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Crosslinked chitosan: Its physical properties and the effects of matrix stiffness on 

chondrocyte cell morphology and proliferation 

 

Anuradha Subramanian, Hsin-Yi Lin 

 

Abstract: Chitosan [<(1-4)-2 amino-2-deoxy-d-glucose], the natural polyaminosaccharide 

derived from N-deacetylation of chitin [<(1-4)-2 acetamide-2-deoxy-d-glucose], has been 

shown to possess attractive biological and cell interactive properties. Recently chitosan 

and chitosan analogs have also been shown to support the growth and continued function 

of chondrocytes. In the present study, chitosan substrates are crosslinked with a func-

tional diepoxide (1,4 butanediol diglycidyl ether) to alter its mechanical property, and the 

viability and proliferation of the canine articular chondrocytes seeded on the crosslinked 

surface are further assayed. Of interest is the impact of substrate stiffness on the growth 

and proliferation of articular canine chondrocytes. Cross linked scaffolds were also sub-

jected to degradation by chitosanase to examine the impact of cross linking on enzyme- 

assisted degradation. The hydrophilicity and compression modulus of the crosslinked sur-

faces were measured via contact-angle measurements and compression tests, respec-

tively. Scanning electron microscopy (SEM) and fluorescent staining were used to ob-

serve the proliferation and morphology of chondrocyte cells on noncrosslinked and 

crosslinked surfaces. The crosslinked chitosan was found to be nontoxic to chondrocytes 

and more hydrophilic. Its compression modulus and stiffness increased, which may im-

prove the scaffold resistance to wear and in vivo shrinkage once implanted. The in-

creased stiffness also seemed to serve as an additional mechanical stimulus to promote 

chondrocyte growth and proliferation. The cell morphology on  crosslinked scaffolds seen 

by SEM and fluorescent stain was the typical chondrocytic rounded shape. The method 



proposed provides a nontoxic way to increase the mechanical strength of the chitosan 

scaffolds. 

 

Key words: cartilage tissue engineering; chitosan scaffold; chondrocytes; crosslinking; 

biomaterial mechanical testing 

 

 

INTRODUCTION 

 

The articular cartilage is the dense white tissue covering the articulating surfaces of 

bones. The regenerative capability of the articular cartilage is very limited when injured or 

damaged with aging. One approach to repair defected cartilage is to generate functional 

tissue by seeding functional chondrocyte cells in a biocompatible scaffold and then im-

plant the cell–material complex to repair chondral defects.1 The use of polymeric scaf-

folds to generate tissue-engineered cartilage has been extensively studied.2–8 Given the 

importance of GAG in stimulating chondrogenesis, use of GAG or GAG analogs as com-

ponents of a cartilage  tissue scaffold appears to be a logical approach. Chitosan has 

been reported to share some structural features with glycosaminoglycan, which occurs 

naturally in articular cartilage, and has been reported to support  chondrogenesis and bio-

synthesis of markers associated with chondrocyte metabolism.7–10 By using a combina-

tion of freeze drying and leaching techniques, chitin/chitosan and its derivatives (car-

boxymethyl chitin and bicarboxymethyl chitosan) have been blended with hydroxyapatite 

to yield composites for use in bone-tissue engineering.11 Chitosan sponges were made 

by freeze-drying tripolyphosphate crosslinked chitosan and loaded with platelet-derived 

growth factor. These scaffolds were evaluated for their ability to regenerate periondontal 



bone. Freeze-drying techniques have been used to prepare porous membranes and 3D 

scaffolds of chitosan for use in tissue engineering applications.12 In a previous study, 

nonporous chitosan membranes were modified with chondroitin sulfate (CSA) and CSA-

chitosan membranes were evaluated for their ability to support chondrogenesis.7,11 In a 

separate study, a scaffold in the form of an interpenetrating polymeric network was made 

from a mixture of collagen and chitosan.13 The biocompatibility of the chitosan-based 

scaffolds have been evaluated in mice,14 where porous chitosan scaffolds (unseeded) 

were implanted in mice, and animals were sacrificed after 1, 2, 4, 8, or 12 weeks. Macro-

scopic inspection of the implantation site revealed no pathological inflammatory re-

sponses, gram staining and limulus assays revealed no evidence of infection or en-

dotoxin, and lymphocyte proliferation assays and antibody responses indicated a low in-

cidence of chitosan-specific reactions.14 This study serves to demonstrate that chitosan-

based scaffolds had a high degree of in vivo biocompatibility in the animal model studied. 

The regulation of chondrocyte function (e.g., biosynthesis of Type II collagen, PG synthe-

sis and  down regulation of nitrous oxide production) by growth factors (TGF<), cytokines, 

and biomechanical forces (dynamic compression) has been demonstrated. 15–21 An 

area that has not been studied as well, but is critical to the understanding of cartilage 

function and maintenance during normal and disease states, is the regulation of chondro-

cyte function by an intrinsic mechanical environment or substrate mechanics. For exam-

ple, osteoarthritis is brought about by the degradation of the collagen fibrils in the ECM, 

leading to a cartilage matrix with decreased tensile modulus, which in turn perhaps leads 

to decreased biosynthetic activity of chondrocytes. Chondrocytes, when seeded on sub-

strates, are known to exert contractile forces,22,23 which usually results in the shrinkage 

of the substrate, referred to as the chondrocyte-mediated contraction (CMC). The 

changes in size and microstructure of the implants/ substrates due to cell contraction may 



reduce the pore size and further impede the migration of cells into the scaffolds and free 

exchange of the nutrients and the metabolites.24 The potential of articular chondrocytes 

to exert a contractile force upon scaffolds and change the size  and pore structure of the 

scaffolds has been reported both in vivo and in vitro.22–25 Collagen-based matrices, 

when seeded with chondrocytes, were reported to undergo up to 35% shrinkage.22,23 

Noncrosslinked collagen sponges, when implanted in full-thickness osteochondral defects 

in canine models, were observed to undergo cell-driven contraction of the matrix and thus 

prevent complete fitting  of scaffolds in the chondral defects.25,26 Preventive methods 

against mechanical changes of polymer scaffolds in the articular cartilage implant site 

have been studied.27,28 Crosslinking treatments have been used to enhance the me-

chanical properties of the polymeric scaffolds.22,23,29 –31 The effects of four crosslink-

ing methods on the compressive stiffness of collagen-glycosaminoglycan (CG) matrices 

and the interaction between adult canine articular chondrocytes and the stiffened matrix 

have been evaluated. 22 Dehydrothermally treated and ultra violet irradiated matrices 

were found to be the most compliant, and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDAC) and glutaraldehyde (GTA) –treated matrices were the stiffest. Over the 4-week 

culture period, the GTA and EDAC matrices (the stiff ones) resulted in the highest rate of 

cell proliferation. RGD-derivatized alginate hydrogels were crosslinked with Ca2< and 

Ba2< ions and were reported to provide 10-fold higher chondrocyte attachment when 

compared to uncrosslinked alginate hydrogels.31 More recently,29 porous collagen scaf-

folds were crosslinked with EDAC in the presence of lysine; however, no obvious differ-

ence in resistance to contraction was observed over matrices crosslinked with EDAC. 

Furthermore, changes in stiffness upon crosslinking and the impact of the same of the 

morphology of seeded fibroblasts were not reported. The aim in this study was to chemi-

cally crosslink the ONH2 groups on the chitosan backbone and to modify the stiffness of 



chitosan-based scaffolds and substrates. Furthermore, increased stiffness is expected as 

a result of crosslinking to impact chondrocyte behavior, and to test the hypothesis that the 

rigidity of the matrix can itself serve as a mechanical signal and direct seeded chondro-

cytes to possess higher biosynthetic activity of crosslinked matrices. 

 

MATERIALS AND METHODS 

 

Reagents 

 

All chemicals were of analytical grade or better. Chitosan with a degree of deacetylation 

of 81.7 was purchased from Vansom (Redmond, WA) and was used without further purifi-

cation. The diepoxide was purchased from Sigma Chemical Company (St. Louis, MO). 

Articular chondrocytes of canine origin (shoulder joints of dogs) were obtained from Dr. 

Mark Beatty, College of Dentistry, University of Nebraska Medical School (Lincoln, NE). 

Cellculture media and other reagents were obtained from Invitrogen. Mechanical tests 

were performed on an MTS Instrument available at the College of Dentistry (University of 

Nebraska Medical School, Lincoln, NE). SEMs were obtained on a JEOL-6100 micro-

scope at the Center of Biotechnology (UNL, Lincoln, NE). All reagents were used without 

further purification. 

 

 

 

 

 

 



 

 

Preparation of films and scaffolds 

 

A 2% w/v solution of chitosan (81.7% deacetylated, MW < 276 kDa, Lot No. 01-CISQ-

1702, Vanson HaloSource, WA) in 1% acetic acid was freshly prepared prior to scaffold 

preparation. Glass slides (Fisher) were coated with 1-mL chitosan solution and air dried at 

room temperature. The chitosan coated slides were further treated in an 80°C oven over-



night to prevent the detachment of the chitosan film. Dried films were then neutralized 

with 1N NaOH and sequentially rinsed with deionized water, air dried and stored until fur-

ther use. For the preparation of scaffolds via freeze-dry and lyophilization (FDL), a 2-mL 

solution of 2% chitosan solution was prepared as mentioned earlier, and pipetted into 

each well of a 24-well tissue-culture polystyrene plate (TCP, Falcon). The samples were 

then frozen at <20°C and the frozen samples were lyophilized for 24–36 h. The scaffolds 

were then neutralized with 1M NaOH and rinsed as detailed earlier. In order to preserve 

the shape (pores) of the scaffolds, the scaffolds were gradually dehydrated with a series 

of ethanol solutions (20–100%) before air drying the scaffolds. The scaffold sample used 

in the cell seeding experiments was 0.8 –1.0 cm in diameter and 0.3– 0.5 cm in thickness. 

 

 

Crosslinking films and scaffold 

 

A diepoxide-based bifunctional linker32 (1,4 butanediol diglycidyl ether) was used to 

crosslink the chitosan chains via the reactive amino group on the chitosan backbone. The 

schematic of the crosslinking method is shown in Figure 1. By varying the molar 

stoichiometric excess of the diepoxide, films were prepared and scaffolds were freeze-

dried with varying degrees of crosslinking. A crosslinking agent (1,4-butanediol diglycidyl 

ether, Sigma, MO) was added to isopropanol to make solutions in which the mole ratio of 

the diepoxide to the NH2 groups on the chitosan was 1/2 to 1 (0.5<), 1 to 1 (1<), and 5 to 

1 (5<). Controls (0<) were samples submerged in plain isopropanol without adding the 

epoxide. Samples  were placed in a 45°C shaker incubator at 60 rpm for 16 h. After 16 h, 

samples were rinsed with isopropanol to remove excess ether and air dried. Prior to cell-



seeding experiments, scaffolds and films were sequentially washed with sterile deionized 

water followed by sterile PBS. 

 

Cell culture 

 

All cells used in this study were passage 2 or 3 canine chondrocytes, harvested from the 

articular cartilage obtained from the shoulder joint of adult dogs. The cell-culture media 

used was RPMI <10% fetal bovine serum supplemented with antibiotics and antimycotics 

(all cell culture reagents are from Invitrogen). Experiments with cells were maintained in a 

cell-culture incubator (Isotemp, Kendro, NC) at 37°C, 95% humidity and 5% CO2. 

 

Surface hydrophilicity 

 

A contact angle system (model OCA 15<, Dataphysics Co.) was used to test the hydro-

philicity of the crosslinked films. Water was used as the liquid phase. Five microliters (<L) 

of water was injected on the film surface at a rate of 3 <L/s. A Laplace-Young fitting was 

used to calculate the contact angle in degrees. For each epoxide to (ONH2) molar ratio, 

three slides were used and six data points from each slide with error <1.0 were taken for 

average and standard-deviation calculation. 

 

Compression test 

 

Scaffolds were rehydrated in deionized water 1 day before the test. The test was per-

formed on an Instron machine (model 1123, Instron, MA). The crosshead speed was 2 

mm/ min and a 50-kgf load cell was used with Instron. Six specimens of each epox-



ide/ONH2 mole ratio were tested at room temperature. The load (kgf) -displacement (mil-

limeter) data were recorded by the computer software provided by Instron and converted 

to stress-strain curves to obtain elastic modulus (kPa). No maximum compression 

strength was obtained because the hydrogel did not break when subject to compression. 

Films were tested according to the procedure detailed elsewhere.33 

 

 

Degradation with chitosanase 

 

The dry weight (W0) of the scaffolds was measured before the test. Chitosanase (EMD 

Biosciences) was dissolved in acetate solution (sodium acetate buffer: 200 mM, pH 4.5 

plus 0.02% sodium azide) to a final concentration of 0.1 U/mL. Scaffolds were submerged 

in chitosanase solution (1:100 w/v) and incubated at 37°C with constant shaking over in-

dicated periods of time (1, 2, 4, and 24 h). Samples were removed from the enzyme solu-

tion after each time period and the scaffolds were rinsed with DI water. The samples were 

dried and weighed (Wf), and the percentage of degradation was calculated [(W0 < 

Wf)/W0 < 100%]. 

 

 

Chondrocyte cell adhesion and viability test with MTT [3-(4,5-dimethylthiazol-2-yl)-

2,5- diphenyltetrazoliumbromide] assay 

 

Glass slides coated with chitosan films were cut into 1 < 1-cm2 squares and placed in the 

wells of 12-well TCP plates with the film facing upward. Samples were disinfected with 



70% ethanol. Canine chondrocytes were then seeded on the films at 3 < 104/film. Cells 

seeded on TCP served as controls. After 3 days, the cell-culture medium was removed 

and a 1 mg/mL solution of MTT was added to the cells. After 4 h, the MTT solution was 

removed and isopropanol was added and held for 20 min. The color of formazan salt 

was measured by an ELISA plate reader (ELx800, Biotek) at 595 nm (A595). Cell viability 

was calculated as a percentage of the TCP control [(Asample/Acontrol) < 100%]. 

 

Cell morphology and proliferation (SEM and fluorescent stain) 

 

To observe the cells growing on two-dimensional substrate, chondrocyte cells were 

seeded at 1 < 104/cm2 on films that were not attached to slides (free-swelling) and 

cultured for 1 week before visualization by microscopy. At the end of the culture period, 

the medium was removed from each well, 300 <L of trypsin (Gibco) solution (0.25% tryp-

sin in sterile PBS) was added to each well, and the plates were held for 30 min for cells to 

detach. The solution in the well was pipetted up and down to get cells into suspension, 

and the cell counting was done with the use of a hemocytometer.33 Upon cell seeding, 

the seeded scaffolds were transferred to a fresh TCP plate, and prior to trypsinization the 

scaffolds were carefully removed to a new TCP. This step was done to avoid an increase 

in cell numbers arising from cells bound to the TCP plate. To quantify the total double-

stranded DNA, the scaffolds were cut into small pieces, digested in 1 mL of a 6 <g/mL 

of papain solution for 6 h at 60°C, and a PicoGreen™ DNA assay kit (Molecular Probes) 

was used according to manufacturer’s specifications. To observe cells on a three-

dimensional matrix, scaffolds were placed in a 24-well TCP submerged in 2 mL of cell 

suspension with cell density of 1 < 105/mL. After 24 h, scaffolds were moved to another 

TCP with fresh media. Cells were cultured for a week before SEM and for 2 weeks before 



fluorescent stain. For SEM microscopy, cells were cross linked with 2.5% formaldehyde 

(Sigma) in phosphatebuffered saline (PBS), rinsed with deionized water, and gradually 

dehydrated with series of ethanol solutions. Hexamethyl disilazane (Fisher, PA) was used 

to remove 100% ethanol. Samples were sputter coated with Au-Pd before being exam-

ined under SEM (Hitachi, s3000N, Japan). For fluorescent staining, cells were fixed in 

3.7% formaldehyde in PBS, penetrated with 0.1% Triton X-100 (Sigma, MO) in PBS, and 

stained with rhodamine–phalloidini (Molecular Probe) in 0.1% bovine serum albumin. A 

confocal laser scanning microscope (BioRadi MRC1024ES, Hercules, CA) was used to 

examine the cells. 

 

 

Statistical analysis 

 

The numerical data from each experiment were the average from at least triplicate sam-

ples. The same experiments were repeated three times to ensure the repeatability of the 

methods used. A Student t test was used for statistical analysis and the statistical differ-

ences were established as p < 0.05. 

 

RESULTS AND DISCUSSION 

 

Although the impact of external stimuli (i.e., dynamic compression or hydrostatic pres-

sure), and the presence of growth factors and cytokines on chondrocyte attachment, pro-

liferation, and biosynthetic activity has been extensively studied, the impact of substrate 

stiffness on chondrocyte attachment and proliferation has only been studied recently.34 –

36 Chondrocyte-mediated contraction of matrices can be expected to impact the pore 



size and porosity, which, in turn, would impact the response to mechanical stimuli as well 

as chondrocyte biosynthetic and metabolic activity.24 In a previous study,22 crosslinking 

was shown to directly reduce the chondrocyte- mediated contraction of collagen-based 

matrices, wherein the stiffest matrix contracted by 30% and the complaint matrices con-

tracted by 60%. Interestingly, matrices with a higher-level contraction led to higher levels 

of Type II collagen biosynthesis when compared to stiffer matrices, possibly due to high-

density cultures in contracted matrices. Thus in this study the effects of crosslinking and 

matrix density on chondrocyte differentiation could not be delineated. Recently alginate 

matrices were first derivatized with RGD peptide and then cross- linked with Ca2< and 

Ba2< ions to increase the stiffness of the base alginate matrix.31 The rate and the extent 

of attachment were found to be dependent on the stiffness, and stiffer substrates were 

shown to impact chondrocyte morphology. However, in this study, the relative impact of 

the biochemical stimuli (RGD peptide) versus the intrinsic mechanical stimuli (i.e., matrix 

stiffness) could not be separated. Furthermore, the high levels of Ca2< ions used to 

crosslink alginate may have modulated intracellular calcium levels, which has been re-

ported to affect integrin expression and attachment in several cell types.37,38 Although 

Ba2< has been reported to interfere with integrin function39 and block cell adhesion,40 

the use of Ba2< to crosslink alginate surfaces has resulted in increased cell adhesion.31 

In the present study, a change in the intrinsic mechanical environment was made by alter-

ing the morphological state of the matrix (planar film and scaffolds prepared via freeze 

drying and lyophilization), and the stiffness of the matrix was changed by crosslinking of 

the chitosan substrate. The intention here is to study the impact of intrinsic stimuli pro-

vided by morphologies or altered matrix stiffness independent of the stimuli provided by 

changes in matrix densities, or the presence of a bioactive peptide. It is known that the 

proposed reaction scheme (shown in Fig. 1) will result in both Structures 1 and 2, and that 



the ratio of the same can be controlled by an optimization of the reaction conditions, 

namely, the temperature and percent diepoxide in the reaction mixture. Briefly, the con-

centration of the terminal epoxide moiety (Structure 2) was estimated as function of reac-

tion temperature and percent diepoxide, by sodium thiosulfate titration (data to be pub-

lished). The present reaction optimization experiments have suggested that a high degree 

of crosslinking (Structure 1) can be obtained by carrying out the reactions at 45 to 60°C, 

with less than 10% of free terminal epoxide groups (Structure 2). Infrared (FTIR) spec-

troscopy was used to determine the modification of the chitosan surface qualitatively. IR 

data were taken on desiccated chitosan films both before and after epoxide modification. 

The signature of the chitosan molecule can be significantly recognized from the intensity 

of the amine peak at wavelengths of 3300–3500 cm<1 and the strong NOH stretch at 

1560–1650 cm<1, as seen from the IR spectrum shown in Figure 2(a). The IR spectrum 

of the diepoxide modified chitosan (1-molar excess of diepoxide) is shown in Figure 2(b). 

After the modification of chitosan with 1, 4 butanediol diglycidyl ether, the intensity of the 

characteristic amino peak at 3300–3500 cm<1 was found to decrease, and a strong 

stretch at 1590 cm<1 was observed, signifying the modification of the primary amine 

group on chitosan with the diepoxide. There is also an increase in the peak at 500 cm<1 

which is due to COH2 stretch. The peak 1060 cm<1 is that from the COOOH resulting 

from the opening of the oxirane moiety by the primary amine group. These observations 

support the conclusion that chitosan was crosslinked at the terminal amino groups via the 

diepoxide linker. Similar FTIR spectra were obtained for films at other crosslinking 

ratios. Furthermore, it was observed that the crosslinked scaffolds/films were stable over 

the culture period (data not included). 

 

 



Surface hydrophilicity (contact angle) 

The results, shown in Figure 3, showed that crosslinking the chitosan film with 1,4 buta-

nediol diglycidylether decreased the contact angle and increased the hydrophilicity of the 

surface. Figure 3 shows a significant drop (p < 0.01) in contact angle from 0< to 0.5<, but 

not between 0.5< and 1<. The contact angle decreased again (p < 0.01) when the 

ether/amino ratio was raised to 5<. Although the contact angles of crosslinked films were 

lower than the noncrosslinked films, the hydrophilicity of the crosslinked films studies 

were similar. 



 

Mechanical properties (compression test) 

 is expected that crosslinked films and scaffolds will possess higher stiffness and elastic 

igure 3. Contact angle of uncrosslinked and crosslinked chitosan films. Chitosan films 

ur-

face and mean error was reported.  

 

It

modulus. The results show that chemically crosslinked films had a 1.5-times higher 

modulus than uncrosslinked films. The elastic moduli of the crosslinked scaffolds can be 

seen in Figure 4. The crosslinking process significantly increased the elastic modulus of 

the chitosan substrate (p < 0.01), indicating an increase in stiffness after crosslinking. The 

crosslinked scaffolds (0.5< to 5<) have about 2–5 times higher elastic modulus (7.4 –19.9 

kPa) compared to uncrosslinked scaffolds (3.8 kPa). Chondrocytes, when seeded on 

flexible substrates (like collagen), have been shown to exert contractile forces. 

 

 

F

were washed and an OCA-20 was used to measure the contact angles. A minimum of 

three drops were collected for each liquid used at different locations on the sample s



 

 

Figure 4.  

Elastic modulus of scaffolds prepared by the FDL method in hydrated state. The test was 

one by an Instron using a 50-kgf load cell with crosshead moving at 2 mm/ min.  

e three-

eek culture period. The present results (data not included) show that the spreading and 

d

 

Seeded scaffolds have undergone a 10–30% reduction in diameter.16,17 The diameter of 

unseeded substrates (no cells) based on chitosan changed less than 2% during th

w

adhesion of chondrocytes on films and scaffolds prepared by the FDL method did not de-

form the gels or shrink the surfaces. This may be explained by the difference in the 

Young’s modulus of these materials. The substrates used in these studies had higher 

elastic modulus when compared to the flexible collagen substrates with reported Young’s 

modulus of 100–150 Pa. This result is supported by the observation  that the morphology 

of the scaffold, as judged by SEM, and the porosity of the scaffolds did not undergo a sig-

nificant change upon crosslinking (data not included). 



 

Degradation with chitosanase 

 

The degradation results of uncrosslinked and crosslinked chitosan scaffolds are shown in 

olds were completely digested in 24 h. The initial (<4 h) 

egradation of the  more crosslinked samples was slower than the less- or non-

he in vitro biocompatibility of crosslinked films and scaffolds prepared in the laboratory 

 chemical crosslinkers used. The ability 

Table I. The noncrosslinked scaff

d

crosslinked ones. However, by the end of 24 h, the amount of chitosan digested was not 

different between different degrees of crosslinked chitosan scaffolds. All chitosan samples 

were degraded over the 24-h period by chitosanase. More crossed chitosan had a slower 

initial (<4 h) degradation rate than the less crosslinked ones. Chitosanase-assisted hy-

drolysis requires that beta-1,4-linkages between N-acetyl-dglucosamine and d-

glucosamine residues in chitosan be presented.41 Chemical modification of chitosan at 

the amino group may render the glucosamine residues inaccessible to chitosanase, or the 

crosslinked segments may form a conformation that hinders chitosanase from recognizing 

other active moieties. As no significant differences in the rate or extent of degradation 

were observed between uncrosslinked and crosslinked chitosan films, it is concluded that 

the method of crosslinking did not alter the enzymatic susceptibility. It is estimated that at 

the highest ratio of the functional diepoxide to the ONH2 groups on the chitosan mole-

cule, only about 25–35% of the available amino groups were modified, and that at this 

level of modification the enzymatic susceptibility was not altered. 

 

Cytotoxicity of crosslinked chitosan surfaces 

 

T

were evaluated to ascertain the impact, if any, of



of crosslinked substrates to support growth and proliferation of chondrocytes is presented 

icant differ-

the 

in Table II. The absorbance from the cell viability test (MTT assay) on various 

degrees of crosslinked films was calculated into the percentage of the control (cells on 

tissue-culture polystyrene, TCP). The viability of cells on the crosslinked chitosan films 

was not significantly different from the cells on the TCP. There was no signif

ence in viability between different degrees of crosslinked films. The results show that 

the modified surface was not cytotoxic to the chon drocyte cells, because the cell viability 

remained the same as the control after 3 days in culture. Cell viability in the range of 90–

97% was routinely attained, indicating that modification is not cytotoxic and 

crosslinked chitosan scaffold maintained biocompatibility. 

 



Cell morphology and proliferation 

 

Mechanical forces can arise from two sources—the environment and contractile forces 

generated by the cells, wherein cells provide the initial input and the substrate reacts to it 

by deforming passively. It is hypothesized that chondrocytes can sense their intrinsic me-

chanical environment and that substrate or scaffold rigidity/stiffness can also serve as an 

intrinsic mechanical stimuli. It is expected that chondrocyte will possess different mor-

phologies when seeded on flexible substrates as opposed to stiffened substrates. 

Crosslinked films may be able to direct the chondrocytes to possess morphology that re-

sembles Type IV classification42 when compared to uncrosslinked surfaces. The SEM 

images of chondrocytes grown on free swelling films, after 1 week of culture, are shown in 

Figure 5. When seeded on noncrosslinked and crosslinked chitosan films and observed 1 

week after seeding, the cells possessed a flattened and spread morphology. This result 

agrees with the previous finding, where seeded chondrocytes possessed Type IV mor-

phology on planar surfaces. 26,38 At the end of a week of culture, cell proliferation 

appeared to be higher on crosslinked films (9.2 < 104 to 12.6 < 104 cells per film) when 

compared to noncrosslinked films (6.5 < 1.1 < 104 cells per film). The SEM images of 

chondrocytes growing on FDL scaffolds are shown in Figure 6. 

 



 

 

Figure 5.  

 

SEM micrograph of chondrocytes seeded on uncrosslinked and crosslinked films. Repre-

sentative SEM pictures of canine chondrocyte cells (passage 2) on (A) noncrosslinked 

(0<), (B) 0.5<, (C) 1<, and (D) 5< crosslinked chitosan films. SEM micrographs were 

taken after 1 week of culture. The initial seeding density was 1 < 104 cells/cm2. The scale 

bar is 50 <m. 

 

 

 



 

 

 

Figure 6. SEM micrograph of chondrocytes seeded on noncrosslinked and crosslinked 

scaffolds. Representative SEM pictures of canine chondrocyte cells (passage 3) on (A) 

noncrosslinked, (B) 0.5<, (C) 1<, (D) 5< crosslinked chitosan scaffolds are shown. SEM 

micrographs were taken after 1 week of culture. The scale bar is 100 <m. Cells appeared 

to have rounded chondrocytic morphology. 

 

 

 



 

 

 

Figure 7. Morphologies of chondrocytes seeded on uncrosslinked and crosslinked chito-

san films. Representative fluorescent pictures of canine chondrocyte cells (passage 3) of 

(A) on a noncrosslinked film and (B) on a 0.5< film. Cell and cytoskeletal morphology 

were assessed with the use of rhodamine-conjugated phalloidin to visualize filamentous 

actin. The initial seeding density was 1 < 104 cells/cm2, and cultures were maintained for 

2 weeks. Actin filaments were detected by staining with TRITC conjugated phalloidin, and 

cells were observed by epifluorescence microscopy. The scale bar is 50 <m. Cells on un-

crosslinked surfaces were nebulous, and cells on crosslinked surfaces appeared to have 

Type IV, flattened morphology. 

 

Chondrocyte cells seeded on chitosan scaffolds proliferated, possessing a rounded 

chondrocytic morphology that is indicative of cells retaining their phenotypes. From the 

SEM pictures, it is concluded that at the end of a week of culture, crosslinked chitosan 

scaffolds [Fig. 6(B–D)] had a higher cell proliferation when compared to the non-

crosslinked surfaces [Fig. 6(A)] as determined by the total amount of doublestranded 



DNA (dsDNA) detected in the digests. Uncrosslinked, 0.5<, 1<, and 5< crosslinked scaf-

folds gave 57.0 < 7.7, 68.7 < 0.8, 103.2 < 4.6, and 110.8 < 6.6 ng of dsDNA/mL, respec-

tively. Measurement  of the cell count (data not included) showed a similar trend. The 

present observations suggest that chondrocytes growing on a 3D hydrogel scaffold have 

proper cell– cell contact with neighboring chondrocytes, whereas the chondrocytes grow-

ing on two dimensional films express flat and spread morphology. These results agree 

with previous studies, where chondrocytes appear to be rounded in three dimensional 

scaffolds while maintaining their phenotypes. 44–46 Previous studies have shown that it 

is necessary for chondrocytes to assume a spherical morphology in order to express the 

chondrocytic phenotype (Type II collagen and GAGs).45,46 This spherical morphology is 

also an indication of chondrocyte differentiation.46 In an extended experiment, chondro-

cytes, when maintained on non crosslinked scaffold for 21 days, gave 0.15 < 0.05 <g of 

GAG/mL and chondrocytes maintained on 0.5<, 1<, and 5< crosslinked scaffolds for a 

month gave 0.52 < 0.13, 0.52 < 0.07, and 0.69 < 0.04 <g of GAG/mL, respectively. 

 

Chondrocytes were seeded onto crosslinked and uncrosslinked films and scaf-

folds, and the cytoskeletal morphologies were observed upon rhodamine– phalloidin 

staining of actin filaments of seeded chondrocytes. Representative morphologies ob-

tained on noncrosslinked and crosslinked chitosan films membranes are shown in Figure 

7. About 90% of the cells on uncrosslinked films had a spherical morphology and nebu-

lous, punctate actin. Cells on the crosslinked films were flattened with stress fibers and 

40–50% of cells surveyed had a Type-IV flattened morphology.42 Thus it appears that 

stiffer substrates directed the cells to possess a flattened morphology. Representative 

morphologies obtained on noncrosslinked and crosslinked chitosan scaffolds are shown 

in Figure 8. As observed by the fluorescent staining; a higher rate of proliferation was 



seen on  crosslinked scaffolds [Fig. 8 (B,C)] when compared to noncrosslinked scaffolds 

[Fig. 8(A)]. 

 

Figure 8. A rhodamine–phalloidin stain of chondrocytes seeded on uncrosslinked and 

crosslinked scaffolds. Representative fluorescent pictures of canine chondrocyte cells 

(passage 3) (A) on a noncrosslinked scaffold; (B) on a 0.5< crosslinked scaffold, and (C) 

on a 5< crosslinked chitosan scaffolds. The initial seeding density was 3 < 105 cells/mL (2 

mL of cell suspension added per well) and cultures were maintained for 2 weeks. Actin 

filaments were detected by staining with TRITC conjugated phalloidin, and cells were ob-

served by epifluorescence microscopy. The scale bar is 50 <m. 

 

CONCLUSION 

 

The images of cells from SEM and the fluorescent stain indicate that stiffer surfaces pro-

mote cell proliferation. The elastic moduli of crosslinked scaffolds were 100– 400% more 

than that of the noncrosslinked scaffold. In the absence of any external stimuli, it is postu-

lated that the rigidity of the films might be the factor enhancing  chondrocyte cell growth 



and biosynthetic activity. In conclusion, it has been shown that the chemical crosslinking 

strategy used imparts additional  matrix stiffness without impacting the biocompatibility or 

the cell adhesive properties of the films or scaffolds. The augmented mechanical strength 

may provide additional resistance to cell-mediated scaffold shrinkage and pore size 

change. Finally, the increase in substrate stiffness appears to serve as an intrinsic stimu-

lus that promotes cell proliferation and preservation of morphology. The slower enzyme 

degradation rate of crosslinked scaffolds can be viewed as an advantage for a degrad-

able material, because the degradation  rate can thus be further modified to suit various 

tissue recovery time in vivo. This study provides an alternative way to control the physical 

properties of implant materials and to improve chondrocyte proliferation. Continuing stud-

ies aim to assess the  phenotype and biosynthetic activity of chondrocytes on the sur-

faces evaluated in the present study. 
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