12-1-2010

Mycotoxins in Grains – Causes, Prevention and Control

Hester F. Vismer

Medical Research Council (Cape Town, South Africa), hester.vismer@mrc.ac.za

Follow this and additional works at: http://digitalcommons.unl.edu/intsormilpresent

Part of the [Agronomy and Crop Sciences Commons](http://digitalcommons.unl.edu/intsormilpresent), [Environmental Health Commons](http://digitalcommons.unl.edu/intsormilpresent), [Environmental Public Health Commons](http://digitalcommons.unl.edu/intsormilpresent), [Medical Toxicology Commons](http://digitalcommons.unl.edu/intsormilpresent), [Other Food Science Commons](http://digitalcommons.unl.edu/intsormilpresent), [Public Health Education and Promotion Commons](http://digitalcommons.unl.edu/intsormilpresent), and the [Toxicology Commons](http://digitalcommons.unl.edu/intsormilpresent)

http://digitalcommons.unl.edu/intsormilpresent/35

This Presentation is brought to you for free and open access by the International Sorghum and Millet Collaborative Research Support Program (INTSORMIL CRSP) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in INTSORMIL Presentations by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Mycotoxins in Grains - Causes, Prevention and Control

Dr Hester F Vismer

PROMEC Unit, Medical Research Council,
Tygerberg, Cape Town

E-mail: hester.vismer@mrc.ac.za
FOOD SAFETY

Food safety is an issue that is becoming increasingly important in national and international debates about agriculture, nutrition and health.

“Food safety is not a luxury of the rich, but a right of all people”
Dr J Diouf (FAO Director General)

It is a complex and many-faceted issue.

Aspects of pre-harvest, harvest and post-harvest mycotoxin contamination of grains.
Mycotoxins

- natural toxic metabolites produced by fungi (mostly food-borne)
- potent carcinogens and mutagens

Mycotoxigenic fungi - fungi capable of producing mycotoxins

Mycotoxicoses

- diseases caused by ingestion of foods containing mycotoxins
- multiple factors: plant pathogenic fungus, host plant, insects, environmental factors, toxin, products, consumer
- fungi growing on the same substrate / toxin combinations: additive / synergistic / depressive effects
- long-term exposure to low / constant doses of mycotoxins
IMPORTANT MYCOTOXINS / MYCOTOXIGENIC FUNGI ASSOCIATED WITH GRAINS IN AFRICA

- **Aflatoxin**: Aspergillus flavus, A. parasiticus
- **Fumonisins**: Fusarium verticillioides, F. proliferatum
- **Deoxynivalenol**: Fusarium graminearum, F. culmorum
- **Zearalenone**: Fusarium graminearum
- **Ochratoxin**: A. ochraceus, A. carbonarius, Penicillium verrucosum
- **Moniliformin**: Fusarium thapsinum, F. pseudonygamai, F. proliferatum, F. andiyazi and other Fusarium species
EFFECTS OF FUNGAL GROWTH ON GRAIN

- Deterioration in and discoloration of grain quality due to fungal growth
- Reduction in nutritional value (energy and protein)
- Contaminated grain loses market value and is unfit for consumption
- Seed germination is affected leading to poor plant stand in the fields
- Occurrence of mycotoxins in food/feed affects the export potential of grain and grain products - economic implications
FACTORS CONDUCIVE FOR FUNGAL GROWTH AND MYCOTOXIN PRODUCTION

- Pre-harvest conditions

- Climatic / soil / plant varieties / other conditions
 - soil fertility / poor seed / susceptible plant varieties
 eg. short and medium duration cultivars that mature during rains
 - over crowded plant population in field
 - plants suffering from other diseases
 - crop rotation / geographical regions
 - planting time in season / temperature / rain, humidity
 - drought stress / warm, wet conditions between flowering to harvest
 - insect infestation - damage to developing grain in the panicle / ear
 - crop damage, eg. birds / other animals
Distribution of stalk borer species in maize by agroecological zone in Kenya

- Highland tropical: Busseola fusca - Chilo partellus - Sesamia calamistis - Other species
- Lowland tropical: Busseola fusca - Chilo partellus - Sesamia calamistis - Other species
- Dry midaltitude: Busseola fusca - Chilo partellus - Sesamia calamistis - Other species
- Moist midaltitude: Busseola fusca - Chilo partellus - Sesamia calamistis - Other species
- Dry transitional: Busseola fusca - Chilo partellus - Sesamia calamistis - Other species
- Moist transitional: Busseola fusca - Chilo partellus - Sesamia calamistis - Other species
FACTORS CONDUCIVE FOR FUNGAL GROWTH AND MYCOTOXIN PRODUCTION

- Harvest and post-harvest conditions
 - Climatic conditions
 - optimal/maximum temperatures and
 - moisture for fungal growth and toxin production
 - Substrates
 - grains, nuts, etc. - higher level of contamination, e.g. carbohydrate, protein, fat, oil content, etc.
 - Crop damage pre- and post harvest
 - insect damage of kernels/seeds of grains in storage
 - mechanical and other damage harvest
FACTORS CONDUCIVE FOR FUNGAL GROWTH AND MYCOTOXIN PRODUCTION

- Harvest and post-harvest conditions (contd.)

 • Storage conditions
 - timeliness of harvest-ready crops
 - clean-up, temperature, humidity, e.g. not storing grain with >12% moisture content and at temperature >25°C
 - drying & keep grain dry, e.g. not rewetting of grains in storage due to improper storage conditions, e.g. moist ground or roof leakage / open air exposure to wet conditions / stacking the harvested panicles for long periods
FACTORS AFFECTING MYCOTOXIN LEVELS IN COMMERCIAL PRODUCTS

Food processing techniques

- Wet and dry milling processes
 - concentrates/reduces mycotoxins, eg.
 - *Fumonisins*: removal of hulls of maize kernels (90% ↓)

- Thermal processing - cooking and boiling
 - generally reduces mycotoxins, eg.
 - *Aflatoxin*: boiling (28% ↓), frying (34-53% ↓) and alkaline cooking (20-90% ↓)

- Sorting / screening / washing techniques
 - *Aflatoxin*: electronic sorting and hand-picking
 - *Fumonisins*: separation of fungal-damaged maize
FACTORS AFFECTING MYCOTOXIN LEVELS IN COMMERCIAL PRODUCTS

- Food processing techniques (contd.)
 - Fermentation - reduces mycotoxins, eg. Ochratoxin A
 - Chemical inactivation - ammoniation, ozonation, nixtamalization - addition of hydrogen peroxide and sodium bicarbonate
 - Adsorption techniques - addition of clays (HSCAS…)

- Mycotoxin residues
 - "Carry-over" / accumulation effects
 - Animal meat, milk & eggs, eg. Aflatoxin (AFM$_1$), Ochratoxin A
 - Human breast milk (AFM$_1$), eg. Sierra Leone, Ghana, Nigeria, Sudan, Kenya
CRITERIA FOR EVALUATING MYCOTOXIN REDUCTION OR DECONTAMINATION MYCOTOXIN IN COMMERCIAL PRODUCTS

- Procedures should
 - inactivate, destroy or remove the toxin
 - not produce or leave toxic residues in the food or feed
 - retain nutritive value and food/feed acceptability of the product
 - not alter significantly the technological properties of the product
 - destroy fungal spores, if possible and
 - be cost effective, i.e. decontamination process should cost less than the value of the contaminated commodity

Jemmali, 1979; Park et al., 1988; Jemmali, 1989 and others
AFLATOXIN

Aspergillus flavus, A. parasiticus
TOXICOLOGICAL ASPECTS OF AFLATOXINS

Potent human hepatocarcinogen

Dose effects

High doses: lethal if consumed - lung, myocardial & kidney tissues
Sub-lethal doses: causes chronic toxicity, eg. liver cirrhosis
Low level exposure: human hepatocellular carcinoma (liver cancer)

Mutagenicity

AFB₁ covalently binds to DNA - induces G to T transversions

Teratogenicity

Embryonic abnormalities
TOXICOLOGICAL ASPECTS OF AFLATOXINS

Hepatitis B (HB) Virus infections/carriers

Potency of aflatoxins in HBsAg\(^+\) is significantly higher than in HBsAg\(^-\) individuals - influence on liver cancer rates

Impaired growth in children

Children from Benin & Togo (Gong et al., 2002)

Immunosuppression

Immunodiluting agent - cell mediated immunity and Phagocytic cell function (Bondy & Pestka, 2000)

Gambian children: Continuous low level exposure to dietary aflatoxins - may enhance susceptibility to infection (Turner et al., 2003)
Aflatoxin B₁ metabolism in the liver

IARC classification (1998)
AFB₁ classified as a human carcinogen

ALARA Principle
Not technically possible to completely eliminate aflatoxins in food - maximum levels are set
As Low As Reasonably Achievable

Levels of aflatoxins in foods
10µg/kg of which AFB₁ ≤ 5µg/kg
ACUTE AFLATOXICOSIS

“According to the official news agency, the Kenya Broadcasting Corporation, the death toll by 16 May 2004 had reached 40 in Makueni and Kitui Districts of Kenya. There were others who were admitted to the district hospital with jaundice, leg edema and hepatomegaly. Maize samples showed high levels of aflatoxin. There were deaths reported in animals and poultry as well (maize meal is a component of animal and poultry feeds)“.

Dr S K Sharif (Ministry of Health, Kenya)

sksharif@africaonline.co.ke

...by September 2004, 317 cases reported and 125 deaths. A less severe outbreak occurred in 2005, resulting in 16 deaths. Food samples collected from households in the affected areas contained high levels of aflatoxin B₁ (20 to > 1000 μg/kg), suggesting that the outbreak was caused by acute aflatoxin poisoning. The outbreak resulted from aflatoxin contamination of locally grown maize that was stored under damp conditions....

FUMONISINS
Fusarium verticillioides, F. proliferatum

FB₁ levels up to 117 mg/kg
STEREOCHEMISTRY OF B SERIES FUMONISINS

R = \[
\begin{array}{c}
\text{O} \\
\text{COOH}
\end{array}
\]_\text{tricarballylic acid (TCA)}

FB₁: X = OH, Y = OH
FB₂: X = OH, Y = H
FB₃: X = H, Y = OH
TOXICOLOGICAL ASPECTS OF FUMONISINS

Farm Animals
Leukoencephalomalacia in horses
Pulmonary oedema syndrome in pigs

Experimental Animals
Hepato-, nephro- and cardiotoxic in rats and mice
Hepato- and nephrocarcinogenic in rats and mice
Neural tube defects (NTD) in mouse embryos

IARC Classification
Classified fumonisin B₁ as a Group 2B carcinogen,
ie possibly carcinogenic to humans

In Humans - associated with:
Oesophageal cancer in Transkei and China;
Birth defects (anencephaly & spina bifida) – Texas-Mexico border,
Guatemala, Transkei
Home grown maize – storage cribs

Transkei region of the Eastern Cape

Home grown maize – used for seed
FEATURES

FOOD: How Safe? How Altered? Mishandling products in the U.S. food supply—among the safest in the world—can make eating downright unhealthy. In our continuing Challenges for Humanity series, we also explore genetic engineering of food. Want disease-free grapes? Add a silkworm gene. How about vitamin-enhanced rice? While the technology promises new ways to help feed the world, some see risks to the land and to human health.

BY JENNIFER ACKERMAN PHOTOGRAPHS BY JIM RICHARDSON
<table>
<thead>
<tr>
<th>FB (ppm)</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>0.4</td>
<td>0.8</td>
<td>1.3</td>
<td>1.7</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.8</td>
<td>1.7</td>
<td>2.5</td>
<td>3.3</td>
<td>6.6</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>1.7</td>
<td>3.3</td>
<td>5.0</td>
<td>6.7</td>
<td>13.4</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>2.5</td>
<td>5.0</td>
<td>7.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>3.3</td>
<td>6.7</td>
<td>10.0</td>
<td>13.3</td>
<td>26.6</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>4.2</td>
<td>8.3</td>
<td>12.5</td>
<td>16.7</td>
<td>33.4</td>
</tr>
<tr>
<td>10</td>
<td>1.7</td>
<td>8.3</td>
<td>16.7</td>
<td>25.0</td>
<td>33.3</td>
<td>66.6</td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

Provisional Maximum Tolerable Daily Intake (PMTDI) = 0.8 µg/kg bw/day (carcinogenicity)

PMTDI = 2 µg/kg bw/day (nephrotoxicity) [JECFA 2001]
FUMONISINS IN BT-MAIZE

- **Field and Harvest conditions**
 - Naturally high incidence *Fusarium* areas
 - Good soil & quality seed / monitored relative humidity & temp / locality
 - Monthly rainfall over planting and growing period
 - Yield and moisture content of maize at harvest
 - Insect load over growing period / wounded & control ears

Busseola fusca - stalk and ear damage of maize
Results - Fumonisin levels

2001/2002 Season
- CRN 3549
- CRN 4549
- CRN 3760
- CRN 4760

2002/2003 Season
- CRN 3549
- CRN 4549
- CRN 3760
- CRN 4760

Controls
Wounded

MAIZE HYBRIDS
POTCHEFSTROOM

= Significantly different ($P < 0.05$)
MONILIFORMIN

Fusarium thapsinum, F. pseudonygamaia, F. proliferatum, F. andiyazi and other Fusarium species
Dose effects

High doses: Can be lethal to chickens, ducklings, and turkeys
- heart (cardiotoxic) & kidney tissues affected
The toxic dose of moniliformin in chickens reported to be 5mg/kg bw

Low level exposure: information on human health effects outstanding
NATURAL OCCURRENCE OF FUMONISIN AND MONILIFORMIN IN SORGHUM AND PEARL MILLET FROM MALI AND NIGERIA

<table>
<thead>
<tr>
<th>Sample Origin</th>
<th>Sample type</th>
<th>Total fumonisin (mg/kg)</th>
<th>Moniliformin range (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mali</td>
<td>Sorghum</td>
<td>10 - 1025</td>
<td>ND<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>Millet</td>
<td>5 - 70</td>
<td>ND - 524</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Sorghum</td>
<td>ND - 1345</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Millet</td>
<td>8 - 29</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ND = not detected at a detection limit of 1 mg/kg
Production of fumonisin and moniliformin by *Fusarium* isolates from sorghum and pearl millet samples from Mali in maize cultures

<table>
<thead>
<tr>
<th>Fusarium species</th>
<th>Original sample type</th>
<th>Number of isolates</th>
<th>Fumonisin (mg/kg)</th>
<th>Moniliformin range (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. thapsinum</td>
<td>Sorghum</td>
<td>7</td>
<td>ND(^1)</td>
<td>2214 - 8734</td>
</tr>
<tr>
<td>F. pseudonygamaï</td>
<td>Sorghum</td>
<td>2</td>
<td>ND</td>
<td>5675 - 8907</td>
</tr>
<tr>
<td>Unique species (^2)</td>
<td>Sorghum</td>
<td>2</td>
<td>ND</td>
<td>9947 - 14010</td>
</tr>
<tr>
<td>New species 2 & 3(^3)</td>
<td>Sorghum</td>
<td>4</td>
<td>ND</td>
<td>10280 - 33080</td>
</tr>
<tr>
<td>F. pseudonygamaï</td>
<td>Millet</td>
<td>8</td>
<td>1 - 13</td>
<td>5886 - 15470</td>
</tr>
<tr>
<td>“F. pseudoandiyazi”(^2)</td>
<td>Millet</td>
<td>1</td>
<td>10</td>
<td>1997</td>
</tr>
<tr>
<td>New species 4 & 5(^3)</td>
<td>Millet</td>
<td>5</td>
<td>1 - 5290</td>
<td>18 - 17240</td>
</tr>
</tbody>
</table>

\(^1\)Not detected, detection limit 1 mg/kg; \(^2\)Distinct from all other strains based on AFLP (undescribed); \(^3\)New species 2 and 3 from sorghum and 4 and 5 from millet are clusters based on AFLP;
Production of total fumonisin and moniliformin by *Fusarium proliferatum* and two unknown *Fusarium* isolates from maize, sorghum and pearl millet samples from Nigeria grown in grain cultures.

<table>
<thead>
<tr>
<th>Fusarium species</th>
<th>Original sample type</th>
<th>Number of isolates</th>
<th>Fumonisin (mg/kg)</th>
<th>Moniliformin range (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. proliferatum</td>
<td>Maize</td>
<td>9</td>
<td>ND(^1)-3617</td>
<td>6 - 1963</td>
</tr>
<tr>
<td>F. proliferatum</td>
<td>Sorghum</td>
<td>7</td>
<td>1 - 6478</td>
<td>7 - 8892</td>
</tr>
<tr>
<td>Fusarium sp.(^2)</td>
<td>Sorghum</td>
<td>1</td>
<td>3 - 14</td>
<td>2 - 31</td>
</tr>
<tr>
<td>Fusarium sp.(^2)</td>
<td>Millet</td>
<td>1</td>
<td>3 - 43</td>
<td>124400 - 222400</td>
</tr>
</tbody>
</table>

\(^1\)Not detected, detection limit 1 mg/kg;
\(^2\)Fusarium species originally isolated from sorghum and millet, yet to be identified.
DISCUSSION

Mycotoxins

Are a diverse group of food-borne, naturally occurring toxins

Regulatory applications

Are appropriate for export crops, but has little relevance in developing countries’ agriculture - particularly in the case of small, subsistence and emerging farmers

Outbreak of aflatoxicosis in India (1974)

“Starving today by not consuming contaminated food in order to live a better life tomorrow is not a practical option.”

Still holds true today
Integrated management system

Prevention through pre-harvest management is the best method for controlling mycotoxin contamination

Education of small-scale, emerging farmers and commercial grain producers

Mycotoxin contamination should be minimized in every phase of grain production - harvesting, processing and distribution

Long-term objective should be to reduce natural contamination of cereal grains and development / exploitation of disease-resistant cultivars
ACKNOWLEDGEMENTS

Staff of the Sub-programmes Microbiology and Biochemistry,
PROMEC Unit, MRC, Cape Town, South Africa

Prof JF Leslie, Kansas State University, Kansas, USA

Intsormil and MRC for Research Funding