of at least a first (ZO1) and a second (ZO2) effective zero-order wave plate, said first (ZO1) effective zero-order wave plate being comprised of two multiple order waveplates (MOA1) and (MOB1) which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another; the fast axes of the multiple order waveplates in said first effective zero-order wave plate being rotated to a position at a nominal value being forty-five degrees.

or

within a range of seventy-five (75.0) to less than one-hundred-thirty-five (135) degrees over a range of wavelengths defined by a selection from the group consisting of:

- a. between one-hundred-ninety (190) and seven-hundred-fifty (750) nanometers;
- b. between two-hundred-forty-five (245) and nine-hundred (900) nanometers;
- c. between three-hundred-eighty (380) and seventeen-hundred (1700) nanometers;
- d. within a range of wavelengths defined by a maximum wavelength (MAXW) and a minimum wavelength (MINW) range where (MAXW)/(MINW) is at least one-and-eight-tenths.
Additional compensator systems, previously disclosed in patent application Ser. No. 08/997,311, (now U.S. Pat. No. 5,946,098), and CIP's therefrom, which are specifically within the scope of the invention and can be included in the selection group are:

- A compensator system comprised of a first triangular shaped element, which as viewed in side elevation presents with first and second sides which project to the left and right and downward from an upper point, which first triangular shaped element first and second sides have reflective outer surfaces; said retarder system further comprising a second triangular shaped element which as viewed in side elevation presents with first and second sides which project to the left and right and downward from an upper point, said second triangular shaped element being made of material which provides reflective interfaces on first and second sides inside thereof; said second triangular shaped element being oriented with respect to the first triangular shaped element such that the upper point of said second triangular shaped element is oriented essentially vertically directly above the upper point of said first triangular shaped element; such that in use an input electromagnetic beam of radiation caused to approach one of said first and second sides of said first triangular shaped element along an essentially horizontally oriented locus, is caused to externally reflect from an outer surface thereof and travel along a locus which is essentially upwardly vertically oriented, then enter said second triangular shaped element and essentially totally internally reflect from one of said first and second sides thereof, then proceed along an essentially downward vertically oriented locus, then reflect from the other of said first and second sides and proceed along an essentially horizontally oriented locus which is essentially totally internally reflect from the other of said first and second sides and proceed along an essentially horizontally oriented locus which is caused to rotate; with a result being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation; a compensator system comprised of a parallelogram shaped element which, as viewed in side elevation, has top and bottom sides parallel to one another, both said top and bottom sides being oriented essentially horizontally, said retarder system also having right and left sides parallel to one another, both said right and left sides being oriented at an angle to horizontal, said retarder being made of a material with an index of refraction greater than that of a surrounding ambient; such that in use an input beam of electromagnetic radiation caused to enter a side of said retarder selected from the group consisting of (left and right), along an essentially horizontally oriented locus, is caused to diffracted inside said retarder system and follow a locus which causes it to essentially totally internally reflect from internal interfaces of both said top and bottom sides, and emerge from said retarder system from a side selected from the group consisting of (left and right respectively), along an essentially horizontally oriented locus which is undeveloped and undisplaced from the essentially horizontally oriented locus of said input beam of essentially horizontally oriented electromagnetic radiation even when said retarder is caused to rotate; with a result being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation;

- A compensator system comprised of a first and second orientation adjustable mirrored elements along an essentially horizontally oriented locus, is caused to externally reflect therefrom and travel along a locus which is essentially upwardly vertically oriented, then enter said third element and essentially totally internally reflect from one of said first and second sides thereof, then proceed along an essentially horizontal locus and essentially totally internally reflect from the other of said first and second sides and proceed along an essentially downward vertically oriented locus, then reflect from the other of said first and second sides and proceed along an essentially horizontally oriented locus which is essentially totally internally reflect from the other of said first and second sides and proceed along an essentially horizontally oriented locus which is caused to rotate; with a result being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation.
a compensator system comprised of first and second triangular shaped elements each being made of material with an index of refraction greater than that of a surrounding ambient; such that in use an input beam of electromagnetic radiation caused to enter a side of a triangular shaped element selected from the group consisting of: (first and second), not in contact with said other triangular shape element, is caused to diffracted inside said retarder and follow a locus which causes it to essentially totally internally reflect from internal interfaces of said third sides of each of said first and second triangular shaped elements, and emerge from a side of said triangular shaped element selected from the group consisting of: (second and first), not in contact with said other triangular shape element, along an essentially horizontally oriented locus which is undeviated and undisplaced from the essentially horizontally oriented locus of said input beam of essentially horizontally oriented electromagnetic radiation even when said retarder is caused to rotate; with a result being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation;

a compensator system comprised of a triangular shaped element, which as viewed in side elevation presents with first and second sides which project to the left and right and downward from an upper point, said retarder system further comprising a third side which is oriented essentially horizontally and which is continuous with, and present below said first and second sides; said retarder system being made of a material with an index of refraction greater than that of a surrounding ambient; such that in use a an input beam of electromagnetic radiation caused to enter a side of said retarder system selected from the group consisting of: (first and second), along an essentially horizontally oriented locus, is caused to diffracted inside said retarder system and follow a locus which causes it to essentially totally internally reflect from internal interface of said third sides, and emerge from said retarder from a side selected from the group consisting of: (second and first respectively), along an essentially horizontally oriented locus which is undeviated and undisplaced from the essentially horizontally oriented locus of said input beam of essentially horizontally oriented electromagnetic radiation even when said retarder system is caused to rotate; with a result being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation; and

a compensator system comprised of first and second Berek-type retarders which each have an optical axes essentially perpendicular to a surface thereof, each of which first and second Berek-type retarders has a fast axis, said fast axes in said first and second Berek-type retarders being oriented other than parallel to one another, said third and forth Berek-type retarders each presenting with first and second essentially parallel sides, and said first and second Berek-type retarders being oriented other than parallel to first and second sides of one Berek-type retarder being oriented other than parallel to first and second sides of the other Berek-type retarder; such that in use an incident beam of electromagnetic radiation is caused to impinge upon one of said first and second Berek-type retarders on one side thereof, partially transmit therethrough then impinge upon said retarder from a side thereof, and partially transmit therethrough then impinge upon the second Berek-type retarder, on one side thereof, and partially transmit therethrough such that a polarized beam of electromagnetic radiation passing through both of said first and second Berek-type retarders emerges from the second thereof in a polarized state with a phase angle between orthogonal components therein which is different than that in the incident beam of electromagnetic radiation, and in a propagation direction which is essentially undeviated and undisplaced from the incident beam of electromagnetic radiation, said compensator system further comprising third and forth Berek-type retarders which each have an optical axes essentially perpendicular to a surface thereof, each of which third and forth Berek-type retarders has a fast axis, said fast axes in said third and forth Berek-type retarders being oriented other than parallel to one another, said third and forth Berek-type retarders each presenting with first and second essentially parallel sides, and said third and forth Berek-type retarders being oriented other than parallel to one another, said third and forth Berek-type retarders each presenting with first and second essentially parallel sides, and said third and forth Berek-type retarders being oriented other than parallel to one another, and partially transmit therethrough such that a polarized beam of electromagnetic radiation passing through both of said first and second Berek-type retarders emerges from the second thereof in a polarized state with a phase angle between orthogonal components therein which is different than that in the incident beam of electromagnetic radiation, caused to impinge upon the first side of said first Berek-type retarder, and in a
direction which is essentially undeviated and undisplaced from said incident beam of electromagnetic radiation even when said retarder system is caused to rotate; with a result being that retardation is entered between orthogonal components of said input electromagnetic radiation; a compensator system comprised of first, second, third and forth Berek-type retarders which each have an optical axes essentially perpendicular to a surface thereof, each of which first and second Berek-type retarders has a fast axis, said fast axes in said first and second Berek-type retarders being oriented essentially parallel to one another; said first and second Berek-type retarders each presenting with first and second essentially parallel sides, and said first and second Berek-type retarders being oriented, as viewed in side elevation, with first and second sides of one of Berek-type retarder being oriented other than parallel to first and second sides of the other Berek-type retarder; such that in use an incident beam of electromagnetic radiation is caused to impinge upon one of said first and second Berek-type retarders on one side thereof, partially transmit therethrough then impinge upon the second Berek-type retarder, on one side thereof, and partially transmit therethrough such that a polarized beam of electromagnetic radiation passing through both of said first and second Berek-type retarders emerges from the second thereof in a polarized state with a phase angle between orthogonal components therein which is different than that in the incident beam of electromagnetic radiation, and in a propagation direction which is essentially undeviated and undisplaced from the incident beam of electromagnetic radiation, each of which third and forth Berek-type retarders has a fast axis, said fast axes in said third and forth Berek-type retarders being oriented essentially parallel to one another but other than parallel to the fast axes of said first and second Berek-type retarders, said third and forth Berek-type retarders each presenting with first and second essentially parallel sides, and said third and forth Berek-type retarders being oriented, as viewed in side elevation, with first and second sides of one of said third and forth Berek-type retarders being oriented other than parallel to first and second sides of said forth Berek-type retarder; such that in use an incident beam of electromagnetic radiation exiting said second Berek-type retarder is caused to impinge upon said third Berek-type retarder on one side thereof, partially transmit therethrough then impinge upon said forth Berek-type retarder on one side thereof, and partially transmit therethrough such that a polarized beam of electromagnetic radiation passing through said first, second, third and forth Berek-type retarders emerges from the forth thereof in a polarized state with a phase angle between orthogonal components therein which is different than that in the incident beam of electromagnetic radiation caused to impinge upon the first side of said first Berek-type retarder, and in a direction which is essentially undeviated and undisplaced from said incident beam of electromagnetic radiation even when said retarder system is caused to rotate; with a result being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation.

Continuing, said spectroscopic rotating compensator material system investigation system further comprises, preferably between said fixed polarizer and said ninth aperture, a beam splitting means which serves to divert a portion of the polychromatic beam of electromagnetic radiation which otherwise proceeds to said optical fiber, and transmits the remainder of said polychromatic beam of electromagnetic radiation theretoward, said diverted portion of said polychromatic beam of electromagnetic radiation being directed by said beam splitting means into an alignment means selected from the group consisting of: reticle; and electromagnetic beam detecting means;
such that in use said alignment means provides monitored alignment capability thereby allowing precise control of the locus of propagation of the portion of said polychromatic beam of electromagnetic radiation which transmits through said beam splitting means. Said electromagnetic beam detecting means can be in functional combination with electronic circuitry means which serves to automatically aligned said portion of said polychromatic beam of electromagnetic radiation which is transmitted toward said ninth aperture and optical fiber, based on feedback from said detector.
The preferred detector dispersive optics and detector elements are contained in an off-the-shelf diode array spectrometer system, with an operational wavelength range selected from the group consisting of:
300–1150 nm;
190–730 nm;
190–400 nm; and
900–2400 nm;
and optionally the detector which demonstrates a quantum efficiency of at least greater than forty (40%) percent.
The dispersive optics is preferably a diffraction grating characterized by a selection from the group consisting of: a “lined”; a “blazed”; and a “holographic” geometry;
said lined geometry consisting essentially of symmetrical alternating lines with depressions therebetween, and said blazed geometry consisting of alternating ramp shaped lines with depressions therebetween, and said holographic geometry consisting of continuous cosine shaped lines and depressions. However, said dispersive optics can comprise a prism.
While the preferred compensators are described above, functional compensators can be of a type selected from the group consisting of:
Berek-type with optical axis essentially perpendicular to a surface thereof;
non-Berek-type with an optical axis essentially parallel to a surface thereof;
zero-order wave plate;
zero-order waveplate constructed from two multiple order waveplates;
a sequential plurality of zero-order waveplates, each constructed each from a plurality of multiple order waveplates;
rhomb;
polymer;
achromatic crystal; and
pseudo-achromatic.
The fiber optic present after said analyzer can be single or bifurcated thereby providing a plurality of fiber optic bundles, at least two of which plurality of at least two bifurcated fiber optic bundles provide input to separate detector system), each of said separate detector systems comprising a dispersion optics and a multiplicity of detector
elements, said plurality of fiber optic bundles having cross-sectional shapes at ends thereof selected from the group: essentially circular; essentially slit shaped; other than essentially circular; and essentially slit shaped.

It is also to be appreciated that the disclosed spectroscopic rotating compensator material system investigation system is characterized by a mathematical model comprising calibration parameters, at least one of which is a member of the group consisting of:

- effective polarizer azimuthal angle orientation \((P_p) \);
- present material system PSI \((\psi) \), as a function of angle of incidence and a thickness;
- present material system DELTA \((\Delta) \), as a function of angle of incidence and a thickness;
- compensator azimuthal angle orientation \((C_c) \) matrix components of said compensator;
- analyzer azimuthal angle orientation \((A_a) \); and
detector element image persistance \((x_a) \) and read-out \((p_p) \) nonidealities.

Further, said mathematical model is effectively a transfer function which enables calculation of electromagnetic beam magnitude as a function of wavelength detected by a detector element (DE), given magnitude as a function of wavelength provided by said source of polychromatic beam of electromagnetic radiation (EPCLB). Said calibration parameter(s) selected from the group consisting of:

- effective polarizer azimuthal angle orientation \((P_p) \);
- present material system PSI \((\psi) \), as a function of angle of incidence and a thickness;
- present material system DELTA \((\Delta) \), as a function of angle of incidence and a thickness;
- compensator azimuthal angle orientation \((C_c) \) matrix components of said compensator;
- analyzer azimuthal angle orientation \((A_a) \); and
detector element image persistance \((x_a) \) and read-out \((p_p) \) nonidealities.

are, in use, evaluated by performance of a mathematical regression of said mathematical model onto at least one, multi-dimensional, data set(s), said at least one, multi-dimensional, data set(s) being magnitude values vs. wavelength and at least one parameter selected from the group consisting of:

- angle-of-incidence of said polychromatic beam of electromagnetic radiation with respect to a present material system (MS);
- effective or actual azimuthal angle rotation of one element selected from the group consisting of:
said polarizer \((P_p) \); and
said analyzer \((A_a) \);

obtained over time, while said compensator \((C_c) \) is caused to continuously rotate;

said at least one, multi-dimensional, data set(s) each being normalized to a selection from the group consisting of:

- a data set D.C. component;
a data set A.C. component;
a parameter derived from a combinations of a data set D.C. component and a data set A.C. component.

Further, the spectroscopic rotating compensator material system investigation system can be at least partially present in an environmental control chamber characterized by a selection from the group consisting of:

- it comprises at least one chamber region in which is present polarization state generator comprising component(s) prior to said material system, said material system, and polarization state detector comprising component(s) after said material system;
- it comprises at least three chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system, in the second of which is present the material system and in the third of which is present polarization state detector comprising component(s) after said material system;
- it comprises at least two chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system and said material system, and in the second of which is present polarization state detector comprising component(s) after said material system;
- it comprises at least two chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system, and in the second of which is present polarization state detector comprising component(s) after said material system and said material system.

It can be beneficial to control atmospheric content, for instance, where UV range wavelengths are utilized as they are absorbed by oxygen and water vapor.

At this point it is beneficial to recite a method of quickly simultaneously taking data at a multiplicity of wavelengths including wavelengths which are, and are not absorbed by environmental components. Said method comprises the steps of:

a) providing a spectroscopic ellipsometer or polarimeter system comprising a source of a polychromatic beam of electromagnetic radiation, a polarizer, a stage for supporting a material system, an analyzer, a dispersive optics and at least one detector system which comprises a multiplicity of detector elements;

such that when said spectroscopic ellipsometer or polarimeter is used to investigate a material system present on said stage for supporting a material system, a polychromatic beam of electromagnetic radiation produced by said source of a polychromatic beam of electromagnetic radiation is caused to pass through said polarizer and interact with a material system on said stage for supporting a material system, then pass through said analyzer, and interact with said dispersive optics such that a multiplicity of essentially single wavelengths are caused to simultaneously enter a corresponding multiplicity of detector elements in said at least one detector system;

said spectroscopic ellipsometer or polarimeter system further comprising an environmental control chamber in which the spectroscopic ellipsometer or polarimeter is contained, said environmental control chamber being characterized by a selection from the group consisting of:

- it comprises at least one chamber region in which is present polarization state generator comprising component(s) prior to said material system, said material system, and polarization state detector comprising component(s) after said material system;
- it comprises at least three chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system, in the second of which is present the material system and in the third of which is present polarization state detector comprising component(s) after said material system;
Another approach is to utilize a source of electromagnetic radiation which emphasizes UV wavelength production. Various wattage lamps (e.g., 35 and 150) can be applied and where necessary can involve application of various indirect heat sink based cooling and produced ozone containment.

Another approach is to, in the case of rotating compensator ellipsometers, reduce the rotation speed of the compensator so that for the same number of rotations more total electromagnetic radiation passes therethrough and reaches the detector.

Another approach is to take multiple scans of data to improve signal to noise.

Another approach is to combine the output of multiple pixels in a detector which receive UV radiation.

An approach which is focused on providing a small spot size, (e.g., 35 mm), is to identify optical elements which enter dispersion of wavelengths entered thereto and reduce their effect. Dispersion, it should be appreciated causes different wavelengths in electromagnetic radiation to focus at different points on a sample. Reduced dispersion can be accomplished by, for instance, adding optical elements which offset the effect entered by existing optical elements. While increasing physical dimensions and potentially adding entry and exit and transmission attenuation effects, the result can be a smaller spot size.

The disclosed invention can also comprise a system for providing ultraviolet wavelength electromagnetic radiation which comprises a chamber within which is an enclosed space. The enclosed space contains a source lamp which when electrically energized produces ultraviolet wavelength electromagnetic radiation. Said chamber further has means for allowing produced ultraviolet radiation to exit as a collimated beam. Said system further comprises means for providing electrical potential to said source lamp, heat transfer means which is situated to accept heat from said source lamp and conduct it to outside said enclosed space to a heat sink and a gas flow production means for causing said flow of gas over said heat sink. In use voltage is applied to said lamp source by said means for providing electrical potential to said source lamp and heat and ultraviolet wavelength electromagnetic radiation are produced thereby. At least some of said heat is conducted by said heat transfer means to said heat sink and is dissipated by a gas flow therearound, which is produced by said gas flow production means. Simultaneously at least some of said ultraviolet wavelength electromagnetic radiation is caused to exit said means for allowing produced ultraviolet radiation as a...
collimated beam. Importantly, this approach to cooling provides that produced ozone is safely contained within said enclosed space and nearby personnel are therefore not exposed thereto.

In ellipsometry applications, for instance, said system further comprises a polarizer in the pathway of said collimated beam of electromagnetic radiation, which polarizer can be selected from the group consisting of:

Calcite;
BBO;
MgFl;

to impose a state of substantially linear polarization thereupon in wavelength ranges 1100 nm and about:

245 nm;
220 nm; and
193 nm;
respectively.

A preferred means for allowing produced ultraviolet radiation to exit as a collimated beam comprises a pin hole and lens means present inside a protective tube which serves to prevent air flow by said lens means.

As a specific example, the source lamp can be a Xenon bulb, and the voltage applied thereto 20 KV. A realized embodiment has been determined to, during operation, cause said Xenon Lamp temperature rises to about 200 degrees C., the heat sink to about 65 degrees C., and the exterior of said chamber to no more than about 50 degrees C. during use.

The disclosed invention will be better understood by reference to the Detailed Description Section and the Drawings.

SUMMARY OF THE INVENTION

It is therefore a primary purpose and/or objective of the disclosed invention to describe a preferred embodiment of a rotating compensator ellipsometer system which comprises at least four and typically five apertures before, and at least three and typically four apertures after an investigated material system.

It is also a primary purpose and/or objective of the disclosed invention to describe a rotating element ellipsometer or polarimeter and the like system comprising a multiple detector element detector, said entire system being present in an environmental control chamber.

It is another purpose and/or objective of the disclosed invention to describe a method for quickly obtaining data corresponding to a multiplicity of wavelengths, some of which are absorbed when oxygen or water vapor and the like are present, and some of which are not so absorbed.

Other objectives and/or purposes will become obvious by a reading of the Specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a shows the basic components of Reflectance and Transmission Mode Material System Investigation Systems.

FIG. 1b shows the components of a Reflectance Mode Material System Investigation Systems which has five apertures in the pathway of an electromagnetic beam prior to a material system, and four thereafter.

FIG. 1c demonstrates an environmental Chamber into which systems such as demonstrated in FIGS. 1a and 1b systems can be present.

FIG. 1d demonstrates an entire ellipsometer or polarimeter in an environmental Chamber (CH). FIGS. 1e and 1f demonstrate one and multi-dimensional Detectors (DET) comprising a multiplicity of detector elements (DE)’s.

FIG. 2 shows a Spectroscopic Diode Array Spectrometer System Detector.

FIG. 3 shows a Reflectance Mode combination of components shown in FIGS. 1a and 2.

FIG. 4 shows a Reflectance Mode combination of components shown in FIGS. 1a and 2 in which three FIG. 2 spectrographic Diode Array Spectrometer Systems are present and provided input via light fibers.

FIG. 5a shows a Reflectance Mode combination of components shown in FIGS. 1a and 2 in which Multiple Orders produced by a Dispersive Optics are intercepted by multiple Photo Arrays.

FIG. 5b shows a diagram demonstrating use of beam splitters to direct an incident electromagnetic beam into two detectors.

FIG. 6 demonstrates the Parameterization Approach to modeling Calibration Parameters which the disclosed invention utilizes in certain cases.

FIG. 7 demonstrates a “Straight-through” configuration of a Spectroscopic Rotating Compensator Material System Investigation System.

FIG. 8a shows lined diffraction grating dispersion optics geometry.

FIG. 8b shows a blazed angle lined diffraction grating dispersion optics geometry.

FIG. 8c shows a holographic lined diffraction grating dispersion optics geometry.

FIG. 8d shows a prism dispersion optics geometry.

FIG. 9a shows a Fiber Optic which is essentially circular at the left side and which becomes of a “slit” shape at the right side.

FIG. 9b shows a Fiber Optic which is essentially circular shaped along the entire length thereof, and which provides input to a “slit” per se.

FIG. 9c shows a Trifurcated Fiber Optic which is essentially circular at the left side, which trifurcates and then is exemplified as becoming circular or of a “slit” shape at the right side.

FIG. 9d shows a Berek-type Compensator with an Optical Axis perpendicular to a surface thereof.

FIG. 9e shows a Compensator with an Optical Axis parallel to a surface thereof.

FIG. 9f demonstrates construction of a Zero-Order Quartz Waveplate from two Multiple Order waveplates.

FIGS. 9g1, 9g2 and 9g3 demonstrates construction of a preferred compensator system constructed from first and second effective Zero-Order Waveplates, each of which effective Zero-Order Waveplates is a constructed composite of two Multiple order waveplates, the fast axes of which at least two composite effective Zero-Order Waveplates are oriented away from zero or ninety degrees, and at a nominal forty-five degrees, with respect to one another. Optional additional third element(s) are indicated by dashed lines.

FIG. 9g2 shows three Zero Order Plates are contacted to one another instead of having space thereinbetween. Three element Compensators configured as suggested by FIGS. 9g1, 9g2 and 9g3 can comprise a “Pseudo Achromatic” which can provide Retardation vs. Wavelength characteristics such as those presented in FIG. 10g2.
FIG. 9f demonstrates functional construction of another preferred compensator system constructed from first and second actual per se. Zero-Order Waveplates, each of which actual per se. Zero-Order Waveplate is an effective single plate, the fast axes of which at least two composite actual per se. Zero-Order Waveplates are oriented away from zero or ninety degrees, and at a nominal forty-five degrees, with respect to one another.

FIGS. 9g–9l demonstrate additional compensators which can be applied in the present invention.

FIG. 10a shows a plot of a compensator retardation characteristic which depends as (1/\text{wavelength}) of the fast axes, as well as a compensator characteristic. (solid line). FIG. 10b shows calculated retardation vs. wavelength curves for two compensators which demonstrate (1/\text{wavelength}) retardation characteristics, (long and short dashed lines), and the retardation curve, (solid line), of a assembly as demonstrated in FIG. 9g1 which is arrived at by combining said two retarders with a 45 degree angle between the fast axes thereof.

FIG. 10c shows a plot of the solid line curve shown in FIG. 10b.

FIGS. 10d and 10e show results calculated for compensators as demonstrated in FIG. 9g1, wherein one waveplate is selected at 266 NM and the other at 633 NM, and wherein the fast axes are oriented at 45 degrees with respect to one another, over a wavelength range of from 190 to 730 NM. FIGS. 10f and 10g show that changing waveplate selection for a FIG. 9g1 compensator configuration, and the angle between fast axes thereof, provides alternative retardation plots over various wavelength ranges.

FIG. 10h shows retardation vs. wavelength for a three (3) zero order plate compensator. The retardation varies between about 47 degrees and 130 degrees over a wavelength range of 190 to 1700 nm. Said three (3) element compensator comprises a 422 nm quartz Zero Order waveplate sandwiched by two 633 nm quartz Zero Order waveplates. FIGS. 9g1 and 9j, wherein the dashed lines represent a present third waveplate, demonstrate the physical realization.

FIG. 10i shows experimentally determined Compensator Retardance as a function of Wavelength. Note that, except for the presence of harmonic "wiggles", the curve closely corresponds to the calculated curve in FIG. 10c.

FIG. 10j shows experimentally determined Effective Input Polarizer Azimuthal Angle, (including the rotary effect of the Compensator). Note the agreement with FIG. 10e.

FIG. 10k shows the experimentally determined effective Fast Axis of the Compensator Azimuthal Orientation. Note the agreement with FIG. 10f.

FIGS. 10l and 10m show experimentally determined Depolarization factors 'c' factor 'b'. FIGS. 10n–10o show PSI and DELTA Curves experimentally determined for Silicon Substrates with, respectively, 1 Micron, 250 Angstroms and 25 Angstroms of SiO,

FIG. 11a shows a top view of the system of FIG. 11a with outer cover removed. FIG. 11b shows right side view of the system of FIG. 11a with outer cover present.

DETAILED DESCRIPTION

Invention System

Referring now to FIG. 1a, there is demonstrated a Material System Investigation System, (ie. a Spectroscopic Ellipsometer System), with provision to investigate a Material System (MS) in either a Reflection Mode (RM) or a Transmission Mode (TM). It is to be noted that said Material System investigation System is generally comprised of a Source of a Polychromatic Beam of Electromagnetic Radiation (LS), (ie. a Broadband electromagnetic radiation source), a Polarizer Means (P), a Material System, supporting Stage (STG), an Analyzer Means (A) and a Detector Elements (DE's) containing Photo Array Detector Means System (DET). Also note, however, that FIG. 1a shows Reflection Mode System Compensator(s) Means (C) and (C') and Transmission Mode System Compensator(s) Means (C) and (C') as present. It is to be understood that a Compensator Means can be placed ahead of, and/or after a Material System (MS) supporting Stage (STG) in either a Reflection Mode or Transmission Mode System. That is only one Compensator Means (C) or (C') or both Compensator Means (C) and (C') can be present in a Reflection Mode System (RM), and only one Compensator Means (C) or (C') or both Compensator Means (C) and (C') can be simultaneously present in the Transmission Mode System (TM). FIG. 1a also shows the presence of a Processor (PS) for performing calculations that evaluate a sample based on the Detector (DET) intensity output signal. Note that the indicated processor (PS) is not programmed with the same type of algorithm the processor in the Aspnes et al. patents is interpreted as containing.

Now, the configuration in FIG. 1a could be operated as a Rotating Polarizer or Rotating Analyzer System. The disclosed Rotating Compensator Material System Investigation System, however, in the preferred operational mode, essentially fixes the Polarizer Means (P) and Analyzer Means (A) during Data Acquisition from a Material System (Sample) (MS) which is placed upon the Material System supporting Stage (STG), and causes at least one present Compensator Means ((C), and/or (C') or (C) and/or (C')), to Rotate during said Data Acquisition. This serves to effectively enter a continuously varying retardance between Orthogonal Components in a Polarization Beam of Electromagnetic Radiation exiting said Compensator Means which is caused to rotate. Where two (2) Compensator Means are present, one before (C) and one after ((C') or (C')) a Material System placed upon said Material System (MS) supporting Stage (STG), only one, or both said Compensator Means can be caused to Rotate in use. If both Compensator Means are caused to rotate, both can be rotated a the same rotation speed, or different rotation speeds can be utilized. It is noted that the J.A. Woolam CO. Rotating Compensator Ellipsometer uses a "Stepper Motor" to cause Compensator rotation, and a common signal synchronizes both the Compensator and Detector. An alternative technique is to use a signal derived from the motor to synchronize the detector. It is further noted that fixing the Polarizer Means (P) and Analyzer Means (A) in use provides another benefit in that polarization state sensitivity to input and output optics.
during data acquisition is essentially non-existent. This allows use of Optic Fibers, Mirrors, Beam Splitters, Lenses etc. for input/output.

FIG. 1a shows a preferred spectroscopic rotating compensator material system investigation system comprising a source (LS) of polychromatic beam of electromagnetic radiation, a first aperture (A1), a second aperture (A2), a fixed polarizer (P), a rotating compensator (C), a third aperture (A3), a forth aperture (A4), a first substantially achromatic lens (AL1), a fifth aperture (A5), a stage (STG) for supporting a material system, a sixth aperture (A6), a second substantially achromatic lens (AL2), a seventh aperture (A7), an eighth aperture (A8), a fixed analyzer (A), a ninth aperture (A9), a third substantially achromatic lens (AL3), an optical fiber (OF) and a detector system (DET) which contains a dispersive element and a multiplicity of detector elements, there further being a UV filter (F1) present between said source (LS) of polychromatic beam of electromagnetic radiation and said stage (STG) for supporting a material system. When said spectroscopic rotating compensator material system investigation system is used to investigate a material system (MS) present on said stage (STG) for supporting a material system, said fixed analyzer (A) and fixed polarizer (P) are maintained essentially fixed in position and said rotating compensator (C) is caused to continuously rotate while a polychromatic beam of electromagnetic radiation produced by said source (LS) of a polychromatic beam of electromagnetic radiation is sequentially caused to pass through said first aperture (A1), second aperture (A2), fixed polarizer (P), rotating compensator (C), third aperture (A3), forth aperture (A4), first substantially achromatic lens (AL1), fifth aperture (A5), said polychromatic beam of electromagnetic radiation also passing through said UV filter, then interact with a material system (MS) placed on said stage (STG) for supporting a material system (MS), then sequentially pass through said sixth (A6) aperture, second substantially achromatic lens (AL2), seventh aperture (A7), eighth aperture (A8), fixed analyzer (A), ninth aperture (A9), third substantially achromatic lens (AL3), enter said optical fiber (OF) and therevia enter said detector system (DET).

It is also mentioned that in the following it will be generally assumed that a Material System (MS) under investigation by a Spectroscopic Rotating Compensator Material System Investigation System is positioned upon the Material System Supporting Stage (STG). This need not be the case, as is described in U.S. Pat. No. 5,706,087 wherein shown in FIGS. 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i, 5j, 5k, 5l, 5m, 5n, 5o, 5p, 5q, 5r, 5s, 5t, 5u, 5v, 5w, 5x, 5y, 5z, and 5aa wherein a Material System (Sample), (MS), can be positioned in a Magneto-Optic System which is physically too large to be supported by said Material System Supporting Stage (STG), or in an environmental control chamber. Further, especially where Ultraviolet range wavelengths are utilized, the system of FIG. 1a or 1b can be placed into an evacuated or purged, (eg. by nitrogen or argon), Chamber to the end that UV absorbing Oxygen and Water Vapor are not present there within. The entire FIG. 1a or 1b system can be so encompassed within a said Chamber, or only the Sample (MS) Stage portion thereon. The Chamber can be of multiple region construction. FIG. 1c shows a Chamber (CHA) which can be interpreted to contain one or more interior regions and FIG. 1d shows a one region environmental control chamber (CHA). For instance the FIG. 1o Pro-(MS) Polarization State Generator (PSG) and Post-(MS) Polarization State Detector (PSD) can be open to the region containing the Material System (MS), or can be considered to be sequestered by (AC1) and (AC2) so that the internal environments available to each can be controlled to be are the same or different. More specifically, the environmental chamber can have a configuration characterized by a selection from the group consisting of:

it comprises at least one chamber region in which is present polarization state generator (PSG) comprising component(s) prior to said material system, said material system (MS), and polarization state detector (PSD) comprising component(s) after said material system;

it comprises at least three chamber regions, in one of which is present polarization state generator (PSG) comprising component(s) prior to said material system (MS), in the second of which is present the material system (MS) and in the third of which is present polarization state detector (PSD) comprising component(s) after said material system (MS).

The environment in any chamber region can be individually controlled, or the environment in all chamber regions can be similarly controlled. This includes adjusting the chamber regions containing the polarization state generator (PSG) and the polarization state detector (PSD) to be in ambient with only a material system (MS) under investigation being in a Controlled Environment (SES).

FIG. 1d demonstrates an entire ellipsometer or polarimeter in an Environmental Chamber (CHA). Shown in a Controlled Environment (SES), prior to a Stage (STG) with a Sample (MS) present thereupon, are a Source of a Beam (PPCLB) of Electromagnetic Radiation (LS), a Polarizer, a Compensator (C). Also shown are Reflection (RM) and Transmission (TM) Mode sequences of Compensation (C”) (C’’’), Analyzer (A) and Detector (DET) into each of which is shown entering an Electromagnetic Beam (EPCLB).

FIGS. 1e and 1f demonstrate that the Detector (DET) preferably comprises multiple Detector Element (DE’s), as shown in FIGS. 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n, 2o, 2p, 2q, 2r, 2s, 2t, 2u, 2v, 2w, 2x, 2y, 2z, and 2aa wherein a Detector System (DET) is shown consisting of a number of Diode Elements (DE’s), (any functionally equivalent, though structurally different, Detector Element (DE’s) are to be considered equivalent for the purposes of Claim construction). In use a Dispersive Optics (DO) receives a Polychromatic Electromagnetic Beam (EPCLB) which has interacted with a Material System (MS) and passed through said Analyzer Means (A), and diffractions said Polychromatic Electromagnetic Beam (EPCLB), such that
each Photo Array (PA) Diode Element (DE) intercepts an
Essentially Single Wavelength, (eg. a small band of wave-
lengts centered about a central single wavelength). Note
that a Focusing Element (FE) is shown in a dashed line
format to indicate that its presence is optional. The Focusing
Element (FE), when present, serves to provide a focused
Polychromatic Beam of Electromagnetic Waves at the input
to said Detector Elements (DE’s) containing Photo Array
Detector System (DET), and the Detector System (DET)
provides 2ω and 4ω signals developed by the Diode Ele-
ments (DE’s) in a sequential output or a parallel output from
the Diode Elements (DE’s). It is emphasized that a prefer-
ded Detector Elements (DE’s) containing Photo Array
Detector System (DET) is an “Off-the-Shelf-System” which
includes a Focusing Element (FE), and provides a self contained
Dispersive Optics (DO) and Diode Element (DE) Array.
The “Off-The-Shelf-System” of said preferred embodiment of
the Rotating Compensator Material System Investigation
System is a Zeiss Diode Array Spectrometer System iden-
tified by manufacturer numbers in the group: (MMSI
(300–1150 nm); UVVIS MMS (190–730 nm); UV MMS
(190–400 nm); AND IR MMS (900–2400 nm)). Said iden-
tified Zeiss systems provide a very compact system compris-
ing a multiplicity of Detector Elements (DE’s), and
provide focusing via a Focusing Element (FE), Slit (S), and
single concave holographic grating dispersing optics (DO),
as generally represented by FIG. 2. A Hamamatsu CCD
Array Detector. (Series S7030/S7031), with a quantum
efficiency of 40% or more has been successfully utilized.

Note that FIG. 2 also shows the presence of a Beam
Splitter (BS) and a Cross Hair containing Reticule (CH) in
the Detector Elements (DE’s) containing Photo Array Detec-
tor System (DET). If the Beam Splitter (BS), the Dispersive
Optics (DO), the Focusing Element (FE), the Detector
Elements (DE’s) containing Photo Array (PA), and the Cross
Hair containing Reticule (CH) are mounted so as to move as
a rigid unit, then it should be appreciated that causing an
Alignment Electromagnetic Radiation Beam (ALB) which
reflected to said Cross Hair containing Reticule (CH) to be
present near a Cross Hair crossing point can effect good
alignment of the Detector Elements (DE’s) containing Photo
Array Detector System (DET) with respect to an entering
Polarized Beam of Electromagnetic Radiation (EPCLB). In
principle, such an arrangement can be used to good ef-
fect. It is further noted that the element identified as (CH)
could represent a Quadrature Photodetector and Automatic
Alignment Means, or other functionality system.

It is also noted that a Compensator Means (C) (C'), (C")
can utilize an Off-the-Shelf Quarter-Wave-Plate with its
Optical Axis in the plane of a surface thereof, (see FIG. 9e),
and that a Pseudo-Zero-Order Waveplate can be constructed
from two (2) Multiple-Order Waveplates of different thick-
nesses (T1) and (T2) which have Optical Axes oriented
Ninety (90) degrees to one another, such that the overall
effect of retardation is in the Zero-Order, (see FIG. 9f).
As discussed in more detail below, FIGS. 9ga-9j show that
a particularly relevant Compensator Means involves a com-
bination of two compensators means, each selected from the
group consisting of: (actual or pseudo Quarter-Wave-
Plates). Also, a Berek-type Compensator with its Optical
Axis perpendicular to a surface thereof, (see FIG. 9f), can
be implemented without special meniscus Operating
Characteristics, emphasis added. As well, said Compensator
Means (C), (C'), (C") can be made of essentially
any functional material such as Quartz or Polymer etc.

FIGS. 9g1, 9h and 9i demonstrate functional construction of
a preferred compensator means system constructed from
first (Z01) and second (Z02) effectively Zero-Order, (eg.
Quartz or Bicrystalline Cadmium Sulfide or Bicrystalline
Cadmium Selenide). Waveplates, each of which effective
Zero-Order Waveplates (Z01) & (Z02) is shown to be
constructed from two Multiple Order waveplates, (ie.
(MOAA) & (MOAH) and (MOAB) & (MOBH), respectively).
The fast axes (FAA2) & (FAB2) of said second effective
Zero-Order Waveplate (Z02) are oriented away from zero or
ninety degrees, (eg. in a range around a nominal forty-five
degrees such as between forty and fifty degrees), with
respect to the fast axes (FAA1) & (FAB1) of said first
effective Zero-Order Waveplate (Z01). In particular FIG.
9g1 is a cross-sectional side view of a preferred compensator
(PC) constructed from a first effective zero-order plate
(Z01) which is constructed from two multiple order plates
(MOAA) and (MOAH), and a second effective zero-order
plate (Z02) which is constructed from two multiple order
plates (MOAB) and (MOBH). An entered electromagnetic
beam (EMB1) emerges as electromagnetic beam (EMBO)
with a retardation entered between orthogonal components
thereof with a Retardation vs. Wavelength such as dem-
strated in FIGS. 15a-15e. FIGS. 9h and 9i are views looking
into the left and right ends of the preferred Compensator
Means (PC) as shown in FIG. 9g1, and show that the Fast
Axes (FAA2) and (FAB2) of the second effective Zero-
Order Waveplate (Z02) are rotated away from zero or ninety
degrees and are ideally oriented at forty-five degrees, with
respect to the Fast Axes (FAA1) & (FAB1) of the first
effective Zero-Order Waveplate (Z01). (Note that the fast
axis (FAA1) of the first effective Zero-Order Waveplate
(Z01) is shown as a dashed line in FIG. 9i, for reference).
FIG. 9j demonstrates functional construction of another
preferred compensator which is constructed from two per se
single plate Zero-Order Waveplates (MOA) and (MOB),
which are typically made of materials such as mica or
polymer. Note, it is to be understood that the space between
retarder plates in FIGS. 9g1 and 9j can be reduced from that
shown, even to the point where said retarder plates make
contact with one another. Hence the presence of the spatial
separation of the retarder plates shown in FIGS. 9g1 and 9j
is not to be interpreted as indicating a required limitation.
FIG. 9g2 shows three Zero Order Plates are contacted to
one another instead of having space therebetween. These ele-
ment Compensators configured as suggested by FIGS. 9g1,
9g2 and 9j can comprise a “Pseudo-Achromatic” which can
provide Retardation vs. Wavelength characteristics such as
those presented in FIG. 10g2. (See discussion of FIG. 10g2
later in this Specification). Note that FIGS. 9g1 and 9j show
optional third elements present as dashed-lines. Addition of
elements allows achieving a Compensator that provides
better Pseudo-Achromatic characteristics than does a single
dual element Compensator.

It is specifically to be understood that a compensator
means system can be comprised of at least one Zero-Order
waveplate and at least one effectively Zero-Order wave-
plate in combination, as well as combinations comprised of
two actual Zero-Order waveplates or two effectively Zero-
Order waveplates. And, a compensator can comprise more
than two Zero-Order waveplate and/or effectively Zero-Order
waveplates. FIGS. 9g1 and 9j, for instance, demonstrate in
dashed lines the presence of additional Zero-Order wave-
plate and/or effectively Zero-Order waveplates. It is specifi-
cally noted that the dashed lines in FIG. 9g1 can represent
a true single plate Zero-Order waveplate and the dashed
lines in FIG. 9j an effectively Zero-Order waveplate. For
instance, in FIG. 9i, the dashed lines can be an effective
Zero-Order waveplate constructed from plates similar to
into): thereupon. A coating of metal serves to assure a high

Fig. 1b comprises a compensator means (C) which is

dashed line. The Claims are to be understood in light of this
disclosure.

A preferred disclosed invention embodiment as shown in

FIG. 1b comprises a compensator means (C) which is

incorporated by reference here-

arily, made reflective by the presence of a coating of metal

such as those disclosed in Claim 9 of U.S. Pat. No. 5,872,

65

It is specifically to be understood that a present invention

compensator system can be comprised of at least one

Zero-Order waveplate in combination, as well as combinations

comprised of two actual Zero-Order waveplates or two

effectively Zero-Order waveplates).

FIGS. 9k1-9q demonstrate additional compensators which can be applied in the present invention.

FIGS. 9k1 shows that the first additional present invention

retarder system (3) comprises a first triangular shaped ele-

ment (P1), which as viewed in side elevation presents with

first (OS1) and second (OS2) sides which project to the left

and right and downward from an upper point (UP1). Said

first triangular shaped element (P1) first (OS1) and second

(OS2) sides have reflective outer surfaces. Said retarder

system (3) further comprises a second triangular shaped

element (P2) which as viewed in side elevation presents with

first (IS1) and second (IS2) sides which project to the left

and right and downward from an upper point (UP2), said

second triangular shaped element (P2) being made of mate-

ial which provides internally reflective, phase delay intro-

ducing, interfaces on first (IS1) and second (IS2) sides inside

thereof. Said second triangular shaped element (P2) is

oriented with respect to the first triangular shaped element

(P1) such that the upper point (UP2) of said second trian-

gular shaped element (P2) is oriented essentially vertically
directly above the upper point (UP1) of said first triangular

shaped element (P1). In use an input electromagnetic beam

of radiation (LB) caused to approach said first (OS1) side of

said first triangular shaped element (P1) along an essentially

horizontally oriented locus, is shown as being caused to

externally reflect from an outer surface thereof and travel

along as electromagnetic beam of radiation (R1) which is

especially upwardly vertically oriented. Next said em-

electromagnetic beam of radiation (R1) is caused to enter said

second triangular shaped element (P2) and essentially totally

internally reflect from said first (IS1) side thereof, then

proceed along an essentially horizontal locus and essentially

totally internally reflect from the second (IS2) side thereof

and proceed along an essentially downward vertically ori-

ed electromagnetic beam of radiation (R3). This is fol-

lowed by an external reflection from an outer surface of said

second side (OS2) of said first triangular shaped element

(P1) such that said electromagnetic beam (LB') of radiation

proceeds along an essentially horizontally oriented locus,

undeavored and undisplaced from the essentially horizon-

tally oriented locus of said input beam (LB) of essentially

horizontally oriented electromagnetic radiation. This is the
case even when said retarder system (3) is caused to rotate.

The result of said described retarder system (3) application

being that retardation is entered between orthogonal com-

ponents of said input electromagnetic beam of radiation

(LB). Further, said first (P1) and second (P2) triangular

shaped elements are typically right triangles in side eleva-

tion as shown in FIG. 9k1, and the outer surfaces of first

(OS1) and second (OS2) sides are typically, but not neces-

sarily, made reflective by the presence of a coating of metal

thereupon. A coating of metal serves to assure a high reflec-
tainance and good electromagnetic beam radiation intensity throughput. Also, assuming accurately manufactured right angle first (P1) and second (P2) triangular shaped elements are utilized, this compensator design provides inherent compensation of both angular and translational misalignments of the input light beam (LB). As well, the total retardance provided is compensated for angular misalignments of the input electromagnetic radiation beam. That is, if the input electromagnetic radiation beam (LB) is not aligned so as to form an angle of incidence of forty-five (45) degrees with the first outer surface (OS1), the reflected electromagnetic beam (R1) will internally reflect at the first internal surface (IS1) of the second triangular shaped element (P2) at a larger (smaller) angle than would be the case if said angle of incidence were forty-five (45) degrees. This effect, however, is directly compensated by a smaller (larger) angle of incidence of electromagnetic beam (R2) where it internally reflects from inner surface (IS2) of the second triangular shaped element (P2). As another comment it is to be understood that because of the oblique angles of incidence of the reflections from the inner surfaces (OS) and (OS2) of the first triangular shaped element (P1) a polarimeter/ellipsoid meter in which said compensator (3) is present will require calibration to characterize the PSI-like component thereof.

FIG. 9c2 shows a variation (3') on FIG. 9c1, wherein the first triangular shaped element is replaced by two rotatable reflecting means, identified as (OST') and (OS2'). This modification allows user adjustment so that the locus of an entering electromagnetic beam (LB') exits undeviated and undisplaced from an entering electromagnetic beam (LB).

FIG. 9c1 shows that the second additional present invention retarder system (5) comprises a parallelogram shaped element which, as viewed in side elevation, has top (TS) and bottom sides (BS), each of length (d) parallel to one another, both said top (TS) and bottom (NS) sides being oriented essentially horizontally. Said retarder system (4) also has right (RS) and left (LS) sides parallel to one another, both said right (RS) and left (LS) sides being of length (d/cos(α)), where α (α) is shown as an angle at which said right (RS) and left (LS) sides project from horizontal. Said retarder system (4) is made of a material with an index of refraction greater than that of a surrounding ambient. In use an input beam of electromagnetic radiation (LB) caused to enter the left side (LS) of said retarder system (4), along an essentially horizontally oriented locus, is caused to diffracted inside said retarder system (4) and follow a locus which causes it to essentially totally internally reflect from internal interfaces of both said top (TS) and bottom (BS) sides, and emerge from said retarder system (4) as (LB') from the right side (RS) thereof, along an essentially horizontally oriented locus which is undeviated and undisplaced from the essentially horizontally oriented locus of said input beam (LB) of essentially horizontally oriented electromagnetic radiation. This is the case even when said retarder system (4) is caused to rotate. The result of said described retarder system (4) application being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation (LB). It is noted that as long as the third sides (H1) and (H2) of said first (P1) and second (P2) triangular shaped elements are parallel, the output electromagnetic beam (LB') is undeviated and undisplaced from the input electromagnetic beam (LB) in use. It is noted that the triangular shape elements (P1) and/or (P2) can be made of various materials with various indices of refraction, and coating(s) can be applied to one or both of the third sides (H1) and (H2) of said first (P1) and second (P2) triangular shaped elements to adjust retardation entered to an electromagnetic beam (LB).
which causes it to essentially totally internally reflect from internal interfaces of both said top (TS1) and bottom (BS1) sides of both said first and second parallelogram shaped elements (PA1) and (PA2), then emerge from a right side (RS2) of said second parallelogram shaped element (PA2) along an essentially horizontally oriented locus as output beam of electromagnetic radiation (LP) which is undeviated and undisplaced from the essentially horizontally oriented locus of said input beam of essentially horizontally oriented electromagnetic radiation (LB). This is the case even when said retarder system (7) is caused to rotate. The result of said described retarder system (7) application being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation (LB).

FIG. 9o1 shows that the sixth additional present invention retarder system (8) comprises first (BK1) and second (BK2) Berek-type retarders which each have an optical axes essentially perpendicular to a surface thereof. As shown by FIG. 9o2, each of said first (BK1) and second (BK2) Berek-type retarders can have fast axis which are oriented other than parallel to one another, but for the presently described retarder system it is assumed that the fast axes are aligned, (ie. an angle PHI (φ) of zero (0.0) degrees exists between fast axes of the two Berek-type (BK1) and (BK2) plates in FIG. 9o1. Said first and second Berek-type retarders each present with first and second essentially parallel sides. Said first (BK1) and second (BK2) Berek-type retarders are oriented, as viewed in side elevation, with first (LS1) and second (RS1) sides of one Berek-type retarder (BK1) being oriented other than parallel to first (LS2) and second (RS2) sides of the other Berek-type retarder (BK2). In use an incident beam of electromagnetic radiation (LB) is caused to impinge upon one of said first (BK1) Berek-type retarder on one side (LS1) thereof, partially transmit therethrough then impinge upon the second Berek-type retarder (BK2), on one side thereof (LS2), and partially transmit therethrough such that a polarized beam of electromagnetic radiation (LB') passing through both of said first (BK1) and second (BK2) Berek-type retarders emerges from the second thereof in a polarized state with a phase angle between orthogonal components therein which is different than that in the incident beam of electromagnetic radiation (LB), and in a direction which is an essentially undeviated and undisplaced from the incident beam of electromagnetic radiation. This is the case even when said retarder system (8) is caused to rotate. The result of said described retarder system (8) application being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation. For insight it is mentioned that, in general, a Berek-type retarder is a uniaxial anisotropic plate with its optical axis essentially perpendicular to a surface thereof. The retardence introduced to an electromagnetic beam caused to transmit therethrough is determined by a tipping of said plate. The retardation system (8) having two such Berek-type retarders present, is, it is noted, insensitive to small angular deviations in an input electromagnetic beam as each plate contributes approximately half of achieved retardence. This insensitivity results because if the input electromagnetic beam is slightly changed, one of said plates will contribute slightly more (less), but the second slightly less (more) retardence because of offsetting effective plate "tilts" with respect to electromagnetic beams input thereto. Also, said retarder system (8) is very nearly ideal in that the PSl component of the retarder system (8) is very near a constant forty-five (45) degrees. One problem however, is that Berek-type retarder plates exhibit a (1/wavelength) retardance characteristic which, without more, makes use over a wide spectral range difficult.
A variation of the just described retarder system (8) applies to the seventh additional present invention retarder system (9) as well, with the difference being that a FIG. 902 offset angle φ1 (°) other than zero (0.0) is present between fast axes of the two Berek-type plates. The description of the system remains otherwise unchanged. The benefit derived, however, is that a flatter than 1/\lambdabar\text{wavelength}\) retardation characteristic can be achieved thereby.

FIG. 901 serves as the pictorial reference for the eighth additional present invention retarder system (10) which comprises first (BK1), second (BK2), third (BK3) and forth (BK4) Berek-type retarders which each have an optical axis essentially perpendicular to a surface thereof, each of which first (BK1) and second (BK2) Berek-type retarders has a fast axis, said fast axes in said first (BK1) and second (BK2) Berek-type retarders being oriented essentially parallel to one another. This is exemplified by FIG. 902. Said first (BK1) Berek-type retarder presents with first (LS1) and second (RS1) essentially parallel sides and said second (BK2) Berek-type retarders each present with first (LS2) and second (RS2) essentially parallel sides and said first (BK1) and second (BK2) Berek-type retarders are oriented, as viewed in side elevation, with first (LS1) and second (RS1) sides of said first Berek-type retarder being oriented other than parallel to first (LS2) and second (RS2) sides of said second (BK2) Berek-type retarder. In use an incident beam of electromagnetic radiation (LB) is caused to impinge upon said first (BK1) Berek-type retarder on said first side (LS1) thereof, partially transmit therethrough then impinge upon the second (BK2) Berek-type retarder, on said first (LS2) side thereof, and partially transmit therethrough such that a polarized beam of electromagnetic radiation (LB') passing through both of said first (BK1) and second (BK2) Berek-type retarders emerges from the second thereof in a polarized state with a phase angle between orthogonal components therein which is different than that in the incident beam of electromagnetic radiation (LB), and in a direction which is an essentially undeviated and undisplaced from said incident beam of electromagnetic radiation (LB). Each of which third (BK3) and forth (BK4) Berek-type retarders also has a fast axis, and said fast axes in said third (BK3) and forth (BK4) Berek-type retarders are oriented essentially parallel to one another but other than parallel to the parallel fast axes of said first (BK1) and second (BK2) Berek-type retarders. Said third (BK3) Berek-type retarder presents with first (LS3) and second (RS3) essentially parallel sides, and said forth (BK4) Berek-type retarders presents with first (LS4) and second (RS4) essentially parallel sides, and said first third (BK3) and forth (BK4) Berek-type retarders are oriented, as viewed in side elevation, with first (LS3) and second (RS3) sides of one of said third (BK3) Berek-type retarder being oriented other than parallel to first (LS4) and second (RS4) sides of said forth (BK4) Berek-type retarder, such that in use an incident beam of electromagnetic radiation (LB") exiting said second (BK2) Berek-type retarder is caused to impinge upon said third (BK3) Berek-type retarder on said first (LS3) side thereof, partially transmit therethrough then impinge upon said forth (BK4) Berek-type retarder on said first (LS4) side thereof, and partially transmit therethrough such that a polarized beam of electromagnetic radiation (LB"') passing through said first (BK1), second (BK2), third (BK3) and forth (BK4) Berek-type retarders each present with the forth (BK4) thereof in a polarized state with a phase angle between orthogonal components therein which is different than that in the incident beam of electromagnetic radiation (LB) caused to impinge upon the first (LS1) side of said first (BK1) Berek-type retarder, in a direction which is an essentially undeviated and undisplaced from said incident beam of electromagnetic radiation (LB). This is the case even when said retarder system (8) is caused to rotate. The result of said described retarder system (8) application being that retardation is entered between orthogonal components of said input electromagnetic beam of radiation.

A ninth additional present invention retarder system (11) is also pictorially represented by FIG. 904 and is similar to that just described excepting that the Berek-type retarder plates (BK1) and (BK2) fast axes need not be parallel to one another and the Berek-type retarder plates (BK3) and (BK4) need not be parallel to one another. However, if as a group Berek-type retarder plates ((BK1) and (BK2)) and (BK3) and (BK4) are parallel, they can, but need not be parallel the fast axes of Berek-type retarder plates ((BK3) and (BK4))/((BK1) and (BK2)). This embodiment includes the case where all the fast axes of all Berek-type retarders (BK1), (BK2), (BK3) and (BK4) are all different.

Now, and very importantly, even though the Invention disclosed in this Specification is a Rotating Compensator Material System Investigation System which is Spectroscopic, (ie. simultaneously operates on a number of Wavelengths in a Beam containing many Electromagnetic Waves, over a range of, for instance, 190-1700 nanometers), a Compensator Means (C), (C'), (C") utilized therein can provide a Retardance which varies with Wavelength and still be usable. A Compensator Means (C), (C'), (C") does however, typically, have to be of a nature to allow passage of a Polychromatic Electromagnetic Beam therethrough without causing significant Attenuation, Deviation or Displacement in the Direction of Propagation thereof. Particularly as regards Deviation and Displacement, if this is not the case, difficult to compensate complexities are caused in Detector Elements (DE's) containing Photo Array Detector System (DET) Detector Element Output Signals.

The reason a Spectroscopic Ellipsometer can operate with a Compensator Means (C), (C'), (C") that does not provide a Constant Ninety (90) Degree Retardance over a range of Wavelengths, (which would constitute Ideal Characteristics), is that a Regression based Calibration Procedure utilized, (see the Disclosure of the Invention Section of this Specification), provides Wavelength dependent Compensation effecting values for Calibration Parameters as required in a developed Mathematical Model of the Rotating Compensator Material System Investigation System, (i.e/eg. Rotating Compensator Spectroscopic Ellipsometer). As better described in the Disclosure of the Invention Section of this Disclosure, the Inventors develop a Calibration Parameter Containing Mathematical Model of the Rotating Compensator Material System Investigation System by, for instance, utilizing Matrix Representations for various System Components involved, then multiplies out the Matrices in an appropriate order to provide a Transfer Function. This applies for all Wavelengths monitored by a Detector Elements (DE's) containing Photo Array Detector System (DET) Detector Element (DE). Next, Data Set(s) are Experimentally obtained as a function of wavelength and typically as a function of various settings of the Polarizer Means (P) or Analyzer Means (A), (or both could be rotated to various positions), while a Compensator Means (C) rotates at, typically though not necessarily, Twenty (20) to Thirty (30) Hz. Other rotation speeds can be utilized and if two Compensator Means (C) (C') are present one or both can be caused to rotate, and if both are caused to rotate, as mentioned infra herein, they can be caused to rotate at the same, or different, speeds. (Note that Data Set(s) could also be achieved utilizing variation of Angle-Of-Incidence of a
Beam of Polychromatic Radiation with respect to a Material System under investigation. Calibration Parameters in the Mathematical Model are then evaluated by, typically, Mean-Square-Error based Regression onto the Data Set(s). It is also possible to effectively find Calibration Parameter containing Mathematical Expressions for Coefficients of Mathematical Series, (eg. Fourier Series), which comprise the Mathematical Model Transfer Function, and calculate Numerical Values for the Coefficients from the Data Set(s), then effectively perform Regression of said Calibration Parameter containing Mathematical Expressions for Coefficients of Mathematical Series Transfer Function onto said Numerical Values for the Coefficients from the Data Set(s).

It is emphasized that a single Two-Dimensional Data Set has been found sufficient to allow excellent Calibration results to be achieved. Said Two-Dimensional Data Set typically is Intensity vs. Wavelength, and Polarizer Means or Analyzer Means Azimuthal Rotation Angle settings. In addition, said Two-Dimensional Data Set can be obtained from a Rotating Compensator Material System Investigation System oriented so that a Polychromatic Beam of Electromagnetic Radiation interacts with a Material System, (ie. the “Sample Present” Mode—see FIGS. 1a, 1b, 3, 4, and 5), or such that said Polychromatic Beam of Electromagnetic Radiation passes through the Rotating Compensator Material System Investigation System without interacting with a Material System, other than a Material System, comprised of “Open Atmosphere”, (ie. the “Straight-Through” Mode—see FIG. 7).

The Rotating Compensator Material System Investigation System can also, of course, be Calibrated utilizing more than one Data Set and such a procedure is reported in U.S. Pat. No. 5,706,212, wherein a Rotating Compensator Material System Investigation System utilized in the Infra-red band of wavelengths, requires that two (2) Data Sets be present, (eg. selected with the Rotating Compensator Material System Investigation System oriented in a manner selected from the group: (“Straight-Through”, “Material System Present”, “Alternative Material System Present”)). Both Data Sets are simultaneously utilized in a Regression Procedure to evaluate numerous Calibration Coefficients in a Mathematical Model which is described in the 212 patent. The reason that only one (1) Data Set is sufficient to practice the described Calibration Procedure is that the number of Calibration Parameters required by the Mathematical Model of the system, (which is not operated in the Infra-red range of wavelengths), is much fewer that the number of Calibration Parameters required by the Mathematical Model of the Rotating Compensator Material System Investigation System operated in the Infra-red range of wavelengths. The Rotating Compensator Material System Investigation System Mathematical Model typically involves as few as Five (5) Calibration Parameters, (where only one Compensator Means is present), in combination with simultaneous determination of a Material System PSI and DELTA. (It is noted that a straight-through mode essentially provides open atmosphere as a Material System and that the PSI and DELTA of open atmosphere are forty-five (45) degrees and zero (0.0) degrees, respectively). Said Five (5) Calibration Parameters are Azimuthal Orientation Angles for Polarizer Means (Ps), Analyzer Means (As), Compensator Means (Cs), and Compensator Retardance Parameters (PO) and (PI). (Note that the (Ps), (Cs) and (As) Azimuthal Orientation Calibration Angles can be thought of as serving to align the Polarizer Means, Compensator Means and Analyzer Means Azimuths with a Material System, (Sample), Frame of Reference). Of course, if two Compensator Means are present then an additional Compensator Orientation Angle (Cs2) and Compensator Retardance Parameters (PO') and (PI') would also have to be evaluated. (It is noted that Retardation entered between orthogonal components of a Polarized Electromagnetic Beam, by a Compensator Means, is accounted for by a Matrix Coefficient, and typically the 4th term of a Jones Matrix, but such is accounted for by Compensator Retardation Parameters (PO), (PI), (PO'), (PI') in the presently described Calibration Procedure).

A more complex calibration procedure provides for obtaining two (2) or three (3) data sets, and simultaneously regressing thereonto. A more complex calibration procedure can be beneficial where, for instance, a large wavelength range is being utilized and/or where multiple Angles of Incidence are to be utilized, and/or where it is desired to determine component “De-Polarization” effects and/or evaluate Mueller Matrix components. Where a multiple data set calibration procedure is practiced, a first data set is typically obtained utilizing a silicon substrate sample with two-hundred (200) to three-hundred (300) Angstroms, (eg. a nominal two-hundred-fifty (250) Angstroms), of silicon dioxide on the surface thereof. A second data set can be obtained utilizing a sample which provides a large Ellipsometric PSI value, and an Ellipsometric DELTA value of between thirty (30) and one-hundred-fifty (150) degrees. Internal reflections from the hypotenuse of a right angle prism, either uncoated or coated with aluminum, or an optically thick metallic film, will provide such characteristics. FIGS. 1a, 1b, 3, 4 and 5 demonstrate sample present data set gathering configurations of a Rotating Compensator Ellipsometer System. A third data set can be obtained with the ellipsometer system configured in a “straight-through” configuration, (see FIG. 7), wherein the effective sample PSI is forty-five (45) degrees and the effective sample DELTA is zero (0.0) degrees.

In general, the disclosed invention provides that at least one, at least one-dimensional, data set(s) be obtained utilizing a selection from the group consisting of:

- all of said at least one, at least one-dimensional data set(s) are obtained utilizing a single material system (MS) placed on said stage (STG) for supporting a material system (MS), with which material system (sample) (MS) the beam of electromagnetic radiation (PPCLB) is caused to interact;
- at least one of said at least one, one-dimensional data set(s) is obtained utilizing one material system (sample) (MS) placed on said stage (STG) for supporting a material system (sample) (MS), and at least one other of said at least one, at least one-dimensional data set(s) is obtained utilizing another material system (sample) (MS) placed on said stage (STG) for supporting a material system (sample) (MS), with which material system(s), (samples), (MS) the beam of electromagnetic radiation (PPCLB) is caused to interact; and
- at least one of said at least one-dimensional data set(s) is obtained with the spectroscopic rotating compensator material system investigation system oriented in a “straight-through” configuration wherein a polychromatic beam of electromagnetic radiation (PPCLB) produced by said source (LS) of a polychromatic beam of electromagnetic radiation, is caused to pass through a Material System (sample) (MS), pass through said analyzer means (A), and interact with said dispersive optics (DO) such that a multiplicity of essentially single wavelengths are caused to simultaneously enter a corresponding multiplicity of detector elements (DE’s) in said at least one detector system (DET), with said
polychromatic beam of electromagnetic radiation (PP-CLB) also being caused to pass through at least one compensator means (C) (C') (C") but without being caused to interact with any material system, (sample), (MS) placed on said stage (STG) for supporting a material system, (sample), (MS).

(Note: Preferred practice is to obtain at least two, at least one dimensional data sets; or at least one multiple dimension data set upon which to regress).

Continuing, where a multiple data set calibration procedure is utilized to calibrate a rotating compensator material system investigating system for measuring Ellipsometric and Depolarization/Mueller Matrix values, it is also disclosed that it has been found desirable to normalize data to D.C. in some portions of the calibration, and to an A.C. derived term in other portions thereof.

A method of calibrating a Spectroscopic Ellipsometer System can comprise the steps of:

a. providing a spectroscopic ellipsometer for evaluating a sample comprising:
- broadband electromagnetic radiation source means generating a beam having wavelengths extending over a range of at least 200 to 800 nm;
- polarizer means disposed in the path of said beam;
- compensator means disposed in the path of the beam, said compensator means being caused to pass through said compensator means;
- analyzer means that interact with the beam after the beam interacts with the sample and the compensator means;
- detector means that measure the intensity of the beam after the interaction with the analyzer means at a plurality of wavelengths across the wavelength range of at least 200 to 800 nm;
- said detector means generating a time varying intensity signal simultaneously comprising 2o and 4o component signals, said 2o and 4o signals being simultaneously present at all wavelengths measured unless the 2o signal is forced to 0.0 by a sample presenting with an ellipsometric DELTA of 0.0 as opposed to being caused to be 0.0 by said compensator means;
- developing a mathematical model of said spectroscopic ellipsometer system which comprises as calibration parameter(s) at least one selection from the group consisting of:
 - effective polarizer means azimuthal angle orientation;
 - present sample PSI (q), as a function of angle of incidence and a thickness;
 - retardations of said compensator means as a function of wavelength;
 - compensator means azimuthal angle orientation;
 - matrix components of said compensator means;
 - analyzer means azimuthal angle orientation;
 - which mathematical model is effectively a transfer function which enables calculation of electromagnetic beam magnitude detected by a detector element, given magnitude provided by said broadband electromagnetic radiation source means generating a beam having wavelengths extending over a range of at least 200 to 800 nm;
- causing a polychromatic beam of electromagnetic radiation produced by said broadband electromagnetic radiation source means, to pass through said polarizer means, interact with a sample caused to be in the path thereof, pass through said analyzer means, and enter detector elements in said detector means, with said polychromatic beam of electromagnetic radiation also being caused to pass through said compensator means;
- obtaining data as described by a selection from the group consisting of:
 - at least one multi-dimensional data set(s);
 - at least two, at least one-dimensional data sets;
 - said data set(s) being magnitude values vs. parameter(s) selected from the group consisting of:
 - wavelength;
 - angle-of-incidence of said polychromatic beam of electromagnetic radiation with respect to a present material system;
 - effective or actual azimuthal angle orientation of one element selected from the group consisting of:
 - said polarizer;
 - said analyzer;
- obtained over time, while at least one of said at least one compensator is caused to continuously rotate;
- at least one, multi-dimensional data set(s) being obtained utilizing a selection from the group consisting of:
 - all of said at least one multi-dimensional data set(s), being obtained utilizing a single sample;
 - at least one of said at least one multi-dimensional data sets being obtained utilizing one sample, with another of said at least one multi-dimensional data sets being obtained utilizing another sample; and
- at least one of said at least one multi-dimensional data set(s) being obtained with the spectroscopic ellipsometer oriented in a “straight-through” configuration wherein a polychromatic beam of electromagnetic radiation produced by said broadband electromagnetic radiation source means, generating a beam having wavelengths extending over a range of at least 200 to 800 nm, is caused to pass through said polarizer means, pass through said analyzer means and enter detector elements in said at least one detector system, with said polychromatic beam of electromagnetic radiation also being caused to pass through said compensator means but without being caused to interact with any sample other than open ambient atmosphere;
- c. normalizing data in each said at least one, multi-dimensional, data set(s) with respect to a selection from the group consisting of:
 - a data set D.C. component;
 - a data set A.C. component;
- a parameter derived from a combinations of a data set D.C. component and a data set A.C. component;
- f. performing a mathematical regression of said mathematical model onto said normalized at least one, multi-dimensional, data set(s), thereby evaluating calibration parameters in said mathematical model;
- said regression based calibration procedure serving to evaluate parameters in said mathematical model for non-achromatic characteristics and/or non-idealties and/or positions of at least one selection from the group consisting of:
 - effective azimuthal angle of said polarizer means;
 - azimuthal angle of said compensator means;
 - retardation of said compensator means;
 - matrix components of said compensator means;
 - depolarization/Mueller Matrix components; and
 - azimuthal angle of said analyzer means.
- g. optionally repeating steps e. and f. utilizing a different selection in step e. in normalizing data.
Continuing, the 630 patent Method of Calibrating a Spectroscopic Rotating Compensator Material System Investigation System describes, in the step of calculating values of Coefficients of a Transfer Function from said Data Set, the calculation of values of Coefficients of a Fourier Series. Additionally, said 630 patent Method of Calibrating a Spectroscopic Rotating Compensator Material System Investigation system can further comprise the step of Parameterizing Calibration Parameters by representing variation as a function of Wavelength, (or perhaps Angle-Of-Incidence of said Polychromatic Beam of Electromagnetic Radiation with respect to a Surface of an Investigated Material System, (Sample), or Other Variable), by a Calibration Parameter containing Mathematical Equation, Calibration Parameter(s) in said Calibration Parameter containing Mathematical Equation being evaluated during said Mathematical Regression. When this is done, the Calibration Parameter containing Mathematical Equation provides a functional relationship, and, it is noted, can even be a constant value over a range of, for instance, Wavelengths and/or Polarizer Azimuthal Angle settings.

It is further noted that the at least Two Dimensional Data Set can be obtained with the Spectroscopic Rotating Compensator Material System Investigation System oriented in a “Straight-Through” or “Material-System-(Sample)-Present” configuration. In the first configuration open atmosphere essentially constitutes a material system, and a Polychromatic Electromagnetic Beam passes directly through the Polarizer, Compensator and Analyzer into the Detector System. In the second configuration a Material System is present which presents PSI and DELTA values other than those of the open atmosphere so that a Polychromatic Electromagnetic Beam passes through the Polarizer, possibly a Compensator, and then interacts with a Material System before passing through, possibly a Compensator, an Analyzer and into the Detector System. Compensation(s) should be understood, can be present before and/or after the Material System.

Preferred calibration procedure practice provides that data be normalized to A.C. where determining compensator means retardation (R), polarizer means azimuth (P) and compensator means fast axis azimuth (C) are fit, and that data be normalized to D.C. where optical element Depolarization/Mueller Matrix values are fit.

Now, it is to be understood that the system of the Spectroscopic Rotating Compensator Material System Investigation System is basically found in a combination of components shown in FIGS. 1a, 1b, 1c and 2, the basic result of said combination, for a Reflection Mode System, being shown in FIG. 3. That is, FIG. 3 shows a Spectroscopic Reflection Mode version of the Rotating Compensator Material System Investigation System shown in FIG. 1a, with the FIG. 2 Detector Elements (DE's) containing Photo Array Detector System (DET) shown present directly after the Analyzer (A).

FIG. 4 shows a Reflection Mode System configuration in which three (3) Detectors (Det 1), (Det 2) and (Det 3) are fed input by Fiber Optics (LFI), (LIF2) and (LF3) in a Fiber Optic Bundle exiting Fiber Optic Connector (LFC). Said Fiber Optic Connector (LFC) receives a Polarized Electromagnetic Beam (PCLB) exiting the Analyzer (A), (Note that a FIG. 9c at least Bifurcated Fiber Optic could be utilized). Said three (3) Detectors (Det 1), (Det 2) and (Det 3) can be previously disclosed Off-the-shelf Zeiss Diode Array Spectrometers, and each comprise a Focusing Element (FE) in functional combination with a Dispersive Optics (DO) and a Diode Element (DE) containing Photo Array (PA).

FIG. 5a shows that the described system can cause a Polychromatic Beam of Polarized Electromagnetic Radiation (PPCLB) to, after interaction with a Material System (MS), reflect therefrom. FIG. 5a shows that the Reflected Polarized Beam of Electromagnetic Radiation (RPCLB), is caused to impinge upon a Dispersive Optics (DO), (eg. a Diffraction Grating), such that a plurality of Orders (+ORD2, +ORD1, -ORD1 and -ORD2) are produced. Each said Order is comprised of a spectrum of Wavelengths, and FIG. 5a shows that Wavelengths in said Orders (+ORD2, +ORD1, -ORD1 and -ORD2) can be intercepted by Detector elements (DE's) in Photo Arrays (PA). Some embodiments of a Rotating Compensator Ellipsometer System utilize such a system. It is noted that the Dispersive Optics (DO) is typically rotatable so that the direction each Order of wavelengths generally proceeds from said Dispersive Optics (DO) is adjustable. Note that FIG. 5a also shows the presence of Filters (F1), It is noted that Wavelengths for adjacent Orders overlap, said Filters (F1) allow a user to pass only desired Wavelengths, as well as reduce background radiation entry to Photo Arrays (PA's). Typically a Focusing Element is not present in a FIG. 5a embodiment.

It is also noted that Fiber Optics, such as demonstrated in FIGS. 9a-9c, can be utilized to carry Polychromatic Electromagnetic Radiation from a Source thereof (S) to a position of a Polarizer Means (P), or from the position of an Analyzer Means (A) to a Detector (DET) in FIGS. 1a-5a. Analogously similar figures to those shown in FIGS. 3-5a, but oriented for use in a Transmission Mode are not shown, but should be understood as within the scope of the implied by FIG. 1a.

FIG. 6 demonstrates a Parameterization® approach to modeling Calibration Parameters in a Mathematical Model which was of more importance in the methodology of U.S. Pat. No. 5,872,630. Said example is retained herein as it is easy to understand. In that light, it must be understood that Calibration Parameters are often a function of Wavelength. For instance, the Retardation provided by a Compensator often varies inversely with wavelength. Where this is the case, typical Mathematical Regression based evaluation of Calibration Parameters requires that a value for a Calibration Parameter be determined at each wavelength monitored. However, FIG. 6 shows that a plot of a Calibration Parameter vs. Wavelength can yield a locus which can be accurately modeled by a Mathematical Equation which requires only a few constants be known to allow calculation of the Calibration Parameter at a given Wavelength. For instance, FIG. 6 shows that a value for a Wavelength W(t) can be calculated knowing a Channel Number (n), (ie. Diode Element in an Array, such as shown in FIGS. 2-5), from which a signal is obtained, and values for three constants C0, C1 and C2. Knowing values for Parameters CP0 and CP1 as well allows calculating a Calibration Parameter Value (CP) given a Diode Element Array Channel number (n). It can occur that (n) is two-hundred (200) or more and if a non-Parameterized approach to calibration is utilized, two-hundred (200) or more values for Calibration Parameter CP would have to be determined and stored. However, utilizing the Calibration Parameter Parameterization approach, it can be seen that a Regression procedure must return values for only Two (2) variables, (CP0 and P1). Also, if a Calibration Procedure were selected to include Angle-Of-Incidence (AOI) as a Data Set variable, it is known that where a Calibration Procedure utilizes a “Material System Present”
configuration for acquiring data, that the PSI and DELTA values for the Material System, (Sample), will vary with said (AOI), and Material System and/or Surface Layer thereupon Thickness. (Note, said PSI and DELTA are equivalent to Calibration Parameters in a Regression procedure which serves to evaluate Calibration Parameters based upon Data obtained with a Material System present approach). A similar Parameterization approach could be applied to provide equations for calculating a PSI and a DELTA value given an (AOI) and/or, Material System or Surface Layer thereupon Thickness, each of said equations involving only a few variables which would have to be evaluated by a Regression procedure. (Note, the concept of “Parameterization” is often encountered in the modeling of Dielectric Functions, wherein one or more Lorentz Oscillator(s) is/are utilized. Lorentz Oscillator Structures require only a Magnitude, Energy and a Broadening Calibration Parameter be evaluated to be fully defined. Some peak regions of a Dielectric Function can be adequately modeled by said three evaluated Calibration Parameters, however, the peak and tail regions of a Lorentz Oscillator Structure are not mathematically separate and while a Lorentz Oscillator Structure might adequately define a peak region in a Dielectric Function plot, it is often inadequate in non-peak regions. This problem is the focus in U.S. Pat. No. 5,796,983 which teaches Finite Width Oscillator Structures comprised of Finite Order Polynomials and/or Finite Magnitude Essentially Zero Width Discontinuities as replacement for Lorentz Oscillator Structures). Where beneficial, Parameterization of Calibration Parameters can be utilized. That is, where a plot of a Calibration Parameter vs. a Data Set Independent Variable demonstrates that Parameterization can be applied with benefit, the Parameterization of Calibration Parameter approach, with respect to some Data Set Independent Variable, can be applied.

Continuing, the described invention achieves a Spectroscopic Rotating Compensator Material System Investigation System (eg. Spectroscopic Rotating Compensator Ellipsometer System), preferably utilizing an “Off-The-Shelf” compact Spectrometer Systems, and utilizing “Off-The-Shelf” Compensator Means Components which are not at all “ideal”, as regards Achromaticity. To put this into perspective, it is noted that prior to about 1997, there was no known Spectroscopic Rotating Compensator Ellipsometer available in the market-place. It is believed that this is because it has previously been believed that to achieve such a System an Achromatic Rotating Compensator (RC) would be required. Such Compensators are not generally commercially available, hence, are expensive and reasonable approximations thereof typically must be individually fabricated. (Note, as described in U.S. Pat. No. 5,706,212, a Dual-Rhomb Rotating Compensator (RC) which provides about seven (7%) percent variation in Retardation effected over a range of Wavelengths of approximately 2 to 14 microns, has been developed at the University of Nebraska. However, it is not clear that the identified University of Nebraska Dual-Rhomb Rotating Compensator (RC) would operate “Substantially Achromatically” outside the identified range of wavelengths, but would rather, as is generally the case with all physically realizable Compensators, it would operate Pseudo-Achromatically over a larger wavelength range). For further information, FIGS. 8a through 8d show various Dispersive Optics geometries. FIG. 8a shows a lined geometry diffraction grating (DGIDO). The grating lines (GL) are essentially rectangular in cross-section with a spacing (a) therebetween. FIG. 8b shows a “Blazed” geometry Diffraction Grating Dispersive Optics (BDGIDO). The Blazing Angle (BA) shifts reflected diffracted energy between “Orders” such into +ORD1 and -ORD1 from a typically useless ORD0 which projects perpendicularly back from the surface of said Dispersive Optics shown in FIG. 8a. FIG. 8c shows a cross-sectional view of a Holographic Diffraction Grating Dispersion Optics (HDGIDO) as is present in the Off-the-Shelf (Zeiss Diode Array Spectrometer systems identified infra herein. Said Zeiss Systems utilize a Holographic configuration in a concave shaped system). FIG. 8d shows a Prism Dispersive Optics (PLO), with a Polarized Polychromatic Electromagnetic Beam (PPCL) entering Side (S1), and exiting Side (S2) and Side (S3) as Diffracted Beams in two “Orders” (ORDQ1) and (ORDQ1) respectively. Note that a coating (OC) causes partial internal reflection of beam (PPCCBA) into beam (PPCLBB) to produce two “Orders”. Any functional Diffraction effecting element can be utilized as a Dispersive Optics (DO) in the described invention.

As the invention can utilize Fiber Optics, certain geometries thereof are shown in FIGS. 9a through 9e. FIG. 9a shows a Fiber Optic which is essentially circular at the left side and which becomes of a “slit” shape at the right side. FIG. 9b shows a Fiber Optic which is essentially circular shaped along the entire length thereof, and which provides input to a “Slit” per se., (as is functionally utilized in the embodiment shown in FIG. 2). The effects achieved by the Fiber Optics in FIGS. 9a and 9b are similar. FIG. 9c shows a Trifrucated Fiber Optic which is essentially circular at the left side, which trifurcates and then is exemplified as becoming circular or a of a “slit” shape at the right side. Use of an effectively Trifurcated Fiber Optics is shown applied in FIG. 4. (Noted that Optical Fibers are utilized only as convenient means by which to transport electromagnetic radiation and do not to modify polarization state. Also, it has been found that a beam splitter can be used instead of the bifurcated fibers. FIG. 5b, for instance, shows a diagram demonstrating use of beam splitters to direct an incident electromagnetic beam into two detectors. The beam splitters can be a “polka-dot” type, (ie. Edmond Scientific part number 46-457 comprising a plate which is effectively high coated with a multiplicity of reflective regions), or stacked filters, or alternatively various bandgap materials, (eg. Si, Ge, GaN, ZnSe, ZrTe ZrCd etc.) can be substituted for the FIG. 5b system which reflect certain wavelengths and transmit others. FIG. 5b also shows use of a beam splitter to provide a 10% of incident electromagnetic beam as an alignment beam directed into a four quadrant detector, and demonstrates optional use of reflective means, (eg. a simple mirror or perhaps beam folding optics as described in U.S. Pat. No. 5,969,818 to Johns et al.). The presence of focusing lenses (optional), is also demonstrated, as are the presence of, where functional, fiber optic means to guide electromagnetism to indicated detectors #1 and #2.

Turning now to FIG. 11a, there is shown a perspective view of a disclosed system for providing ultraviolet wavelength electromagnetic radiation, demonstrating major elements thereof. Note the indication of the presence of a cooling fan, (present under the shown cooling fan cover), and a chamber with an enclosed space, (with the cover removed thereby making it not enclosed as viewed), in which are present the anode and cathode connectors for a Sourcing Lamp (eg. a Xenon (Xe) Arc Lamp). Also shown are means for allowing produced ultraviolet radiation to exit as a collimated beam, (eg. a Pin Hole and Lens Assembly, (ie. Lens Means), inside a Lens Tube Air Flow Shield). The Pin Hole and Lens Assembly are generally identified as an Optics Assembly in FIG. 11c.
FIG. 11b shows a right side elevational view of the system of FIG. 11a again showing the annode and cathode connectors for a Xenon (Xe) Arc Lamp, and a means for allowing produced ultraviolet radiation to exit as a collimated beam, (eg. a Pin Hole and Lens Assembly, (ie. Lens Means), inside a Air Flow Shield, (ie. a protective tube which serves to prevent air flow by said lens means).

FIG. 11c shows a right side view of the system of FIG. 11a with outer cover removed. Note in particular that a Heat Pump Assembly, (ie. heat transfer means), is shown projecting from the location of the cooling fan, (which is under the cooling fan cover and is a gas flow production means for causing said flow of gas over said heat sink), into the enclosed space, (see FIGS. 5 and 6 for view of enclosed space with enclosing covers present), in which the Source Lamp is located. The heat transfer means is situated to accept heat from said source lamp and conduct it outside said enclosed space to a heat sink to which the cooling fan provides a flow of gas. FIG. 11c also indicates an electronics cooling fan, where said electronics comprise means for providing electrical potential to said source lamp via the means for providing electrical potential to said source lamp, (eg. the HV Feedthrough).

FIG. 11d shows a top view of the system of FIG. 11a with outer cover removed. Shown are an Inner Lamp Housing, the Xenon (Xe) Lamp, and the electronics cooling fan, as well as a High Voltage (HV) Feedthrough, an Ignition PCB and Electrical Connector.

FIG. 11e shows a top view of the system of FIG. 11a with outer cover removed, (Lamp Access Door) present thereby completing the sequestering of the enclosed space in which is present the Xenon (Xe) Lamp identified in previous the drawings 1-4.

FIG. 11f shows right side view of the system of FIG. 11a with outer cover present. Note for reference the indication of the Lamp Access Door also shown in FIG. 11e.

Method of Calibration Disclosed in U.S. Pat. No. 5,872,630.

Note, U.S. Pat. Nos. 5,872,630 and 6,353,477 present the mathematical equation basis for the regression based ellipsometer calibration discussed herein, and while incorporated by reference herein, presentation of the derivation thereof is lengthy and is not repeated in this application which is focused on presenting preferred rotating compensator system embodiment aspects. The interested reader should consult the 630 and 477 patents for additional detailed insight to the regression calibration procedure.

Continuing, in use the Spectroscopic Rotating Compensator Material System Investigation System is modeled mathematically, with Calibration Parameters being included in said Mathematical Model. Said Calibration Parameters are evaluated by a regression based approach based upon Data Set(s) obtained at a multiplicity of Angles-of-Incidence, and/or Wavelengths and/or Polarizer or Analyzer Rotation Angle Settings etc. (Note that a relatively easily obtained Two Dimensional Data Set as a function of Wavelength, and either Polarizer or Analyzer Azimuthal Angle Setting, is greatly preferred and has been found to be sufficient). As mentioned infra herein, typically, Matrix representations of the Polarizer Means (P), Compensator Means (C), Analyzer Means (A), are utilized, with calibration parameters appearing in Matrix Components. Once evaluation of the Spectroscopic Rotating Compensator Ellipsometer System (RC) Calibration Parameters is effected, a Material System (MS) can be subjected to investigation thereby, with otherwise unexplained changes effected in a Beam of Polarized Electromagnetic Radiation (LB), present after interaction with a Material System (MS), being attributed to said Material System (MS). (It is also to be noted that PSI and DELTA associated with a Material System at a specific Angle-of-Incidence can be simultaneously evaluated with Calibration Parameter values if a Data Set is obtained utilizing a Material System present mode and the Mathematical Model includes said Material System PSI and DELTA as functions of, for instance, Material System Thickness and/or Material System Surface Layer Thickness, and Angle of Incidence of the Electromagnetic Beam with respect to the Material System Surface, as Fit Parameters).

APPLICATION RESULTS

FIG. 10a shows a plot of a compensator retardation characteristic which depends as (1/wavelength), (dashed line), as well as a compensator characteristic, (solid line). The important thing to note is that a selected range of wavelengths over which a retardation of between seventy-five (75) and one-hundred-thirty (130) degrees is developed, is much greater for said compensator means. As disclosed in the Disclosure of the Invention Section of this Specification, a spectroscopic rotating compensator material system investigation system typically comprises at least one compensator means which produces a retardance of, preferably, between seventy-five (75) and one-hundred-thirty (130) degrees over a range of wavelengths defined by a selection from the group consisting of:

a. between one-hundred-ninety (190) and seven-hundred-fifty (750) nanometers;
b. between two-hundred-forty-five (245) and nine-hundred (900) nanometers;
c. between three-hundred-eighty (380) and seventeen-hundred (1700) nanometers;
d. within a range of wavelengths defined by a maximum wavelength (MAXW) and a minimum wavelength (MINW) wherein the ratio of (MAXW)/(MINW) is at least one-and-eighth-tenths (1.8).

Acceptable practice however, provides for the case wherein said compensator provides a retardation vs. wavelength characteristic retardation range of less than Ninety (90) degrees over a range of Thirty (30.0) and less than one-hundred-thirty (135) degrees, over a range of wavelengths selected from MINW to MAXW by a selection from the group consisting of:

a. MINW less than/equal to one-hundred-ninety (190) and MAXW greater than/equal to seventeen-hundred (1700) nanometers;
b. MINW less than/equal to two-hundred-twenty (220) and MAXW greater than/equal to one-thousand (1000) nanometers;
c. within a range of wavelengths defined by a maximum wavelength (MAXW) and a minimum wavelength (MINW) range where (MAXW)/(MINW) is at least four-and one-half (4.5).

(Note: the specified values and ranges can not be achieved by single plates with (1/wavelength) retardation characteristics).

FIG. 10b shows calculated retardation vs. wavelength curves for two compensators which demonstrate (1/wavelength) retardation characteristics, (long and short dashed lines), and the retardation curve, (solid line), of an assembly configuration as demonstrated in FIG. 9c which is arrived at by combining said two retarders with a 45 degree angle between the fast axes thereof.

US 7,158,231 B1
FIG. 10c shows a re-scaled plot of the solid line curve shown in FIG. 10b.

FIGS. 10d and 10e show results calculated for a compensator means as demonstrated in FIG. 9g1, wherein one waveplate is selected at 266 NM and the other at 633 NM, and wherein the fast axes are oriented at 45 degrees with respect to one another. The wavelength range is from 190 to 730 NM, (ie. deep UV to Visible). FIG. 10f shows the calculated effective fast axis orientation of a two plate compensator means and FIG. 1e shows the calculated effective rotary power. Also, as discussed in the Jones paper identified in the Background Section of this Specification, an arbitrary sequence of retarder elements can be mathematically represented by a single compensator means with “effective” retardance, fast axis and rotary power.

FIGS. 10f and 10i1 show that changing waveplate selection for a FIG. 9g1 compensator means configuration, and the angle between fast axes of the compensator means members thereof, provides alternative retardation plots over various wavelength ranges. FIG. 10f provides results for wavelengths between 245 and 850 NM, when waveplate selection involves 266 nm waveplates at 532 NM and 1550 NM, and angle between fast axes of 50 degrees. FIGS. 10f and 10i1 are included to show that compensator means design can be easily carried out, with the end result that retardations of between 75 and 130 degrees can be achieved over various wavelength ranges.

FIG. 10g2 shows retardation vs. wavelength for a three (3) Zero-Order plate element compensator as can be realized such as suggested by FIGS. 9g1, 9g2 and 9j. Note the retardation varies between about 47 degrees and 130 degrees over a wavelength range of 190 to 1700 nm. Said three (3) element compensator comprises a 422 nm quartz Zero Order waveplate sandwiched by two 633 nm quartz Zero Order waveplates. The azimuth of the 422 nm Zero Order waveplate is oriented +41 degrees with respect to the azimuth of the first 633 nm Zero Order plate, and the azimuth of the second 633 nm Zero Order Plate is oriented ~33 degrees with respect to the azimuth of the first 633 nm Zero Order Waveplate. This compensator design then provides a retardance characteristic which varies over a range less than 90 degrees over a wavelength range, which retardance does not exceed 130 degrees. Note specifically that the retardation vs. wavelength characteristic retardation range is less than Ninety (90) degrees over a range bounded by Thirty (30.0) to less than one-hundred-thirty-five (135) degrees, over a range of wavelengths specified from a MINW of one-hundred-ninety (190), and a MAXW of seventeen-hundred (1700) nanometers, hence, even though the range of its retardation is between about 47 and 130 degrees, it is covered by Claim language which recited boundaries of 30 and less than 135 degrees.

FIGS. 10h-10j show various experimentally obtained plots utilizing a J.A. Woollam CO. Inc. Rotating Compensator Ellipsometer System, (ie. the “M-2000”™). Curves in FIGS. 10h-10j were extracted using A.C. Normalization while curves in FIGS. 10h-10l were extracted using D.C. Normalization. In particular, FIG. 10h shows azimuthal Compensator Means Retardance as a function of Wavelength. Note that, except for the presence of harmonic “wiggles”, (which are due to the imperfect alignment of the “effective” zero-order waveplate), the curve closely corresponds to the calculated curve in FIG. 10c. FIG. 10i shows Effective Input Polarizer Means Azimuthal Angle, (including the rotary effect of the Compensator). FIG. 10j shows the effective Fast Axis of the Compensator Means Azimuthal Orientation. FIG. 10k shows Depolarization factor ‘c’ and FIG. 10l shows Depolarization factor ‘b’. (Note in particular the excellent agreement between plots in FIGS. 10c-10e, and FIGS. 10h-10j).

FIGS. 10m-10o show familiar PSI and DELTA Curves obtained with a Rotating Compensator Ellipsometer System, for Silicon Substrates on, respectively, 1 Micron, 250 Angstroms and 25 Angstroms of SiO2 on the surface thereof.

It is noted that the described invention easily avoids the limitation inherent in the patent to Aspnes, U.S. Pat. No. 5,877,589, which patent was identified in the Background Section of this Disclosure, while providing excellent materials system investigation results. Further, the described invention also avoids utilization of “substantially-non-achromatic” compensator means with at least a ninety (90) degree range of retardance variance of an applicable wavelength range, hence avoids the limitations in the Aspnes et al. U.S. Pat. Nos. 6,320,657 and 6,134,012, respectively, again while providing excellent materials system investigation results.

It is noted that the terminology Spectroscopic Rotating Compensator Material System Investigation System is to be interpreted sufficiently broadly to include Ellipsometers and Polarimeters with integrated electromagnetic radiation sources, and the like systems. In the Claims the terminology Spectroscopic Ellipsometer is utilized as being generic, with this in mind.

As well, it should be understood that a Mathematical Model developed to represent a Spectroscopic Rotating Compensator Material System Investigation System, (ie. Spectroscopic Ellipsometer), can be expressed as explicit equations for Intensity Transfer Function, or as equations for Coefficients of Terms which comprise such as a Transfer Function. However, in the context of performing Regression based evaluation of Calibration Parameters, it is to be understood that a Mathematical Model can “Effectively” provide such equations. That is, a computer program need not calculate a Transfer Function per se, to utilize mathematical relationships inherent therewithin. The terminology “Mathematical Model” and “Transfer Function, and “Coefficients of Terms” are to be interpreted sufficiently broadly so as to include the case where acutal explicit equations therefore are not per se, generated, but where mathematical relationships inherent “Mathematical Model” and “Transfer Function, and “Coefficients of Terms” are utilized by a Regression based Calibration Parameter evaluation procedure. For instance, Numerical Equivalents to Specific Analytical Functions can be present and utilized in a Computer and be within the scope of the identified terminology, even though specific Analytical Equations are not per se., but only effectively, produced.

It is also to be appreciated that no other Spectroscopic Rotating Compensator Ellipsometer SYSTEM is known which comprises at once:

1. at least one Pseudo-Achromatic Characteristic Rotating Compensator Means (RC);
2. a Dispersive Optics (DO); and
3. a Detector Elements (DE’s) containing Detector System (DET) which comprises a Photo Array (PA); such that in use a Multiplicity of Material System (MS) FIGS. Investigation Wavelengths in a Polychromatic Beam of Electromagnetic Wavelengths are simultaneously Monitored.

In particular, other than as reported in Parent U.S. Pat. No. 5,872,630, no known Spectroscopic Rotating Compensator Material System Investigation System utilizes a, (possibly
Calibration Parameter Parameterization aided), Mathematical Regression based METHOD approach to Evaluation of Calibration Parameters in a Mathematical Model of such a Spectroscopic Rotating Compensator Material System Investigation System, such that application thereof allows compensating the Pseudo-Achromatic, and other non-ideal, aspects of a Substantially Achromatic or Pseudo-Achromatic Rotating Compensator Means.

In addition, the above is particularly true where the spectroscopic rotating compensator material investigating system, (eg. ellipsometer or polarimeter), is placed into an environmentally controlled chamber.

It is emphasized that the described invention is considered to be particularly impressive as it is relatively easily constructed utilizing commercially available “Off-The-Shelf” Diode Array Spectrometer Systems, and non-ideal Compensators. The described invention conveniently provides, in a commercially realizable format, that which was thought to be, prior thereto and the version thereof presented in the Parent U.S. Pat. No. 5,872,630, essentially impossibly to provide in other than a prohibitively expensive, (and perhaps difficult to calibrate and utilize), single unit format.

It is to be understood that the Photo Array can be comprised of Diode-Elements, Charge-Coupled-Devices, Bucket-Bridge-Devices and equivalents.

It is also noted that Polychromatic Electromagnetic Beam Source can be comprised of a combined plurality/multiplicity of Laser Sources, and that Polychromatic Electromagnetic Beam Source can include an effective Polarizer therewithin, thereby eliminating the need for a separate Polarizer Means. Such cases are to be considered within the scope of the Claims with the effective Polarizer Means considered as the recited Polarizer Means.

It is further to be understood that the terminology “zero-order” is typically utilized herein to mean a single plate retarder/compensator, while the terminology “effective zero-order” is typically utilized herein to mean a zero-order retarder/compensator which is constructed from more that a single plate.

It is also to be understood that while there may be technical definitions in the literature which provide different meanings therefore, the terms “waveplate”, “retarder” and “compensator” are utilized substantially interchangeably in this specification.

It is also to be understood that while FIG. 1c might imply that the disclosed invention is limited to a fixed Angle-of-Incidence (AOI), FIG. 1d is to be interpreted to include systems in which a variable Angle-of-Incidence (AOI) is possible.

It is to be understood that while FIG. 1c might imply that the disclosed invention is limited to a fixed Angle-of-Incidence (AOI), FIG. 1d is to be interpreted to include systems in which a variable Angle-of-Incidence (AOI) is possible.

It is to be understood that Detectors (DET) comprising a multiplicity of Detector Elements (DE’s) can be of any functional type, (eg. Photodiode, CCD, Plasma etc.), can comprise one or more chips and can have any functional number of dimensions, (eg. linear, two-dimensional array, three dimensional array etc.).

Finally, it is again noted for emphasis that providing the described ellipsometer or polarimeter and the like systems which comprises detector systems comprising a multiplicity of Detection Elements (DE’s) in a chamber in which the environment can be controlled by either purging or evacuation, enables obtaining of data corresponding to wavelengths which are absorbed by Oxygen or Water Vapor etc., very quickly as compared to the conventional practice which involves use of a monochromater and requires data be obtained at different wavelengths successively. Further, it is believed that a spectroscopic material system investigation system, (such as an ellipsometer or polarimeter), comprising a detector system which comprises a multiplicity of Detection Elements (DE’s), which spectroscopic material system investigation system is inside an environmental control system comprising one or multiple chamber regions, is Patenable.

Having hereby disclosed the subject matter of this invention, it should be obvious that many modifications, substitutions and variations of the present invention are possible in light of the teachings. It is therefore to be understood that the present invention can be practiced other than as specifically described, and should be limited in breadth and scope only by the Claims.

The invention claimed is:

1. A spectroscopic rotating compensator material system investigation system comprising a source of a polychromatic beam of electromagnetic radiation, a polarizer, a stage for supporting a material system, an analyzer, a dispersive optics and at least one detector system which contains a multiplicity of detector elements, said spectroscopic rotating...
compensator material investigation system further comprising at least one pseudo-chromatic compensator(s) positioned at a location selected from the group consisting of:

- before said stage for supporting a material system;
- after said stage for supporting a material system; and
- both before and after said stage for supporting a material system;

there being in the path of a polychromatic beam of electromagnetic radiation, provided by said source thereof, at least four apertures between said source of polychromatic beam of electromagnetic radiation and said stage for supporting a material system, and at least three apertures between said stage for supporting a material system and said at least one detector system;

such that when said spectroscopic rotating compensator material system investigation system is used to investigate a material system present on said stage for supporting a material system, said analyzer and polarizer are maintained essentially fixed in position and at least one of said at least one compensator(s) is caused to continuously rotate while a polychromatic beam of electromagnetic radiation produced by said source of a polychromatic beam of electromagnetic radiation is caused to pass through said polarizer and said at least one compensator(s) and said at least four apertures between said source of polychromatic beam of electromagnetic radiation and said stage for supporting a material system, said polychromatic beam of electromagnetic radiation being also caused to interact with a material system on said stage for supporting a material system, pass through said analyzer and said at least three apertures between said stage for supporting a material system, and interact with said dispersive optics such that a multiplicity of essentially single wavelengths are caused to simultaneously enter a corresponding multiplicity of detector elements in said at least one detector system.

2. A spectroscopic rotating compensator material system investigation system as in claim 1 which is characterized by a mathematical model comprising calibration parameters, at least one of which is a member of the group consisting of:

- effective polarizer azimuthal angle orientation (P_s);
- present material system PSI (q), as a function of angle of incidence and a thickness;
- present material system DELTA (Δ), as a function of angle of incidence and a thickness;
- compensator azimuthal angle orientation (C_c);
- matrix components of said compensator;
- analyzer azimuthal angle orientation (A_a); and
- detector element image persistence (x_n) and read-out (p_n) nonidealities;

which mathematical model is effectively a transfer function which enables calculation of electromagnetic beam magnitude as a function of wavelength detected by a detector element (DE), given magnitude as a function of wavelength provided by said source of polychromatic beam of electromagnetic radiation (EPCL); said calibration parameter(s) selected from the group consisting of:

- effective polarizer azimuthal angle orientation (P_s);
- present material system PSI (q), as a function of angle of incidence and a thickness;
- present material system DELTA (Δ), as a function of angle of incidence and a thickness;
- compensator azimuthal angle orientation;
- matrix components of said compensator (C_c) as a function of wavelength;
- analyzer azimuthal angle orientation (A_a); and

detector element image persistence (x_n) and read-out (p_n) nonidealities;

being, in use, evaluated by performance of a mathematical regression of said mathematical model onto at least one, multi-dimensional, data set(s), said at least one, multi-dimensional, data set(s) being magnitude values vs. wavelength and at least one parameter selected from the group consisting of:

- angle-of-incidence of said polychromatic beam of electromagnetic radiation with respect to a present material system (MS); and
- effective or actual azimuthal angle rotation of one element selected from the group consisting of:

- said polarizer (P); and
- said analyzer (A);

obtained over time, while said compensator (C) is caused to continuously rotate;

said at least one, multi-dimensional, data set(s) each being normalized to a selection from the group consisting of:

- a data set D.C. component;
- a data set A.C. component;
- a parameter derived from a combinations of a data set D.C. component and a data set A.C. component.

3. A spectroscopic rotating compensator material system investigation system as in claim 1 which further comprises an environmental control chamber in which is present said spectroscopic rotating compensator material system investigation system, said environmental control chamber is characterized by a selection from the group consisting of:

- it comprises at least one chamber region in which is present polarization state generator comprising component(s) prior to said material system, said material system, and polarization state detector comprising component(s) after said material system;
- it comprises at least three chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system, in the second of which is present the material system and in the third of which is present polarization state detector comprising component(s) after said material system;
- it comprises at least two chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system and said material system, and in the second of which is present polarization state detector comprising component(s) after said material system;
- it comprises at least two chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system and said material system, and in the second of which is present polarization state detector comprising component(s) after said material system;

4. A spectroscopic rotating compensator material system investigation system as in claim 1 wherein the source of an polychromatic beam of electromagnetic radiation provides ultraviolet wavelength electromagnetic radiation and comprises:

- a chamber which comprises an enclosed space;
- a source lamp which when electrically energized produces ultraviolet wavelength electromagnetic radiation, said source lamp being present in said enclosed space, said chamber having means for allowing produced ultraviolet radiation to exit as a collimated beam;
- means for providing electrical potential to said source lamp;
heat transfer means which is situated to accept heat from said source lamp and conduct it to outside said enclosed space to a heat sink;
gas flow production means for causing a flow of gas over said heat sink;
such that in use voltage is applied to said lamp source by said means for providing electrical potential to said source lamp; and heat and ultraviolet wavelength electromagnetic radiation and ozone are produced thereby, at least some of said heat being conducted by said heat transfer means to said heat sink whereat it is dissipated by a gas flow therearound produced by said gas flow production means, while simultaneously at least some of said ultraviolet wavelength electromagnetic radiation is caused to exit said means for allowing produced ultraviolet radiation to exit as a collimated beam, while produced ozone is contained within said enclosed space.

5. A spectroscopic rotating compensator material system investigation system as in claim 4 which further comprises a polarizer in the pathway of said collimated beam of electromagnetic radiation, said polarizer being selected from the group consisting of: Calcite; MgF₂;
to impose a state of substantially linear polarization thereupon in wavelength ranges between 1100 nm and: 245 nm; 220 nm; and 193 nm; respectively.

6. A spectroscopic rotating compensator material system investigation system as in claim 4 in which the means for allowing produced ultraviolet radiation to exit as a collimated beam comprises a pin hole and lens means present inside a protective tube which serves to prevent airflow by said lens means.

7. A spectroscopic rotating compensator material system investigation system as in claim 4 in which the source lamp is a Xenon bulb, the voltage applied thereto is about 20 KV and wherein said Xenon Lamp temperature rises to about 200 degrees C., the heat sink to about 65 degrees C., and the exterior of said chamber to no more than about 50 degrees C. during use.

8. A spectroscopic rotating compensator material system investigation system comprising a source of a polychromatic beam of electromagnetic radiation, a first aperture, a second aperture, a fixed polarizer, a rotating compensator, a third aperture, a forth aperture, a first substantially achromatic lens, a fifth aperture, said polychromatic beam of electromagnetic radiation also passing through said UV filter, then interact with a material system placed on said stage for supporting a material system, then sequentially pass through said sixth aperture, second substantially achromatic lens, seventh aperture, eighth aperture, fixed analyzer, ninth aperture, third substantially achromatic lens, enter said optical fiber and therevia enter said detector system.

9. A spectroscopic rotating compensator material system investigation system as in claim 8, in which the rotating compensator comprises a selection from the group consisting of: comprised of a combination of at least two zero-order waveplates, said zero-order waveplates and having their respective fast axes rotated to a position offset from zero or ninety degrees with respect to one another; comprised of a combination of at least a first and a second effective zero-order wave plate, said first effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, and said second effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another; the fast axes of the multiple order waveplates in said second effective zero-order wave plate being rotated to a position at a nominal forty-five degrees to the fast axes of the multiple order waveplates and in said first effective zero-order waveplate; comprised of a combination of at least a first and a second effective zero-order wave plate, said first effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, and said second effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another; the fast axes of the multiple order waveplates in said second effective zero-order wave plate being rotated to a position away from zero or ninety degrees with respect to the fast axes of the multiple order waveplates and in said first effective zero-order waveplate; and comprised of a combination of at least one zero-order waveplate and at least one effective zero-order waveplate, said effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, the fast axes of the multiple order waveplates in said effective zero-order wave plate being rotated to a position away from zero or ninety degrees with respect to the fast axis of the zero-order waveplate.

10. A spectroscopic rotating compensator material system investigation system as in claim 8, in which:

said first aperture is a pin-hole, through which a portion of the polychromatic beam of electromagnetic radiation passes, with a nominal internal diameter of between 100 and 600 microns;
said second aperture through which a portion of the polychromatic beam of electromagnetic radiation
passes, has a nominal internal diameter of 3 to 3.5 millimeters;
said third aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 3.5 millimeters;
said forth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 3.75 millimeters;
said fifth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 4.8 millimeters;
said sixth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 4.8 millimeters;
said seventh aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 3.75 millimeters;

an eighth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 3.5 millimeters;
said ninth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has an adjustable internal diameter.

11. A spectroscopic rotating compensator material system investigation system as in claim 8, which further comprises, between said source of polychromatic beam of electromagnetic radiation and said stage for supporting a material system, a UV filter to prevent UV wavelengths from accessing a material system placed on said stage for supporting a material system.

12. A spectroscopic rotating compensator material system investigation system as in claim 8 which further comprises, between said fixed polarizer and said ninth aperture, a beam splitting means which serves to divert a portion of the polychromatic beam of electromagnetic radiation which otherwise proceeds to said optical fiber, and transmits the remainder of said polychromatic beam of electromagnetic radiation theretoward, said diverted portion of said polychromatic beam of electromagnetic radiation being directed by said beam splitting means into an alignment means selected from the group consisting of:

electromagnetic beam detecting means;
such that in use said alignment means provides monitored alignment capability thereby allowing precise control of the locus of propagation of the portion of said polychromatic beam of electromagnetic radiation which transmits through said beam splitting means.

13. A spectroscopic rotating compensator material system investigation system as in claim 12, in which present said electromagnetic beam detecting means in functional combination with electronic circuitry means which which serves to automatically align said portion of said polychromatic beam of electromagnetic radiation which is transmitted toward said ninth aperture and optical fiber.

14. A spectroscopic rotating compensator material system investigation system as in claim 8 in which said detector elements are contained in an off-the-shelf diode array spectrometer system.

15. A spectroscopic rotating compensator material system investigation system as in claim 14 in which said detector system which comprises a dispersive optics and multiplicity of detector elements comprises an off-the-shelf diode array spectrometer system provides an operational wavelength range selected from the group consisting of:

300-1150 nm;
190-730 nm;
190-400 nm; and
900-2400 nm;
and optionally includes a detector which demonstrates a quantum efficiency of at least greater than forty (40%) percent.

16. A spectroscopic rotating compensator material system investigation system as in claim 8 in which rotating compensator provides retardation effectuated thereby between orthogonal components of a beam of electromagnetic radiation at one wavelength is different than that provided thereby at least one other wavelength.

17. A spectroscopic rotating compensator material system investigation system as in claim 8 in which the compensator provides retardation within a range of thirty (30.0) to less than one-hundred-thirty-five (135) degrees over a range of wavelengths defined by a selection from the group consisting of:

a) minimum wavelength is less than/equal to one-hundred-ninety (190) and maximum wavelength greater than/equal to seventeen-hundred (1700) nanometers;
b) minimum wavelength is less than/equal to two-hundred-twenty (220) and maximum wavelength greater than/equal to one-thousand (1000) nanometers;
c) within a range of wavelengths defined by a maximum wavelength (MAXW) and a minimum wavelength (MINW) range where (MAXW)/(MINW) is at least four-and-one-half (4.5);
or said compensator provides retardation within a range of seventy-five (75.0) to less than one-hundred-thirty-five (135) degrees over a range of wavelengths defined by a selection from the group consisting of:

a) between one-hundred-ninety (190) and seven-hundred-fifty (750) nanometers;
b) between two-hundred-forty-five (245) and nine-hundred (900) nanometers;
c) between three-hundred-eighty (380) and seventeen-hundred (1700) nanometers;
d) within a range of wavelengths defined by a maximum wavelength (MAXW) and a minimum wavelength (MINW) wherein the ratio of (MAXW)/(MINW) is at least one-and-eight-tenths.

18. A spectroscopic rotating compensator material system investigation system as in claim 8 in which the compensator provides that retardation effectuated thereby between orthogonal components of a beam of electromagnetic radiation at one wavelength is essentially the same as that provided thereby at other wavelengths.

19. A spectroscopic rotating compensator material system investigation system as in claim 8 in which the compensator causes essentially no deviation or displacement in a polychromatic beam of electromagnetic radiation caused to pass therethrough while caused to rotate.

20. A spectroscopic rotating compensator material system investigation system as in claim 8 in which the compensator is of a type selected from the group consisting of:

Berek-type with optical axis essentially perpendicular to a surface thereof;
non-Berek-type with an optical axis essentially parallel to a surface thereof;
zero-order wave plate;
zero-order wave plate constructed from two multiple order waveplates;
a sequential plurality of zero-order waveplates, each constructed each from a plurality of multiple order waveplates;
rhomb;
polymer;
achromatic crystal; and
pseudo-achromatic.

21. A spectroscopic rotating compensator material system investigation system as in claim 8, in which the dispersive optics is a diffraction grating.

22. A spectroscopic rotating compensator material system investigation system as in claim 21 in which said diffraction grating is selected from the group consisting of:
a “lined”;
a “blazed”; and
a “holographic” geometry;
said lined geometry consisting essentially of symmetrical alternating lines with depressions therebetween, and said blazed geometry consisting of alternating ramp shaped lines with depressions therebetween, and said holographic geometry consisting of continuous cosine shaped lines and depressions.

23. A spectroscopic rotating compensator material system investigation system as in claim 8, in which the dispersive optics comprises a prism.

24. A spectroscopic rotating compensator material system investigation system as in claim 8 in which said fiber optic present after said analyzer becomes at least bifurcated thereby providing a plurality of fiber optic bundles, at least two of which plurality of at least two bifurcated fiber optic bundles provide input to separate detector system), each of said separate detector systems comprising a dispersion optics and a multiplicity of detector elements, said plurality of fiber optic bundles having cross-sectional shapes at ends thereof selected from the group:

- essentially circular;
- essentially slit shaped;
- other than essentially circular; and
- essentially slit shaped.

25. A spectroscopic rotating compensator material system investigation system as in claim 8 which is characterized by a mathematical model comprising calibration parameters, at least one of which is a member of the group consisting of:
effective polarizer azimuthal angle orientation (P_s);
present material system PSI (ψ), as a function of angle of incidence and a thickness;
present material system DELTA (Δ), as a function of angle of incidence and a thickness;
compensator azimuthal angle orientation (C_s);
matrix components of said compensator (C_{ij}) as a function of wavelength;
analyzer azimuthal angle orientation (A_s); and
detector element image persistance (x_p) and read-out (p_p) nonidealities;
being, in use, evaluated by performance of a mathematical regression of said mathematical model onto at least one, multi-dimensional, data set(s), said at least one, multi-dimensional, data set(s) being magnitude values vs. wavelength and a at least one parameter selected from the group consisting of:

- angle-of-incidence of said polychromatic beam of electromagnetic radiation with respect to a present material system (MS); and
effective or actual azimuthal angle rotation of one element selected from the group consisting of:
said polarizer (P); and
said analyzer (A);
obtained over time, while said compensator (C) is caused to continuously rotate;
said at least one, multi-dimensional, data set(s) each being normalized to a selection from the group consisting of:
a data set D.C. component;
a data set A.C. component;
a parameter derived from a combinations of a data set D.C. component and a data set A.C. component.

26. A spectroscopic rotating compensator material system investigation system as in claim 8 which further comprises an environmental control chamber in which is present said spectroscopic rotating compensator material system investigation system, said environmental control chamber is characterized by a selection from the group consisting of:
it comprises at least one chamber region in which is present polarization state generator comprising component(s) prior to said material system, said material system, and polarization state detector comprising component(s) after said material system;
it comprises at least three chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system, in the second of which is present the material system and in the third of which is present polarization state detector comprising component(s) after said material system;
it comprises at least two chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system and said material system, and in the second of which is present polarization state detector comprising component(s) after said material system;
it comprises at least two chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system, and in the second of which is present polarization state detector comprising component(s) after said material system;
it comprises at least two chamber regions, in one of which is present polarization state generator comprising component(s) prior to said material system, and in the second of which is present polarization state detector comprising component(s) after said material system and said material system.

27. A spectroscopic rotating compensator material system investigation system comprising a source of a polychromatic beam of electromagnetic radiation, a first aperture, a second aperture, a fixed polarizer, a rotating compensator, a third aperture, a forth aperture, a first substantially achromatic lens, a fifth aperture, a stage for supporting a material system, a sixth aperture, a second substantially achromatic lens, a seventh aperture, an eighth aperture, a fixed analyzer, a ninth aperture, a third substantially achromatic lens, an
optical fiber and at least one detector system which comprises a dispersive element and a multiplicity of detector elements, there further being a UV filter present between said source of a polychromatic beam of electromagnetic radiation and said stage for supporting a material system; such that when said spectroscopic rotating compensator material system investigation system is used to investigate a material system present on said stage for supporting a material system, said fixed analyzer and fixed polarizer are maintained essentially fixed in position and said rotating compensator is caused to continuously rotate while a polychromatic beam of electromagnetic radiation produced by said source of a polychromatic beam of electromagnetic radiation is sequentially caused to pass through said first aperture, second aperture, fixed polarizer, rotating compensator, third aperture, forth aperture, first substantially achromatic lens, fifth aperture, said polychromatic beam of electromagnetic radiation also passing through said UV filter, then interact with a material system placed on said stage for supporting a material system, then sequentially pass through said sixth aperture, second substantially achromatic lens, seventh aperture, eighth aperture, fixed analyzer, ninth aperture, third substantially achromatic lens, enter said optical fiber and therevia enter said detector system; wherein said spectroscopic rotating compensator material system investigation system:

said first aperture is a pin-hole, through which a portion of the polychromatic beam of electromagnetic radiation passes, with a nominal internal diameter of between 100 and 600 microns;
said second aperture through which a portion of the polychromatic beam of electromagnetic radiation passes, has a nominal internal diameter has a nominal internal diameter of 3 to 3.5 millimeters;
said third aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 3.75 millimeters;
said forth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 3.75 millimeters;
said fifth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 4.8 millimeters;
said sixth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 4.8 millimeters;
said seventh aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 3.75 millimeters;
an eighth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has a nominal internal diameter of 3.5 millimeters;
said ninth aperture, through which a portion of the polychromatic beam of electromagnetic radiation passes, has an internal diameter has an adjustable internal diameter; and wherein said spectroscopic rotating compensator material system investigation system said rotating compensator comprises a selection from the group consisting of:

comprised of a combination of at least two zero-order waveplates, said zero-order waveplates and having their respective fast axes rotated to a position offset from zero or ninety degrees with respect to one another;
comprised of a combination of at least a first and a second effective zero-order wave plate, said first effective zero-order wave plate being comprised of two multiple order wave plates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, and said second effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal eighty degrees to one another;
comprised of a combination of at least a first and a second effective zero-order wave plate, said first effective zero-order wave plate being comprised of two multiple order wave plates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, and said second effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, the fast axes of the multiple order waveplates in said second effective zero-order wave plate being rotated to a position at a nominal forty-five degrees to the fast axes of the multiple order waveplates and in said first effective zero-order waveplate;
comprised of a combination of at least a first and a second effective zero-order wave plate, said first effective zero-order wave plate being comprised of two multiple order wave plates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, and said second effective zero-order wave plate being comprised of two multiple order waveplates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, the fast axes of the multiple order waveplates in said second effective zero-order wave plate being rotated to a position away from zero or ninety degrees with respect to the fast axes of the multiple order waveplates and in said first effective zero-order waveplate; and
comprised of a combination of at least one zero-order waveplate and at least one effective zero-order wave plate, said effective zero-order wave plate being comprised of two multiple order wave plates which are combined with the fast axes thereof oriented at a nominal ninety degrees to one another, the fast axes of the multiple order waveplates in said effective zero-order wave plate being rotated to a position away from zero or ninety degrees with respect to the fast axis of the zero-order waveplate;
said compensator causing essentially no deviation or displacement in a polychromatic beam of electromagnetic radiation caused to pass therethrough while caused to rotate;
said compensator providing retardance within a range of thirty (30.0) to less than one-hundred-thirty-five degrees (135) degrees over a range of wavelengths defined by a selection from the group consisting of:

a) minimum wavelength is less than/equal to one-hundred-ninety (190) and maximum wavelength greater than/equal to seventeen-hundred (1700) nanometers;
b) minimum wavelength is less than/equal to two-hundred-twenty (220) and maximum wavelength MAXW greater than/equal to one-thousand (1000) nanometers;
c) within a range of wavelengths defined by a maximum wavelength (MAXW) and a minimum
wavelength (MINW) range where (MAXW)/(MINW) is at least four-and-one-half (4.5); or said compensator provides retardance within a range of seventy-five (75.0) to less than one-hundred-thirty-five (135) degrees over a range of wavelengths defined by a selection from the group consisting of:
a) between one-hundred-ninety (190) and seven-hundred-fifty (750) nanometers;
b) between two-hundred-forty-five (245) and nine-hundred (900) nanometers;
c) between three-hundred-eighty (380) and seventeen-hundred (1700) nanometers;
d) within a range of wavelengths defined by a maximum wavelength (MAXW) and a minimum wavelength (MINW) wherein the ratio of (MAXW)/(MINW) is at least one-and-eight-tenths;
said spectroscopic rotating compensator material system investigation system further comprising, between said fixed polarizer and said ninth aperture, a beam splitting means which serves to divert a portion of the polychromatic beam of electromagnetic radiation which otherwise proceeds to said optical fiber, and transmits the remainder of said polychromatic beam of electromagnetic radiation theretoward, said diverted portion of said polychromatic beam of electromagnetic radiation being directed by said beam splitting means into an alignment means selected from the group consisting of: reticule; and electromagnetic beam detecting means; such that in use said alignment means provides monitored alignment capability thereby allowing precise control of the locus of propagation of the portion of said polychromatic beam of electromagnetic radiation which transmits through said beam splitting means.

28. A spectroscopic rotating compensator material system investigation system as in claim 27 which further comprises an environmental control chamber in which is present said spectroscopic rotating compensator material system investigation system, said environmental control chamber being characterized by a selection from the group consisting of: it comprises one chamber region in which is present a polarization state generator comprising components prior to said material system, said material system, and a polarization state detector comprising components after said materials system;
it comprises three chamber regions, in one of which is present a polarization state generator comprising all components prior to said material system, in the second of which is present the material system and in the third of which is present a polarization state detector comprising components after said materials system;
it comprises two chamber regions, in one of which is present a polarization state generator comprising components prior to said material system and said material system, and in the second of which is present a polarization state detector comprising components after said materials system;
it comprises two chamber regions, in one of which is present a polarization state generator comprising components prior to said material system and said material system, and in the second of which is present a polarization state detector comprising components after said materials system and said material system.