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Nanostructured Hard Magnetic Materials I:
Exchange Coupled Systems Matt Kramer, Chairman

Exchange through nonmagnetic insulating matrix
R. Skomski,a) A. Kashyap, Y. Qiang, and D. J. Sellmyer
Department of Physics and Astronomy and Center of Material Research and Analysis, University of
Nebraska, Lincoln, Nebraska 68588

~Presented on 12 November 2002!

Exchange interactions between hard-magnetic particles in a nonmagnetic matrix are investigated by
model calculations. A Landau–Ginzburg approach is developed to describe the net exchange
interactions between spheres of arbitrary diameters. Introducing cylindrical coordinates and
integrating over the surfaces of the adjacent spheres yields an exchange coupling which decreases
with a decay length depending on interatomic exchange, intra-atomic exchange, and temperature.
Typically, the decay length does not exceed a few interatomic distances. The decay is exponential
but also contains a prefactor depending on the surface curvature of the grains. It increases with
decreasing curvature, but this dependence is only a small correction to the leading exponential term.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1541633#

I. INTRODUCTION

Nanostructuring has long been considered and used as a
tool to improve the performance of permanent magnets.1–3

One approach is to improve the coercivity by making the
reversal mechanism more Stoner–Wohlfarthlike, so that the
coercivity approaches the anisotropy fieldHa

52K1 /moMs . This can be achieved, for example, by em-
bedding the particles in paramagnetic matrix. However, to
realize Stoner–Wohlfarth behavior it is necessary to suppress
interparticle interactions, which lead to cooperative magneti-
zation reversal and often to a pronounced coercivity reduc-
tion. These interactions can be avoided by embedding the
particles in a paramagnetic matrix, but the high packing frac-
tions necessary to realize useful energy products means that
particles should nearly touch each other. This limits the use-
fulness of particle separation to reduce interactions. To gauge
this effect, it is necessary to determine the net exchange in-
teractions between particles in a paramagnetic matrix.

There are two main groups of materials of interest. First,
various types of Sm–Co-based magnets, such as Sm–Co–
Cu–Zr ~Ref. 4! and Sm–Co–Cu–Ti~Ref. 5! exhibit a coer-
civity maximum at elevated temperatures. The main coerciv-
ity mechanism in these types of magnets is of the pinning
type.6,7 Zhou et al.5 found that the main origin of the coer-
civity maximum is the temperature dependence of the anisot-
ropy differenceDK5uK1:52K2:17u between the main 2:17
and grain-boundary 1:5 phases. An alternative explanation is
a thermal decoupling of the grains above the Curie tempera-
ture of the grain-boundary phase.8,9 In fact, these two mecha-
nisms are complementary rather than exclusive and have a
common origin, namely that intersublattice exchange is un-

able to suppress rare-earth intramultiplet excitations at tem-
peratures comparable toTC .3,10

Second, embedding magnetic particles or clusters in a
nonmagnetic matrix tends to enhance the coercivity and may
be used to fabricate artificially structured permanent mag-
nets. As briefly discussed by Sellmyeret al.,11 this mecha-
nism is closely related to the aforementioned grain decou-
pling caused by a paramagnetic grain-boundary phase. A
similar though undesired coercivity enhancement is observed
in soft-magnetic two-phase alloys, where the coercivity
reaches a maximum at the Curie temperature of the amor-
phous grain-boundary phase.12

For magnetic nanoparticles embedded in a Pauli-
paramagnetic matrix, the Ruderman–Kittel–Kasuya–Yosida
~RKKY ! interaction has been investigated.13 There, the net
exchange interaction is obtained by adding of, or integrating
over atomic RKKY interactions, but this approach is not ap-
plicable at finite temperatures and to particles in an insulat-
ing matrix. Furthermore, for high volume fractions of the
ferromagnetic phase, the corresponding exchange expression
becomes very cumbersome, and it is necessary to use ap-
proximations. The same is true for ferromagnets aboveTC

~Curie–Weiss paramagnets! and nonmagnetic media. In this
article, a Landau–Ginzburg approach is developed to de-
scribe the net exchange interactions between neighboring
spheres of arbitrary diameters.

II. CALCULATION AND RESULTS

To investigate the exchange interaction between grains
in an insulating matrix, we consider the geometry shown in
Fig. 1, whereR indicates the particle radius anddmin is the
interparticle distance. The model energy as a function of the
magnetization,m, isa!Electronic mail: rvdskomski@msn.com
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1
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a
~¹m!21

I eff~T!

a3 m2GdV, ~1!

whereJ is the interatomic exchange,I eff(T) is an intra-atomic
exchange parameter, anda is the interatomic distance. Equa-
tion ~1! corresponds to a magnetic decay length 1/k, where
k25I eff(T)/Ja2. Essentially, Eq. ~1! is of the Landau–
Ginzburg type,14 and k is of the order of 10/nm in typical
insulators such as Al2O3 .15

For two planes separated by a nonmagnetic medium of
thicknessdo , Eq. ~1! leads to the differential equation

d2m

dx2 1k250. ~2!

For the boundary conditionsm(2do/2)56mo and m
(1do/2)51mo , the respective solutions of Eq.~2! are

m1~x!5mo

cosh~kx!

cosh~kdo/2!
, ~3a!

and

m2~x!5mo

sinh~kx!

sinh~kdo/2!
. ~3b!

The dashed~ferromagnetic! and solid ~antiferromagnetic!
lines in Fig. 2 show the magnetization profiles given by Eqs.

3~a! and 3~b!, respectively. Putting the two profiles into Eq.
~1! yields a small energy difference, which is equal to the
interparticle exchange per surface area.

The net interparticle exchange energyJip is obtained
from Eqs.~1! and~3!. Exploiting the rotational symmetry of
the problem, it is convenient to writeJip52p*h(r )rdr ,
where the average energy density,h5h22h1 is obtained
by x integration from2do/2 to do/2. After short calculation,
we obtain

h5
I eff~T!mo

2

2a2k
sinh~kdo!S 1

sinh2~kdo/2!

2
1

cosh2~kdo/2! D , ~4!

and

h5
2I eff~T!mo

2

a2k

1

sinh~kdo!
. ~5a!

Since the inverse decay length is quite large,k'10/nm for
typical insulators, the hyperbolic sine can be approximated
by an exponential function, so that

h5
4I eff~T!mo

2

a2k
exp~2kdo!. ~5b!

Next, we take into account that the particle radiusR is much
larger than 1/k, so that the distancedo5dmin12@R2(R2

2r2)1/2# is in good approximationdo5dmin1r2/R. The inte-
gration overr can then be performed analytically, and we
obtain

Jip5
4pI eff~T!Rmo

2

a3k2 exp~2kdmin!, ~6a!

or

Jip54pmo
2J

R

a
exp~2kdmin!. ~6b!

When the radii of the two grains are different (R1 andR2),
thenR must be replaced byReff52R1R2 /(R11R2). Since the
exchange energyJip competes against the anisotropy energy,
K1V, it is instructive to consider the exchange-energy den-
sity Jvol5Jip /V rather theJip itself

Jvol5
3mo

2J

aR2 exp~2kdmin!. ~6c!

FIG. 1. Considered geometry. Ferromagnetic particles are embedded in a
paramagnetic matrix.

FIG. 2. Spin polarization in a nonmagnetic insulating matrix for ferromag-
netic coupling~dashed line! and antiferromagnetic coupling~solid line!.

FIG. 3. Distance dependence of the interatomic exchange~schematic!. The
dotting of the arrows shows the strength of the exchange.
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Equation~6! describes the net exchange between two par-
ticles. Since the integration leading from Eq.~5! to Eq. ~6!
assumes nearly plane adjacent surface areas, this result is
limited to small spacingsdmin .

III. DISCUSSION AND CONCLUSIONS

The strong decrease of the exchange with increasing in-
terparticle spacing, as epitomized by the decay length 1/k
'1 Å, reflects the weakness of the interatomic exchange as
compared to the intra-atomic exchange. Figure 3 illustrates
that the interatomic exchange creates a small moment in
neighboring nonmagnetic atoms, and the exchange between
these moments leads to the net exchange. The number of
adjacent pairs of nanoparticle surface atoms is quite large
and leads to the factorR in Eq. ~6b!, but this factor gives
only a minor correction to the leading exponential term and
significant exchange is limited to a few interatomic dis-
tances. In permanent magnets, this amounts to a nearly com-
plete decoupling if the particles do not touch, whereas in soft
magnets, an effective coupling is limited to a very few nm.
For example, assumingR510 nm, J/kB51000 K, a
50.25 nm,mo51, andk510/nm yields, with Eq.~6c!, an
interaction energy density of 1 kJ/m3 at dmin'0.6 nm. This
corresponds to the anisotropy energy of a very soft material.

Equation~6! means that interparticle exchange through a
nonmagnetic matrix is important for distances of at most a
very few interatomic distances. There are, however, various
mechanisms capable of enhancing this range. One example is
when the matrix is close to the onset of ferromagnetism
~paramagnetism just aboveTC). Due to the vicinity of the
ferromagnetic instability, the intra-atomic exchange param-
eter is small and the decay length is large.~The definition
used in this work means that the sign of the exchange pa-
rameter is negative for ferromagnets.! Similar effects may be
caused by disorder, such as magnetic impurities in the matrix
or the vicinity of a percolation transition,16 and by the pres-
ence of specific resonant states.

In conclusion, we have investigated exchange interac-
tions for nanocrystalline materials consisting of hard mag-

netic particles embedded in insulating matrix. The net ex-
change energy has been obtained by introducing cylindrical
coordinates and integrating over the surfaces of the adjacent
spheres. In fair approximation, the exchange coupling de-
creases exponentially with decay length,dmin . Unless the
matrix is close to ferromagnetism, the decay length is at the
most a few interatomic distances, but the large number of
adjacent surface atoms yields an enhancement of the ex-
change which is linear with the particle radius.
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