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Focused Ion Beam Milled CoPt Magnetic Force
Microscopy Tips for High Resolution Domain Images

L. Gao, L. P. Yue, T. Yokota, R. Skomski, S. H. Liou, H. Takahoshi, H. Saito, and S. Ishio

Abstract—High-coercivity CoPt magnetic force microscope tips
have been modified by focused ion beam milling to improve the
resolution of magnetic domain images. The magnetic materials
around the apex have been removed, leaving a 30-nm diameter
magnetic particle at the tip end. Due to the smaller amount of
magnetic material, the stray field from this new tip is significantly
reduced, and the spatial resolution of the magnetic domain images
is improved. The tip is used to obtain high-resolution domain
images of a CoCrPt-SiO2/Ru perpendicular recording medium
with linear recording densities from 800 to 1000 kfci. Magnetic
patterns of 900 kfci, corresponding to a bit size of 28 nm, are
well resolved. From the analysis of the power spectrum of the
track profiles for these images, a spatial resolution as good as 11
nm under ambient conditions with a commercial magnetic force
microscope is achieved.

Index Terms—Domain images, focused ion beam technology,
magnetic force microscopy, magnetic recording.

I. INTRODUCTION

MAGNETIC force microscopy (MFM) is a powerful tech-
nique to study the magnetic domain structures for high

density magnetic recording media [1]. With the now widely
available commercial microscopes and magnetic tips, images
with 50-nm resolution are routinely obtained. However, there
remains the challenge of obtaining images with higher resolu-
tion, which are of interest, for example, in high-density mag-
netic recording [2].

The tip is one of the most critical parts of the MFM. The
requirements for high-resolution MFM tips are a well-defined
magnetization direction, small stray fields, and sharp ends. A
well-defined magnetization direction is achieved by using tips
with highly coercive magnetic particles, which also assures that
the magnetization direction of the tip remains undisturbed by
high stray field samples. This is useful for domain imaging
under an applied magnetic field. It has been shown by elec-
tron holography that the magnetic flux originates not only from
the tip end but also from other magnetic parts of the tip [3].
The magnetic dipole interaction is a long-range interaction that
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includes not only the contribution between the sample and the
magnetic material near the tip but also that from extended areas
of the tip. Small stray fields can be achieved by reducing the
magnetic volumes of the tip interacting with a magnetic sample.
Small volumes and sharp ends are also useful to provide a better
spatial resolution of the MFM images.

One way to enhance the resolution of MFM images is to im-
prove the magnetic tips by removing magnetic materials around
the tip end. Focused ion beam (FIB) milling has been used pre-
viously to realize this MFM-tip modification. Folks et al. [4]
made a hole as small as 20 nm at the apex of a CoCr tip to im-
prove the resolution of in-plane components of the stray field
and to identify a 50-nm transition. Liu et al. [5] sharpened the
tip using an FIB and then coated a 30-nm exchanged coupled
antiferromagnet-ferromagnet multilayer on the tip. Square pat-
terns on a perpendicular media with a period of 60 nm could
be recognized. Phillips et al. [6] formed a planar magnetic ele-
ment with high shape anisotropy and an end radius of less than
25 nm. A spatial resolution of 30 nm was reported. In this work,
we use a focused ion beam to mill a permanent magnet CoPt tip,
reducing the tip end diameter to 30 nm and presenting a lateral
resolution of 11 nm. As far as we know, it is the best resolution
reported for commercial MFM in ambient condition.

II. EXPERIMENT

The MFM tip was fabricated using a CoPt permanent mag-
netic film coating and FIB milling. The 30-nm-thick CoPt film is
deposited on commercially available batch fabricated, microma-
chined cantilevers and then annealed at 650 for 10 h to form
tetragonal phase. Tetragonal CoPt is an excellent
material due to the alloy’s chemical stability and its high mag-
netic anisotropy of about ergs/cm . Its saturation magne-
tization is about 800 emu/cm [7], and the material’s anisotropy
has allowed us to produce CoPt tips having coercivities as high
as 15 kOe.

Fig. 1 shows that there are many CoPt magnetic particles vis-
ible on the tip. The CoPt coated tip is then modified by FIB
milling with Ga ions possessing an energy of 30 keV with a
4-pA beam current. It is known that the Ga ions degrade the
magnetic properties of the magnetic material [8]. To reduce its
exposure to the ions and to avoid damage, we mill the tip from
the side, that is, the ion beam direction is perpendicular to the
tip axis. The majority of the CoPt film is milled away, leaving
a 30-nm diameter magnetic particle on the very end of the tip
(Fig. 1). The distance from the tip-end to the large amount of
magnetic particles on the tip is around 600 nm. Their contri-
butions to the tip-sample interaction are negligible due to the
magnetic interaction dropping rapidly with distance.
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Fig. 1. FIB milled MFM tip shows a magnetic particle with a diameter of 30
nm at the tip end.

Fig. 2. Magnetic domain images of recording tracks with linear densities from
800 to 1000 kfci.

III. RESULTS

To characterize the resolution of the FIB tip, we used
a high-density CoCrPt:SiO /Ru perpendicular magnetic
recording medium. The medium was chosen as a test sample
because it consists of periodic fine domain structures. MFM
images were obtained at room temperature, in air, using a
commercial MFM operated in tapping/lift mode at a lift height
of 5 nm. Fig. 2 shows the domain images of recording tracks
with linear recording densities from 800 to 1000 kfci. Tracks
of 800, 900, and 1000 kfci correspond to bit sizes of 32, 28,
and 25 nm, respectively. The MFM image of the 800-kfci track
presents well-resolved recording bits. Track densities up to 900
kfci are clearly visible by MFM. The visibility of the 1000 kfci
track transitions is much less pronounced.

Magnetic coupling across grains forms magnetic interaction
clusters. From the above MFM images, the bit size for 800-
and 900-kfci tracks is smaller than the magnetic cluster size for
regions outside recording track and can be well resolved. This
indicates that the magnetic coupling in these magnetic grains is
weak.

The resolution of the MFM can be characterized in real space
by its “point response” [9] or in Fourier transform space by its
wave-vector (spatial frequency) response [1], [10]. Essentially,

Fig. 3. (a) Averaged profile and (b) single profile of a 900-kfci track. The
FWHM of the peak is 15 nm, corresponding to the real space resolution.

the two approaches are equivalent. Fig. 3(a) shows the aver-
aged track profile for 900 kfci. A full width at half maximum
(FWHM) as small as 15 nm is demonstrated, corresponding to
the real space resolution. In this work, we use also a Fourier
transform method by defining a high spatial frequency cutoff,
corresponding to the minimum detectable wavelength , as the
MFM resolution [1].

The response of the MFM is a function of spatial frequency
components in the stray field. Such a response curve is called
the tip transfer function (TTF) [1]. As shown in [1], long, thin,
slablike shapes are characterized by the transfer functions

(1)

(2)

Here, and are the moments of the sample and the
tip, respectively, is the spatial frequency, is the tip-sample
distance; is the thickness of the sample film, and and are
the magnetic coating thickness and length of the tip.

The MFM response is proportional to the magnetization
of tip and sample. It has an exponential decay with
increasing tip-sample separation. This explains the importance
of the sample-tip distance in the high-resolution MFM images.
The factor describes the thickness loss, resulting
from the superposition of the stray fields of the magnetic
charge sheets on the top and the bottom side of the measured
layer [1]. The term describes the low-frequency
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Fig. 4. MFM analysis method is used to analyze the power spectrum of the
profile by Fourier transformation. The resolution is (a) 11 nm for the 800-kfci
track, (b) 12 nm for 900 kfci, and (c) 11 nm for 1000 kfci.

behavior of the MFM. The sin term establishes another
limit for high-resolution detection and means that the transfer
function is zero at . The MFM response drops below
the noise level below this wavelength, which is the minimum
detectable wavelength by the MFM. To lower the wavelength,
the magnetic coating thickness should be reduced as much as
possible.

The Fourier transformation is done to get the power spectrum
of the profile [11]. Fig. 3(b) shows an example of a single profile
for domain images of 900 kfci that was used in obtaining power
spectra. The analyzed area is selected from the recorded bit
area parallel to the track direction. We have averaged ten power
spectra after performing a Fourier transform on a single profile
to obtain the resolution. Fig. 4(a) shows the power spectrum of
the 800-kfci track. The peak corresponds to the recorded signal
with a wave length of 73 nm (which is double the recording bit
size). This value is higher than the calculated value of 64 nm
for 800 kfci. This may be due to inaccuracies in the recording
process. As shown in Fig. 4(c), the peak corresponds to the
recorded signal of a 1000-kfci track with a wavelength of 58 nm
and is only resolved by Fourier transform. In Fig. 4(a), a wave-
length cutoff of 22 nm is obtained from the intersection of the
signal and the noise. This corresponds to an MFM image reso-
lution of 11 nm, which is half the wavelength. For the 900- and
1000-kfci tracks, the resolutions obtained from the wavelength
cutoffs are 12 and 11 nm, respectively, as shown in Fig. 4(b) and

(4c). The error of the resolution is about 2 nm, which is due to
the inaccuracies of drawing the signal line and the noise line.

IV. CONCLUSIONS

In this work, we used an FIB to mill away the CoPt magnetic
film covering an MFM tip, leaving a 30-nm diameter particle at
the tip end. This reduces the magnetic moment interacting with
the sample and improves the resolution of the MFM images. Do-
main images of magnetic recording media with densities of up
to 900 kfci are well resolved using these FIB-milled MFM tips.
From analysis of the averaged track profile for 900 kfci, a real
space resolution as small as 15 nm is demonstrated. From the
analysis of the power spectrum of the track profiles for these
images, we show a spatial resolution as good as 11 nm under
ambient conditions with a commercial magnetic force micro-
scope.
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