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Figure 5. AFM images and height profi les (left column) and the corresponding simulations (right 
column) of P(VDF–TrFE) copolymer fi lms of different initial thickness. 
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5.2.1. The effect of initial thickness
We fi rst consider the pattern evolution of copolymer fi lms of different initial thick-
ness, h0 = 3, 5, 7 nm, with Q = 0.6, corresponding to a mesa pattern, an intercon-
nected pattern, and a well pattern, respectively. The morphologies at t = 50, 500, 
2000, 10 000 are shown in Figure 7. All three fi lms exhibit the similar dynamic char-
acteristics. Pattern separation occurs at t < 50, followed by the fast growth of pattern 
controlled by coarsening mechanism. The growth slows down considerably after t > 
1000, and the pattern is slowly stabilized afterward. In addition, we note that the pat-
tern in thicker fi lms grow faster. For example, at t = 50, a clear pattern has emerged in 
fi lms of 5 and 7 nm thickness, but not in fi lm of 3 nm thickness. The patterns of 5 and 

Figure 6. The comparison of simulated pattern morphologies and feature sizes under different Q 
and h0. (a) h0 = 3 nm, (b) h0 = 5 nm and (c) h0 = 7 nm. 
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7 nm fi lms are stabilized by t = 10,000, while signifi cant growth is observed for 3 nm 
fi lm after t = 10,000. This is consistent with our linear stability analysis, where larger 
h0 leads to smaller g2, and thus larger η, which suggests a faster growth rate. 

5.2.2. The effect of Q
We then consider the effect of Q on the evolution of nanomesas and nanowells, 

with the initial thickness set to be 4 nm and Q chosen to be 0.3 and 0.8. The patterns 

Figure 7. Comparison of simulated pattern evolution for different initial thickness with Q = 0.6. 
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at t = 20, 1,000, 2,000, 10,000 are shown in Figure 8, where it is observed that larger 
Q results in larger growth rate. For example, a clear pattern emerges in the fi lm of Q = 
0.8 at t = 20, earlier than the fi lm of Q = 0.3. This is because the feature size in fi lms 
of larger Q is smaller, leading to faster growth rate. 

Figure 8. Comparison of simulated pattern evolution for different Q with the initial thickness h0 = 4 
nm; left column: Q = 0.3; right column: Q = 0.8. 
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6. Concluding remarks

In summary, a continuum fi eld model has been developed to analyze the formation 
of nanomesas and nanowells in P(VDF–TrFE) copolymer fi lms of a few nanometer 
thickness. Linear perturbation analysis and numerical simulations have been carried 
out, which offers a number of predictions that are consistent with experimental ob-
servations. We expect that our modeling and simulation methods described here can 
be used to guide the design and optimization of nanomesa and nanowell patterns for 
technological applications. 
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