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Cell Groups Reveal Structure of Stimulus Space
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Abstract

An important task of the brain is to represent the outside world. It is unclear how the brain may do this, however, as it can
only rely on neural responses and has no independent access to external stimuli in order to ‘‘decode’’ what those responses
mean. We investigate what can be learned about a space of stimuli using only the action potentials (spikes) of cells with
stereotyped—but unknown—receptive fields. Using hippocampal place cells as a model system, we show that one can (1)
extract global features of the environment and (2) construct an accurate representation of space, up to an overall scale
factor, that can be used to track the animal’s position. Unlike previous approaches to reconstructing position from place cell
activity, this information is derived without knowing place fields or any other functions relating neural responses to
position. We find that simply knowing which groups of cells fire together reveals a surprising amount of structure in the
underlying stimulus space; this may enable the brain to construct its own internal representations.
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Introduction

Stimulus reconstruction, as implemented by the scientist,

typically involves three steps: (i) characterizing the space of

relevant stimuli; (ii) constructing functions relating stimuli to

neuronal responses; and (iii) using these functions, together with

new neuronal activity, in order to ‘‘decode’’ new stimuli [1–11].

For example, in the case of hippocampal place cells, the ‘space of

stimuli’ may be the animal’s current spatial environment; for every

place cell one computes a place field, i.e., a function that assigns a

firing rate to each position in space. Place fields, together with

place cell activity, can then be used to infer the animal’s position

[2,4,7]. Notably, the scientist relies on a priori assumptions about

the nature of the relevant stimulus space in (i), and uses independent

measurements of previously observed stimuli in order to construct the

functions in (ii). While these functions (or ‘‘neural codes’’) come in

a variety of forms, such as receptive fields, tuning curves, spike-

triggered averages, adaptive filters and conditional probability

distributions [1–11], they all require using independent observa-

tions of prior stimuli for their construction.

Presumably, the brain also uses neuronal spiking activity to

reconstruct the stimulus. The brain, however, does not have access

to independent stimulus measurements; neuronal activity alone

must represent the external world. How does the brain do it?

While much effort has been devoted to developing biologically

plausible methods to implement the ‘‘decoding’’ of step (iii)

[1,3,6,10,11], it is generally assumed that the structure of stimulus

space (step (i)) and the functions (such as receptive fields or tuning

curves) of step (ii) are both present and easily available to

downstream structures in the brain. Although it is possible that

receptive fields are imprinted in synaptic weights, tuned

throughout development and learning, this story is complicated

by the observation that receptive fields in some brain areas—

particularly in hippocampus—undergo rapid context-dependent

remapping [2,12–19]. This leads naturally to the question: can

anything be inferred about a stimulus from spikes alone?

We address this question in the context of hippocampal place

cells. In rodents, spatial information is reflected in the activity of

place cells, i.e., pyramidal cells in areas CA1 and CA3 of dorsal

hippocampus that fire in a restricted area of the spatial

environment—the place field—and are mostly silent outside

[20,21]. We will use the term place field to refer both to the

function and to the region in space where the firing rates are

significantly above baseline. Place fields remap, and a place cell

can alternate between multiple stable place fields as an animal is

switched from one familiar environment to another [14,15].

Although much work has gone into trying to understand how

place fields are formed [13,22–25], a different and rather

unexplored question is how the output of hippocampal place cells

(without access to corresponding place fields) might be used by

downstream structures in order to reconstruct position and the

underlying space.

At first glance, it is not obvious that anything at all may be

learned about a particular environment—or the animal’s position

within it—using the spiking activity of place cells alone. Indeed,

previous approaches to reconstructing position from place cell

activity have all required knowing the corresponding place fields

[2,4,7]. Furthermore, the values of instantaneous firing rates [2,4]

and the precise timing of spikes with respect to the theta rhythm

[7] have been used, together with place fields, in order to improve

position-estimation precision beyond the place field diameter. It

has also been suggested that other cell types, such as head direction

cells, play a vital role in deciphering position information [22].

Because place fields exhibit complex dynamics and place cells do
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more than just coding for place [26–30], it is important to

identify—at least in theory—minimal aspects of neural activity

that yield sufficient information for construction of an accurate

representation of space.

In this work we show that a great deal of information about a

physical environment can be obtained using only very coarse

features of population spiking activity. We define a ‘cell group’ as a

collection of cells that collectively fire significantly above baseline

within a broad (,250 ms) temporal window; we do not call them

‘cell assemblies’ to avoid confusion with different timescales and

degrees of sensory control implied by this term [31–34]. We find

that the simple knowledge of which groups of hippocampal place

cells fire together is enough to (1) extract global topological

features of the environment, and (2) reconstruct an accurate

geometric representation of physical space within which the

animal’s position can be faithfully tracked. This is made possible

by using standard tools from algebraic topology and graph theory;

neither place fields, nor precise spike timing, nor any prior

independent measurements of position are needed.

Results

Cell Groups Reveal Place Field Intersection Information
Although the brain may be unable to establish direct

relationships (such as place fields) between neural responses and

external stimuli, it can in principle compare neural responses to

each other. Moreover, relationships between neural responses

reflect relationships between stimuli, and hence reveal structure of

the outside world.

In rat hippocampus, the theta-oscillation (6–10 Hz) provides a

natural timescale for organizing population activity. Cells that fire

within a few theta-cycles of each other are very likely to have

overlapping place fields. We define a cell group as a group of place

cells that collectively fire within a two theta-cycle (250 ms) time

window (Figure 1A). Note that this enables us to ignore finer spike

timing effects modulated by the phase of the theta oscillation, such

as phase precession [7,31,35–37]. Each place cell typically belongs

to multiple cell groups (Figure 1B), and the activation of a given

cell group is induced by the animal passing through the

intersection of corresponding place fields. Cell groups thus yield

place field intersection information (i.e., they reveal which subsets of

place fields overlap), even when the place fields themselves are

unknown (Figure 1C).

We first show that this intersection information can be patched

together to reveal global topological features of the environment.

The method for extracting global topological features does not

require a metric. On the other hand, by thinking of each cell

group as defining a specific location in space, we can use

intersection information to construct a metric that provides

relative distances between cell groups. This yields a geometric

representation of the external physical space, obtained without

knowing place fields. We find that this internal representation is

quite faithful to the geometry of the environment. In either case,

we need only make some basic assumptions about place fields. We

assume that place fields exist and are stable, have similar sizes, are

omni-directional, and have firing fields that are convex. These

assumptions are generally satisfied for place fields of dorsal

hippocampal place cells recorded from a freely foraging rat in a

familiar open field environment (see Methods). We also explicitly

test the importance of the assumption that place fields have similar

sizes, and find that our results are in fact fairly robust to substantial

variability in place-field sizes. Finally, we test our methods with

multipeaked place fields, and find that our algorithms can tolerate

a realistic percentage of cells having multiple firing fields, so long

as the component fields are sufficiently separated and convex.

Figure 1. Collection of cell groups uniquely determines the
topology of the environment. (A) Sample rasters for the population
activity of five place cells in two different environments. Cell groups are
obtained by identifying subsets of cells that co-fire within a coarse time
window (colored rectangles). (B) Two examples of five-cell configura-
tions (simplicial complexes) depicting collections of cell groups
obtained from the sample rasters in (A). An edge represents a cell
group with two cells and a shaded triangle indicates a cell group with
three cells; colors correspond to cell groups in (A). (C) Cells that co-fire
have overlapping place fields. Each cell group in (A), (B) corresponds to
a particular intersection of place fields, denoted with matching color.
The place field intersection pattern fully determines the topology of a
space covered by convex place fields. The first configuration in (B)
forces an arrangement of place fields with a hole in the middle (left); the
second forces a space with no holes (right).
doi:10.1371/journal.pcbi.1000205.g001

Author Summary

We construct our understanding of the world solely from
neuronal activity generated in our brains. How do we do
this? Many studies have investigated how neural activity is
related to outside stimuli, and maps of these relationships
(often called receptive fields) are routinely computed from
data collected in neuroscience experiments. Yet how the
brain can understand the meaning of this activity, without
the dictionary provided by these maps, remains a mystery.
We tackle this fundamental question in the context of
hippocampal place cells—i.e., neurons in rodent hippo-
campus whose activity is strongly correlated to the
animal’s position in space. We find that the structure of
stimulus space can be revealed by exploiting relationships
between groups of cofiring neurons in response to
different stimuli. We provide a ‘proof of principle’ by
demonstrating constructively how the topology of space
and the animal’s position in an environment can be
derived purely from the action potentials fired by
hippocampal place cells. In this way, the brain may be
able to build up structured representations of stimulus
spaces that are then used to represent external stimuli.

Cell Groups Reveal Structure of Stimulus Space
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Global Topological Features
What may be thought of as a ‘space of stimuli’ at one level of

processing may constitute an individual stimulus at another: global

features of the ‘space of positions’ become properties of individual

environments that can be used to distinguish between them. Often

times an animal’s physical space has ‘‘holes’’—i.e., regions in the

interior of the environment where the animal is unable to go. For

example, a rat may be confined to a platform with one or more

holes in the middle; similarly, there may be large objects inside the

environment (such as trees) providing obstructions to the animal’s

path. In either case, we call the region inaccessible to the animal a

hole.

Holes are examples of (non-metric) topological features, because

they are preserved under continuous deformations of the space. Two

environments are said to be topologically equivalent (homeomorphic) if

one can be continuously deformed into the other, and vice versa.

Homology groups [38] (see Text S1) are topological invariants that can

be used to distinguish topologically inequivalent spaces. In particular,

the dimension of the first homology group H1 counts the number of

holes. Higher order homology groups (H2, H3, …) count higher-

dimensional ‘‘holes,’’ and thus place constraints on the minimum

dimensionality of the space; they are all expected to vanish for flat,

two-dimensional environments.

Topological Features Can Be Extracted from Cell Groups
From spike trains for a population of place cells, we obtain a

collection of cell groups (Figure 1A; see also Methods). The

corresponding intersection information can be used to compute

homology groups of the underlying environment—even though

the place fields themselves are unknown. Intuitively, this works

because there is a unique configuration of place fields (up to

continuous deformation) consistent with a given pattern of

intersections (Figure 1B and 1C). Inspired by a deep theorem in

algebraic topology [38] (see Text S1), we have devised a procedure

to compute homology groups from the collection of cell groups

active in a given environment. This theorem has also been used in

the context of sensor networks [39], and the potential utility of

similar methods in the case of hippocampal place cells was

independently observed in [40]. Our algorithm, described in detail

in the Methods, involves constructing a simplicial complex

(Figure 1B) from place field intersection information, and

computing its homology groups. If the cell groups obtained from

spike train data exactly reflect the correct place field intersection

information, the theorem guarantees that the homology of the

simplicial complex is equal to the homology of the underlying

space. However, given the stochastic nature of place cell firing,

there is always the possibility that we may miss cell groups

corresponding to real intersections, and mistakenly detect cell

groups corresponding to non-existent place field intersections.

In order to verify that this procedure yields accurate results within

physiologically realistic parameters, we tested it using simulated data

with varying degrees of noise. Random-walk trajectories were

generated in five different flat, two-dimensional environments, each

of side length L (typically L,1 m), with N = 0,1,…,4 holes (Figure

S1). In each of 300 trials, each of the five environments was covered

by 70 single-peaked place fields with varying radii (0.1–0.15 L) and

randomly-chosen centers (Figure 2A). Place cell firing was generated

according to a simple model (see Methods). Differing levels of noise

were introduced by removing a certain percentage of randomly-

selected spikes from each spike train (for every cell) and reassigning

them to occur at random times, so that they fall outside the place

field (see Methods).

For each trial, the first five homology groups (H0,…,H4) were

computed. A trial was deemed to be ‘correct’ if and only if all

homology groups matched the topology of the underlying space,

and ‘incorrect’ if at least one homology group did not match.

Although the correct environment could be identified using only

the first homology group H1, we required the other homology

groups to also match in order to ensure consistency of the overall

topology (i.e., this was not a multiple-choice framework where

each trial was assigned the ‘most likely’ of the five environments;

note that ‘chance level’ here is close to 0%). For low levels of noise,

we found near 100% accuracy in all environments (Figure 2B).

One might worry that if a cell ever spikes outside of its place field,

it will activate a cell group that does not correspond to a true

intersection of place fields, rendering the topology computations

completely inaccurate. Remarkably, the percentage of correct trials

remained very high for noise levels up to 5%; even with 10% of each

cell’s spikes occurring outside the corresponding place field, more

than half of all trials continued to be correct (Figure 2B). This is

because the thresholding of firing rates in order to obtain cell groups

(see Methods) renders the procedure quite robust to noise in the spike

trains. Note that although the trajectory of the rat is itself littered with

small holes (Figure 2A), the procedure only detects actual (relatively

large) holes in the environment and is quite insensitive to holes that

are very small compared to the sizes of place fields.

As a further test, we constructed additional ‘shuffled’ data sets

by pooling together spiking activity from cells in different

environments. We found that each and every ‘shuffled’ trial had

nonzero higher homology groups, suggesting higher-dimensional

spaces. This indicates that population activity in the shuffled data

sets was not generated from realistic, two-dimensional environ-

ments, and suggests that a downstream structure receiving

hippocampal output could detect patterns of activity that are

inconsistent with a spatial interpretation.

Figure 2. Accuracy of extracted topological features. (A) Sample
trajectories (green) in environments with one and zero holes. Gray
circles depict place fields used to simulate data for one trial. (B) For each
environment, and for each level of added noise, the percentage of
correct trials was computed from 300 trials (each having a different set
of randomly-generated place fields). A trial was considered ‘correct’ if all
five computed homology groups matched the topology of the
environment, and ‘incorrect’ if at least one homology group did not
match.
doi:10.1371/journal.pcbi.1000205.g002

Cell Groups Reveal Structure of Stimulus Space
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An Internal Representation of Space Can Be Built from
Cell Groups

A given cell group becomes active when the animal crosses a

specific location in space, given by the intersection of the

corresponding place fields. It is thus natural that, from the brain’s

point of view, a location in space is itself defined by a cell group

(Figure 3A and 3B). The collection of all activated cell groups thus

yields a collection of points, which can be thought of as ‘‘building

blocks’’ for an internal, discretized representation of space. A set of

unrelated points, however, does not constitute a space, one must

know the relationships between points (which pairs are close, and

which are far away). Fortunately, there is a natural way to

determine when two cell groups are ‘‘close’’ to each other, based

on the number of place cells they have in common.

We say that two cell groups are neighbors if they differ by just one

place cell. By joining neighboring points with edges, one obtains a

graph (Figure 3C) that is constructed purely from cell groups,

without any explicit knowledge of place fields. In general,

neighboring cell groups with a very high percentage of overlapping

cells will represent points that are closer in space than neighbors

with small overlap. We define a dissimilarity index mk on neighboring

cell groups as the average relative distance between the centers of

adjacent regions with overlap degree k, assuming place fields of

equal radius (see Methods). In principle, mk should be derivable

from basic geometry, as it depends only on general and

unchanging properties of physical space. We estimated mk

empirically by computing the average distances between the

centers of adjacent intersection regions for 30 randomly-generated

sets of place fields covering the environment, and normalized the

index by fixing the largest value m1 = 1 (see Methods). We found

that for kv
Ncells

p2 , the index is well approximated by the formula

mk&1{p
ffiffiffiffiffiffiffiffi
k{1
Ncells

q
, where Ncells is the number of place cells active in

the environment (see Figure S2). We assume such an index can be

‘‘hard-wired’’ in the brain, as it has no information about any

particular arrangement of place fields or any particular environ-

ment. Although we estimated mk assuming all place fields have

identical size, we use exactly the same formula for mk in every

reconstruction, regardless of the distribution of place field sizes we

consider.

The dissimilarity index can be used to assign weights to each

edge in the graph. A path is a sequence of edges connecting two

vertices (cell groups) in the graph; the length of a particular path is

given by summing the weights along its edges. The distance

between any two cell groups in the graph can then be defined as

the length of a shortest path between those points (Figure 3D; see

also Methods). In this manner one obtains a natural metric on cell

groups. We call this graph, with cell groups as its vertices and

edges between neighbors, together with the metric, the internal

representation of the external space.

Internal Representation Accurately Reflects External
Geometry

In order to test how well the internal representation conforms to

the geometry of the external space, we used simulated population

spiking activity from a two-dimensional square box environment

(see Methods) with differing numbers of place cells. For each

number of place cells covering the environment, we randomly

generated data sets for 60 trials, each trial having different place

fields of radii chosen uniformly at random from the interval [0.1

L,0.125 L], with randomly-chosen centers. The place field sizes

were chosen to conform to the 20–25 cm range of average

diameters typically observed for place cells in dorsal hippocampus

for a rat exploring an open field environment of scale L,1 m

[41,42]. For each simulated data set, we constructed an internal

representation as outlined above.

To assess the accuracy of the internal representations, we first

computed pairwise distances between points on a fine grid

spanning the L6L environment and compared them with the

corresponding pairwise distances of their images in the internal

representation (Figure S3). We defined the pairwise error for an

individual trial (having a fixed number of place cells) as the mean

error in pairwise distances when computed using the internal

representation (see Methods). We found that the average pairwise

error across trials had a minimum value of 0.036 L for 90 cells

(Figure 4A), or less than 1/3 the average place field radius; this

indicates that relative distances between points in the internal

representation are accurate to within a ball of approximately 1/9

the median place field area. To check robustness of this procedure

in the case of greater place field variability, we repeated this

analysis for a series of gamma-function distributions of place field

radii (Figure 4B). We found that performance decreased slowly for

distributions with increasing standard deviations up to ,0.035,

and rapidly deteriorated for distributions with standard deviations

greater than 0.05 (Figure 4C).

As a further test that the full geometry—and not just pairwise

distances—is accurately reflected in the internal representation, we

used multi-dimensional scaling (MDS) [43] to embed each graph

into a two-dimensional Euclidean space, in a way that best

preserves the relative distances between pairs of points (i.e., to best

preserve the metric on cell groups). Next, we ‘‘aligned’’ the

coordinates of the embedded internal space properly so as to best

match the particular coordinates used to represent the external

space (Figure S4; see also Methods). Points in the external space

could then be mapped into the embedded internal space by

identifying corresponding cell groups (see Methods).

Figure 3. Construction of a metric on cell groups. (A) Example
spike trains from five place cells. Each time bin (columns) represents
two theta cycles. (B) Place field intersection pattern derived from cell
groups in (A). Shaded regions correspond to cell groups inside
rectangles of the same color in (A). (C) The pattern of intersections
can be represented by a graph, with vertices (black squares) for each
cell group, and edges connecting neighbors (cell groups that differ by
one cell only). A trajectory (green) is inferred from the example data, by
‘‘connecting the dots’’ to match the sequence of cell groups in (A). (D)
Weights are assigned to edges of the graph using the dissimilarity index
mk, where k is the number of common cells between neighbors. The
distance between any two vertices in the graph is obtained by
summing the weights along a shortest path (blue).
doi:10.1371/journal.pcbi.1000205.g003

Cell Groups Reveal Structure of Stimulus Space
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Visually, the quality of an internal representation can be judged

by mapping a coarse grid of vertical and horizontal lines from the

external space into the embedded internal space, and seeing how

faithfully the geometric structure is preserved. We found that the

full metric geometry (including angles and relative distances) of the

internal representation closely mirrored that of the external space

(Figure 5A). In particular, the square shape of the box and the

rectilinear structure of the grid were faithfully reproduced. We

quantified the accuracy of a given internal representation by

computing the mismatch between the two spaces; this measure

computes the average error, as a fraction of box side length L,

obtained by mapping a fine grid of points from the original space

into the aligned embedded internal space (see Methods). Quite

similarly to the pairwise error, we found that the average

mismatch decreased with increasing numbers of cells, getting as

low as 3% for 120–140 cells (Figure 5B).

Multipeaked Place Fields
Until now we have assumed that place fields are convex; while

this is usually the case, multipeaked place fields are often observed.

In open field environments of size L,1 m, a small percentage (5–

10%) of place cells have two disconnected firing fields, each of

which looks like a convex, single-peaked place field [21,44]. We

will refer to these neurons as ‘‘multipeaked place cells,’’ and to the

connected components of the place fields simply as ‘‘fields.’’ At

first glance, the presence of multipeaked place cells poses a

potential limitation to our study. The algebraic topology theorem

no longer holds, suggesting that the algorithm we have thus far

used for extracting topological features is likely to fail. In the case

of the geometric reconstruction, on the other hand, we do not

necessarily expect multipeaked place fields to pose a problem, so

long as the component fields are individually convex. In general,

the danger with multipeaked place fields is that distant regions of

space may be identified as being the same. In an ‘‘across-cell’’

coding scheme where each neuron represents a distinct location in

space, this ambiguity indeed poses serious problems [21]. When

locations are represented by cell groups, however, this difficulty is

easily overcome. Although the same cell may fire in two locations

that are far from each other, cell groups corresponding to these

distant regions will generally be very different, as other cells serve

to disambiguate position. Because two cell groups are considered

neighbors only in the case that they share a majority of cells in

common, pairs of cell groups with only one or a few common

place cells are guaranteed to represent distant positions in the

internal representation.

In order to test the performance of the geometric reconstruction in

the case of multipeaked place cells, we simulated data as before but

included small percentages (up to 11%) of multipeaked place cells

while keeping the total number of firing fields covering the

environment constant. In these simulations, we also required that

the centers of multiple fields corresponding to the same cell be

sufficiently distant; this was in order to enable disambiguation by

other cells (see Methods). For 140 fields, we found the performance

to be very good (Figure 6). An example reconstructed space from

data containing 10% multipeaked place cells demonstrates that the

algorithm naturally separates the double fields (Figure 6A and 6B;

see also Figure S5). In particular, both the mismatch (Figure 6C) and

pairwise error (Figure S6C) remained approximately constant

ranging from 0% to 11% multipeaked place cells.

For data generated from only 90 fields, however, as in

Figure 5A, performance steadily decreased with increasing

numbers of multipeaked place cells, as measured by both pairwise

error and mismatch (Figure S6A and S6B). This is because there

were not enough place fields to double-cover the environment,

leading some regions within double fields to fail to be

disambiguated by the presence of other place cells, and thus

causing large distortions in the reconstructed space. In fact, this is

precisely the problem that may cause the topology algorithm to

fail. When the environment is double-covered by place fields,

Figure 4. Error in pairwise distances computed from internal
geometric representation of space. (A) For a fixed number of place
cells, the pairwise error was computed and averaged over 60 trials. Each
data set was generated from a different set of place fields, with
randomly selected centers and radii chosen uniformly at random from
the interval [0.1,0.125] (shaded gray region; this corresponds to place
field diameters ranging from 20–25 cm in a 1 m61 m environment).
The dashed horizontal line corresponds to the average radius of place
fields. The average pairwise error achieved a minimum of 0.036 (as a
fraction of box side length L) for 90 cells, and then leveled off. This
indicates that relative distances between pairs of points in the internal
representation are accurate to within an error that is less than 1/3 the
average radius of place fields. (B) Various gamma-function distributions
for place field sizes, with fixed mode = 0.1125 L and varying standard
deviations. Radii greater than 0.5 L are not considered, as these
correspond to place field diameters that exceed the side length of the
box. Dashed line indicates the uniform distribution used in (A). (C) Mean
pairwise error averaged over 60 trials for Ncells = 90 and for each of the
distributions of place field radius displayed in (B). Dashed line denotes
the place field radius corresponding to the peak of each distribution.
Error bars in both (A) and (C) represent standard deviations across trials.
doi:10.1371/journal.pcbi.1000205.g004

Cell Groups Reveal Structure of Stimulus Space
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however, place cells with multiple fields can be detected purely

from the graph of neighborhood relationships on cell groups

(constructed as in Figure 3C). For each place cell, there is an

induced subgraph whose vertices are the cell groups containing

that cell. Each connected component of this subgraph corresponds

to a distinct field (Figure S7). Having detected additional fields for

multipeaked place cells, we can then assign auxiliary ‘‘place cells’’

to substitute the original cell labels such that each connected

component corresponds to a distinct cell. We then build the

simplicial complex and compute homology groups as before.

Regarding the (unknown) place fields as providing an open cover

of the underlying space, the added step of the topology algorithm

can be thought of as making the minimal possible refinement [45] of

the open cover such that the theorem again holds (see Methods).

We found that with this modification, the topology algorithm

maintains very good performance for the experimentally observed

range of 5–10% multipeaked place cells (Figure 6D).

Discussion

We have shown that, in the case of hippocampal place cell

activity, global topological features of a two-dimensional environ-

ment as well as an accurate geometric reconstruction of physical

space—including the animal’s position within it—can be inferred

from spikes alone. In either case, one need only assume that place

fields exist and have a stereotypical form; knowledge of actual place

fields or any other prior independent measurements of position is

not needed. This provides a general framework for building up

stimulus spaces (or ‘cognitive maps’ [46]) using only neural activity

from a relatively homogeneous population of neurons, such as

dorsal hippocampal place cells.

Even after obtaining a geometric representation of space, global

topological features (if needed) must still be computed. Although

we may be able to ‘‘see’’ topological features of the stimulus space

by looking at a two-dimensional embedding of the internal

representation, this does not mean no further computation is

necessary; it merely reflects the fact that our visual system is able to

do the computation. Moreover, global features of a ‘space of

stimuli’ at one level of processing may become properties of an

individual (composite) stimulus at another. Interestingly, although

the computation of topological features also has cell groups as its

starting point, it does not require constructing a geometric

representation of space, and hence bypasses the need for a metric.

At first glance, our internal representation is perhaps reminis-

cent of the ‘cognitive graph’ in [47,48], as it is also a graph

constructed to represent a physical environment. The ‘cognitive

graph,’ however, was envisioned as an actual neural (sub-) network

realized in the hippocampus, with an individual place cell for every

vertex and a synapse for every edge. The metric was encoded in

synaptic weights between place cells, and determined via an LTP

learning rule. This implies that geometric distortion would result

from a biased sampling of the environment by the animal’s

trajectory. Although each vertex in the ‘cognitive graph’ was

intended to represent the center of the corresponding place field, it

Figure 5. Accuracy of full geometry for internal representation of space. (A) The original space (left) and a reconstruction from simulated
place cell activity (right). Black dots correspond to cell groups. A coarse grid (red and orange lines) in the original space is mapped into the
reconstructed space, to allow for visual comparison of the geometry. (B) The accuracy of a reconstructed space may be quantified by computing the
‘mismatch’ between points in the original space and their images in the reconstructed space, as a fraction of the box side length L. The mismatch
decreases with increasing number of cells. Error bars correspond to standard deviations for average mismatch across 60 trials. The dashed horizontal
line corresponds to the average radius of place fields, while the shaded gray area corresponds to the range of place field radii.
doi:10.1371/journal.pcbi.1000205.g005
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is always the case that many place cells are simultaneously active at

any given location in space, suggesting that this graph is not

suitable to represent specific positions given population place cell

activity. Moreover, the existence of multipeaked place cells

presents a seemingly insurmountable challenge in this and any

paradigm where place cell firing is presumed to signal proximity to

a single place [21].

In contrast, our internal representation graph has a vertex for

every group of reliably co-firing neurons, and is closer in spirit to

Hebb’s cell assemblies [34] than to a literal neural network

representation of space. Since distances between cell groups result

from the combinatorics of their overlaps, the fact that multiple

cells co-fire in response to a given stimulus is not a nuisance but a

necessary condition for inferring the structure of the underlying

space. An essential feature is that, unlike in the case of Kohonen

maps [49], geometric relationships between external stimuli are

revealed even when neurons in the network have no a priori

topographic structure (as in hippocampus). Moreover, the

resulting metric on cell groups is insensitive to a biased sampling

of the environment or to the particular values of synaptic weights

within the hippocampus, and does not depend on nearby stimuli

occurring in temporal proximity to each other, as would be

required to infer stimulus space structure using spike train metrics

[50]. Instead, we have used only a very coarse aspect of population

spiking activity—the set of all cell groups—while fully exploiting

the fact that co-firing cells have overlapping receptive fields.

These results suggest that it may be possible for maps of the

environment to be constructed in downstream brain areas purely

from cell groups. If this is the case, we would expect that geometric

distortions in the animal’s spatial perception would arise as a

consequence of uneven place field coverage of an environment:

the animal should overestimate distances in a region of higher

place field density, and underestimate distances in regions with

significantly lower place field density. This prediction, if confirmed

by experiment, would provide evidence that only cell groups are

used in constructing internal representations of space. If, on the

other hand, such perceptual distortions are not observed, we can

be almost certain that some other aspect of neural spiking activity

Figure 6. Accuracy of metric reconstructions and topology computations with multipeaked place cells. (A) The original space, together
with double-peaked place fields for three example simulated place cells (blue, green and magenta). (B) A reconstructed space obtained from a data
set where 10% of the place cells have double-peaked place fields. Black dots correspond to cell groups, as in Figure 5A. Cell groups containing each
of the three place cells with multipeaked fields displayed in (A) are shown with corresponding color. Cell groups containing each of the 13
multipeaked place cells in this data set are shown in Figure S5. (C) For a fixed total number of 140 fields covering the environment, the mismatch
remains nearly constant for increasing percentages of multipeaked place cells. Error bars correspond to standard deviations for average mismatch
across 60 trials. (D) The extraction of topological features also performs well on simulated data including up to 10% multipeaked place cells. The
percentage of correct trials was computed across 50 trials with 0%, 2.5%, 5%, 7.5%, and 10% of cells having double-peaked place fields. As in
Figure 2B, a trial was considered ‘correct’ if and only if all five computed homology groups matched the topology of the environment.
doi:10.1371/journal.pcbi.1000205.g006
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contributes. Interestingly, because in our simulations we chose

place field centers uniformly at random from within the environ-

ment, we consistently had a lower density of place field coverage

near the boundaries. This, in fact, led to greater geometric

distortions near the boundaries of our spatial reconstructions than

in the interior. To compensate for this, one might expect there to

be a greater number of place fields near the boundary of an

environment. Such an effect has, in fact, been reported

experimentally [51,52], and may be regarded as a postdiction.

We have considered environments that are flat and two-

dimensional; however, it is easy to generalize our procedures to

stimulus spaces that are higher-dimensional and/or curved.

Recent experiments suggest that three-dimensional hippocampal

place fields may be observable in flying bats [53]. The topology

algorithm can be used in exactly the same way to detect holes or

obstacles in three-dimensional environments from cell groups. The

geometric reconstruction algorithm could also be used in exactly

the same manner, the only difference being that a different

dissimilarity index mk, computed for three-dimensional space,

would need to be used. Furthermore, we believe our approach

could be generalized to stimulus spaces reflected in other brain

areas. The geometric methods could prove useful in discovering

new structure in stimulus spaces reflected in neocortical areas,

such as primary and higher order sensory cortices. Moreover, the

brain appears to be particularly adept at identifying topological

properties of complex objects. For example, connected compo-

nents and holes in a visual object or scene are often among the

most salient features. A topological approach, such as the one we

have used here, could yield insight into understanding how global

features of a visual object are extracted from the activity of cells

with spatially localized receptive fields.

Our notion of stimulus reconstruction is a significant departure

from traditional ‘‘decoding’’ paradigms, as it does not require

directly relating neuronal activity to external stimuli (as in the

computation of receptive fields), or to activity in any other area of

the nervous system. Moreover, while the computation of receptive

fields begins with a priori assumptions about the nature of the

stimulus space being represented, we recover the structure of the

stimulus space itself from the structure of the induced patterns of

neuronal activity. The identity of a particular stimulus, then,

emerges from a combination of modality (the location and type of

activated neurons) and the relationship of its corresponding cell

group to all others in an internally represented space. Any

necessary assumptions about receptive fields may be regarded as a

kind of ‘‘universal grammar’’ [54] that renders stimulus space

reconstruction possible.

Recently it has been suggested that sequential replay, as

observed in hippocampus and neocortex [55–58], may be a

mechanism for consolidating sequences of cells that under spatial

navigation conditions fire within larger time windows. The

sequences reflect groups of cells that co-fire within the same theta

cycle during behavior, however, and it is unclear to what extent

the precise ordering matters [59,60]. It is therefore plausible that

cell groups may be communicated to cortex during replay

events—on a compressed timescale—enabling identification via

coincidence detection. This may allow for building representations

of space and computing topology in cortex, as these computations

require knowledge of the full collection of cell groups.

In summary, we have shown that a surprising amount of

information about the structure of stimulus space can be obtained

from the combinatorics of cell groups, extracted from noisy

population spiking data with a coarse time window. Although we

were able to demonstrate the presence of this information

constructively, whether and how the brain uses this information

remains to be seen. Our results suggest, nevertheless, that

combinatorial relationships between groups of cells that fire

together could reflect stimulus space structure inside the brain, and

may perhaps lead to a general principle of how the brain

constructs representations of the outside world.

Methods

Here we describe how to compute homology groups and

construct an internal representation of space from neural spiking

data. The starting point for each method is the identification of cell

groups. We begin, however, by outlining some basic assumptions

about place fields needed for these procedures to work, and a

description of the simulated data we used to test our approach.

Assumptions about Place Fields
(1) Place fields are omni-directional, as is typical in an open field

environment, but not on a linear track [21,61]. (2) Place fields have

been previously formed and are stable. (3) The collection of place

fields corresponding to observed cells covers the entire traversed

environment. (4) The holes/obstacles are larger than the diameters

of place fields. (5) Each (connected) component field of a single or

multipeaked place field is convex. (6) Background activity is low

compared to the firing inside the place fields. (7) Place fields are

roughly circular and have similar sizes, as is typical in dorsal

hippocampus [41,42].

Although individual electrophysiological recordings can only

simultaneously monitor a limited number of cells, it is almost

certain that the hippocampus possesses enough place cells for any

given environment such that the corresponding place fields cover

the entire explored space many times over [44]. The convexity of

component fields means that a straight line segment connecting

any two points in the field will itself be entirely contained within

the field. This is consistent with the observation that individual

fields tend to have circular or elliptical shape [21]. Although these

are reasonable assumptions about dorsal hippocampal place cells,

they pose significant constraints on the quality and quantity of cells

in the recording. One may assume, however, that downstream

structures in the brain receiving hippocampal output do have

access to this kind of data. We test our approaches for constructing

internal representations and computing homology groups on

simulated data that satisfy these criteria.

Simulated Data
Each environment is an L6L box, with or without holes in the

interior. All length units are with respect to the side length L of the

box (typically L,1 m). In order for the topology and metric

algorithms to work, we of course need the animal to fully explore

the environment. In particular, the trajectory must be dense

enough to sample the majority of cell groups. For the geometric

reconstructions, this is merely a matter of resolution, as sampling

fewer cell groups will lead to less precise geometric information.

For the topology computations, we need to ensure that the set of

all cell groups reveals the full low-order intersection information in

order for the low-order homology groups to be accurate. For

accurate computation of the nth homology group Hn, we need up

to (n+1)-fold intersections to be detectable via cell groups. If we

were only interested in the first homology group H1 (this is enough

to detect holes/obstacles and distinguish between environments)

we need only guarantee that pairwise intersections are accurately

reflected—i.e., the trajectory must pass through each pairwise

intersection of place fields at least once. However, because we

compute homology groups up to H5, in order to check consistency

of the data with the interpretation as a two-dimensional
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environment, we have used denser trajectories in our simulations.

This would not be necessary if we were only interested in H0 and

H1. Note that a high-order cell group of n cells, signifying an n-

fold intersection, implies all lower-order intersections.

For topological features. For each of five environments

(Figure S1) we generated a smoothed random-walk trajectory, with

speed = 0.1 L/s (this is 10 cm/s for a 1 m61 m box), which was

constrained to ‘‘bounce’’ off boundaries and stay within the

environment. The total duration of each simulated trajectory was

50 minutes. For each of 300 trials, N = 70 place fields were

generated as disks of radii 0.1 L to 0.15 L, with radii and centers

chosen uniformly at random. In order to ensure place fields

covered the environment, centers were chosen initially uniformly

at random from uncovered space. Once all space was covered,

remaining place field centers were chosen at random from the

entire box (Figure S1).

For each place cell in each trial, an average firing rate was

chosen uniformly at random from the interval 2–3 Hz. A spike

train was generated from the trajectory and corresponding place

field as an inhomogeneous Poisson process with constant rate

when the trajectory passed inside the place field, and zero outside,

so that the overall firing rate was preserved. Because we threshold

the number of spikes in each time bin to obtain cell groups, this is

equivalent to having somewhat larger non-constant place fields

where the firing rate drops quickly below threshold outside the

specified radius. Noisy spike trains were created according to the

noise percentage r (0–10%) as follows. r% spikes were deleted

from the spike train, and then added back to the spike train at

random times, irrespective of position along trajectory, so as to

preserve overall firing rate. ‘Shuffled’ data sets were constructed by

randomly choosing cells from each of the five environments, and

pooling them together to yield population spiking activity that did

not come from a single environment.

For reconstruction of space. Here we consider a square

box environment with no holes. Place fields were generated with

radii selected uniformly at random from the interval [0.1 L, 0.125

L]. This is consistent with the 20–25 cm average place field

diameters typically observed for dorsal hippocampal place cells in

an environment of scale L,1 m [41,42]. In the simulations for

Figure 4C, place fields sizes were generated from gamma function

distributions (shown in Figure 4B) all having peaks at 0.1125 L and

having minimal place field radius of 0.05 L. The location of the

peak, the minimum place field size and the standard deviation

uniquely determine each gamma distribution. Average firing rates

were chosen uniformly at random from the interval 1–3 Hz. The

trajectory, locations of place fields, and the spike trains for each

place cell were generated as described above. For each total

number of cells (Ncells = 40–140, increasing by 5), we had 60 trials,

each with different randomly chosen place fields and

inhomogeneous Poisson spike trains.

Simulations with multipeaked place fields. In simulations

with multipeaked place fields, secondary fields were randomly-

generated for the population of multipeaked place cells with the

condition that the center of the second field was a distance greater

than 0.5 L away from the center of the first randomly-generated

field. This was to guarantee that pairs of fields for double-peaked

cells were sufficiently well-separated to allow detection of separate

fields via cell groups (see Figure S5 and Figure S7). A higher

density of coverage by place fields would allow the distance

between multiple fields of the same cell to be smaller, approaching

the minimal separation required for the fields to be disconnected.

The radii for the component fields in double-peaked place fields

were drawn independently from the same distributions of radii

used for single-peaked place fields. All other aspects of the

simulations with multipeaked place fields were the same as for

simulations with only single-peaked place fields.

Identification of Cell Groups
We define a cell group as a group of place cells that collectively

fire within a two theta-cycle (250 ms) time window. To determine

the full set of cell groups that become activated as the animal

traverses the environment, we first bin population spike trains into

2-theta-cycle time bins. A certain subset of cells fires in each time

bin, and we use these subsets to determine the cell groups. Because

there is some probability that a given place cell will fire outside its

place field, we impose a threshold on firing rates in order to

determine the group of cells that fired significantly above baseline

for each bin. Each resulting cell group can then be assumed to

correspond to a particular intersection of place fields.

We first divided population activity into a set of population

vectors, i.e., vectors in RNcells with firing rates for each cell in a

given time bin. In order not to miss any cell groups due to the

arbitrary choice of where bins start and end, the binning time

windows were then shifted to have a total of five different starting

positions (eight for topology), equally spaced within two theta-

cycles, so that each spike contributed to five population vectors. All

population vectors were pooled and thresholded as follows. For

each cell, the firing rate in a particular population vector was

considered significant if it was at least 6 times the average firing

rate for that cell. Each population vector thus yielded a cell group,

consisting of all cells firing significantly above baseline in a

particular time bin. The thresholding is what renders the topology

and reconstruction of space procedures fairly robust to noise in the

spike trains.

Extraction of Topological Features
Here we describe how to compute the homology groups of a

given environment from the collection of all cell groups that are

active in the environment.

Some mathematical preliminaries. We use a few standard

mathematical objects that are uncommon in the neuroscience

literature. Here we give brief descriptions of these objects; see Text

S1 for rigorous definitions. A simplicial complex is a set of vertices

and simplices (simplices are n-dimensional triangles: points, line

segments, triangles, tetrahedra, etc.). An abstract simplicial complex is

a set with a set of subsets satisfying similar properties as simplices.

We will use it as a combinatorial object that keeps track of

intersection information revealed by cell groups. Roughly

speaking, homology groups [38,45,62] count the number of ‘‘holes’’

of various dimensions in a given topological space. The dimensions

bi of the homology groups Hi are called Betti numbers. The 0th Betti

number b0 counts the number of connected components in a

space, while b1 counts the number of holes that can be bordered

by a closed 1-dimensional contour. Higher Betti numbers bi, i.1,

count the number of ‘‘holes’’ in higher dimensions. There are

many definitions of homology groups that can be shown to be

equivalent in most cases of interest [38]. We use simplicial homology

groups. Simplicial homology groups are defined for any topological

space which can be subdivided into a simplicial complex; they are

also defined for abstract simplicial complexes. In other words, the

definition applies to the two-dimensional spatial environments

explored by the animal, as well as to the high-dimensional abstract

simplicial complexes we obtain from population spiking data.

Computation of homology groups from cell groups. The

set of all cell groups for a complete data set naturally yields an

abstract simplicial complex. Each cell is a vertex, and each group

of n cells yields an (n – 1)-dimensional face (Figure 1B). A 1-

dimensional face is an edge, a 2-dimensional face is a triangle, a 3-
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dimensional face is a tetrahedron, and so on. Assuming place fields

are convex, a deep theorem in algebraic topology [38] implies that

the homology groups of this simplicial complex are equal to the

homology groups of the underlying space (see Text S1). We can

thus distinguish between different environments by computing

their homology groups from population spiking data alone. For

our two-dimensional flat environments, b0 is always 1 and higher

Betti numbers (bi, i.1) all vanish. (If the animal were exploring the

entire surface of a ball, however, we would expect b2 = 1.) The 1st

Betti number b1, on the other hand, is different for each of the five

environments, matching the number of holes in each.

To compute homology groups for the very large and high-

dimensional simplicial complexes defined by cell groups, we use an

algorithm from computational algebraic topology implemented for

the GAP software package [63,64]. The algorithm relies

exclusively on standard linear algebra, and is thus in principle

realizable by a simple neural network. We computed the first five

homology groups H0,…,H4, and declared a trial to be ‘correct’

when all Betti numbers matched what was expected for the

environment: b0 = 1, b1 = number of holes, and bi = 0 for i.1. A

trial was deemed to be ‘incorrect’ if at least one of the five

computed Betti numbers did not match.

‘‘Refinement’’ step for multipeaked place cells. In the

previous analysis, the convexity of place fields was needed such

that the open cover (see Text S1) associated to the set of all place

fields satisfied the properties necessary for the theorem to hold. If

the data includes place cells having multipeaked place fields, we

need to assign an open set for each connected component of the

place field. Fortunately, multiple fields can easily be detected from

the set of all cell groups, by identifying connected components in

the induced subgraph of neighborhood relationships between cell

groups (see Figure S7). By assigning a distinct open set for each

component of this graph, we can then build the simplicial complex

and compute homology groups exactly as if each field

corresponded to a different cell. The added step to the topology

algorithm can be thought of as making the minimal possible

refinement [45] of the open cover, defined by the (unknown) place

fields, such that the theorem again holds. A refinement of an open

cover is a new cover such that each set in the new cover is fully

contained in an open set of the old one. In order to detect the

connected components of a graph defined via an adjacency

matrix, we used the standard Dulmage-Mendelsohn matrix

decomposition, implemented in the Matlab routine ‘dmperm’.

Internal Reconstruction of Space
Here we describe the construction of an internal representation

of the environment from the collection of all cell groups that are

active in that environment. This can be summarized in two steps:

(i) construction of a graph, containing a vertex for every cell group

and an edge between neighboring cell groups, and (ii) construction

of a distance matrix (or metric) containing distances between any

two cell groups. In order to verify that the internal representation

is faithful to the geometry of the external space, we computed the

average error on pairwise distances between points in the external

space as estimated using the metric for the internal representation.

To further validate that the full geometry is accurately reflected in

the internal representation, we used multidimensional scaling

(MDS) to embed the graph in two-dimensional Euclidean space in

a way that best preserves the metric on cell groups. This enables

comparison of the full geometries by visual inspection and by

computation of the mismatch (see below).

Regions represented by cell groups. Each cell group

defines a point, or small region in space contained in the

intersection of the corresponding place fields, but not in any higher

order intersection (as this would correspond to adding additional

cells to the cell group). Mathematically, if Ck#{1,…,Ncells} denotes a

cell group with k cells, and UCk
is the intersection (as a subset of the

environment) of the corresponding place fields, then the region of

space corresponding to the cell group Ck is given by VCk
~

UCk
{

S
Ckz16Ck

UCkz1
. For example, the colored regions in Figure 1C

and Figure 3B all correspond to subsets of the form VCk
. Similarly,

the black dots in Figure 3C and 3D, each corresponding to a cell

group Ck, represent regions of space of the form VCk
, not pure

intersections UCk
.

Dissimilarity index. The distances between any two cell

groups are computed via a dissimilarity index mk on neighbors (cell

groups that differ by just one cell). For each total number Ncells of

place cells, we estimated mk empirically by computing the average

distances between the centers of adjacent intersection regions VCk

and VCkz1
for 30 randomly-generated sets of place fields having

uniform radii (r = 0.1) covering the environment. We normalized

the index by fixing the largest value m1 = 1. Note that for each

value of Ncells, mk depends only on the order k of the smaller cell

group. Empirically computed values of mk for differing numbers of

cells are shown in Figure S2A. In principle, mk should be derivable

from basic geometry; we find that it is well approximated by the

formula mk&1{p

ffiffiffiffiffiffiffiffiffiffiffi
k{1

Ncells

r
, for kv

Ncells

p2
(Figure S2B). Although

this formula was obtained assuming all place fields have exactly the

same size, we have used the same formula for place fields of

varying radii, regardless of the particular distribution (uniform or

gamma) being considered.

Distance matrix (metric on cell groups). Given a

collection of cell groups, we obtain a distance matrix (or metric)

containing distances between any two cell groups as follows. We

first construct a graph whose vertices are cell groups, and whose

edges are given by neighboring pairs of cell groups (Figure 3C). To

each edge between neighbors of degrees k and k+1 we assign the

weight mk (Figure 3D). A path is a sequence of edges connecting two

vertices in the graph; the length of a particular path is given by

summing the weights along its edges. The distance between any

two cell groups (vertices in the graph) can then be defined as the

length of a shortest path between those points (Figure 3D). We use

Johnson’s ‘all shortest paths’ algorithm [65], implemented for

Matlab in [66], to construct a distance matrix with distances

between each pair of cell groups. Note that this yields a metric in the

strict mathematical sense, as it is positive definite, reflexive, and

satisfies the triangle inequality. Finally, we add a 0–1% random

noise jitter to the entries of the distance matrix, to ensure that the

MDS method we later use (below) does not encounter any

degeneracies due to multiple entries of the matrix being exactly

equal.

Mapping between spaces. Points in the original space are

mapped into the internal representation as follows. Assuming place

fields cover the environment, any point in the original space lies in

a particular intersection region VCk
, and is expected to activate the

cell group Ck, where k is the number of cells (equivalently, the

order of intersection). We can thus identify points in the original

space with the corresponding cell groups (vertices) in the internal

representation. In cases where the number of cells was not

sufficient to completely cover the environment, uncovered points

are mapped to the internal space using the nearest cell group. For

a given point p in the environment, we denote the corresponding

cell group as C(p), regardless of the number of cells it contains.

Pairwise error. In order to quantitatively assess the quality

of the internal representation, we compared distances between

pairs of points (p,q) in the original environment to the distances

Cell Groups Reveal Structure of Stimulus Space

PLoS Computational Biology | www.ploscompbiol.org 10 October 2008 | Volume 4 | Issue 10 | e1000205



between their corresponding cell groups C(p) and C(q) in the

internal representation. For a given trial, we computed the pairwise

error as the average value of Ip2q|2d(C(p),C(q))|, where d is the

(renormalized) constructed metric on cell groups, and the average

is taken over all pairs of points (p,q) coming from the grids shown

in Figure S3. Because the scale for the metric on cell groups was

set by the convention m1 = 1, we multiplied the constructed metric

for the internal representation by an overall constant such that the

mean pairwise distance computed using d matched the mean

pairwise distance in the external environment; this ensured that

differences in overall scale would not contribute to the pairwise

error. The average pairwise error for 60 trials, as a function of the

total number of place cells, is shown in Figure 4.

Embedded internal representation. Given a distance

matrix for a collection of points, and a specified dimension, a

non-metric MDS algorithm [43] arranges the points in Euclidean

space so as to best preserve the ordering of the distances in the

distance matrix. (In other words, nearby points will be mapped

close together and far away points will be kept far away, though

actual distances may be distorted.) We use the Matlab

implementation ‘mdscale.’ This enables us to visually assess how

accurately the internal representation reflects the full external

geometry, beyond just pairwise distances between points. Lines

and trajectories in the original space can be mapped into the

embedded internal representation by ‘‘connecting the dots’’

between the images of their points (see Figure 5A).

Comparison to original space, alignment, and

mismatch. The output of MDS is only unique up to a

Euclidean transformation (rotation and translation). Moreover,

the overall scale in our distance matrix is arbitrary, as we

normalized our dissimilarity index on neighbors such that only

relative distances mattered. In order to compare the raw MDS

output to the original space we must therefore ‘‘align’’ the internal

representation properly. We do this by finding the optimal affine

transformation (rotation, translation and scaling) that minimizes

the distances between points in the original space and their images

in the internal representation space.

An affine transformation is a transformation of the form

T x!~T
x1

x2

� �
~

a11 a12

a21 a22

� �
x1

x2

� �
z

b1

b2

� �

parameterized by six numbers (a11,a12,a21,a22,b1,b2). This amounts

to translating (2 parameters), rotating (1 parameter) and scaling in

two independent directions (3 parameters, the third is the angle

between directions). We find an optimal affine transformation T
relating the raw MDS output to the external space by minimizing

a function of six variables

f a11,a12,a21,a22,b1,b2ð Þ~
ðð

T m x!
� �� �

{ x!
�� ��d2 x!,

where x! is a point in the external space and m x!
� �

is its image

after mapping to the internal space. The double integral is taken

over the entire square area of the external environment, and was

computed by summing over a grid of 1506150 points. The

optimization was performed using ‘fminsearch’ in Matlab. The

resulting optimal transform was then used to align the raw MDS

output to better match the coordinates on the original space.

Figure S4 shows raw MDS outputs (left column) and correspond-

ing aligned versions (middle column).

After alignment, we can evaluate the quality of the represen-

tation by computing its ‘‘mismatch’’ with the original space. A fine

grid of points (1506150) in the original space is mapped to the

aligned internal space, and the distances T m x!
� �� �

{ x!
�� ��

between grid points and their images are computed, as a fraction

of the box side length L. The average of all of these distances is

called the mismatch.

Note that the alignment procedure, which does require the use of

place fields and independent position information, is only

necessary for computing the mismatch—i.e., to quantify how well

the embedded internal representation directly compares to the

external space. This is because the particular coordinate systems

we choose to parameterize the internal and external spaces are

completely arbitrary, and must be shifted, scaled and rotated to

match. The brain does not need to perform either MDS or

‘‘alignment’’; it need only track position with respect to its own,

internally constructed representation of space.

Supporting Information

Figure S1 Five different environments used in simulations. The

trajectories (green) were generated using a smooth random walk.

Sample place fields for one trial per environment are depicted as

gray circles. The holes/obstructions can be seen as white

rectangles not covered by the trajectory.

Found at: doi:10.1371/journal.pcbi.1000205.s001 (7.10 MB EPS)

Figure S2 An approximate formula for the index mk. (A) The

dissimilarity index mk on neighboring cell groups, for different

numbers of cells, computed empirically (see Methods). (B) Compar-

ison between empirically computed mk (black traces) and the formula

1{p

ffiffiffiffiffiffiffiffiffiffiffi
k{1

Ncells

s

(red traces) for various values of Ncells. The value of mk for the very

highest occurring k in each case is not displayed, as very few such

intersections occurred, rendering the empirical estimate unreliable.

Found at: doi:10.1371/journal.pcbi.1000205.s002 (1.06 MB EPS)

Figure S3 Two grids used for computing pairwise distances. We

considered pairwise distances between all possible pairs of points

(p,q), where p is a point on a fine 1006100 grid (gray dots) and q is

a point on a coarse 464 grid (red dots) in the square environment.

(q is taken from a coarse grid to reduce the total number of pairs

from 108 to a more computable 1.6*105.) For each trial, the

pairwise error was computed as the average value of

Ip2q|2d(C(p),C(q))|, where C(p) and C(q) denote cell groups

corresponding to points p and q, respectively, and d was the

constructed metric on cell groups. This provides a measure for the

quality of an internal representation constructed from cell groups.

Found at: doi:10.1371/journal.pcbi.1000205.s003 (3.69 MB EPS)

Figure S4 Internal space reconstructions for increasing numbers

of place cells. The original environment (bottom right) with three

sample place fields. A coarse grid (red and orange lines) is used for

visual comparison with the reconstructed spaces, as in Figures 5

and 6. Black and colored dots correspond to cell groups, as in

Figure 3C and 3D, with colors representing cell groups containing

the three sample place cells. Raw MDS outputs (left column) for

the internal reconstructions of space have arbitrary scaling and

orientation; aligned versions (middle column) can be used to

compute the mismatch (see Methods). Mismatch improves with

increasing numbers of place cells.

Found at: doi:10.1371/journal.pcbi.1000205.s004 (4.97 MB EPS)

Figure S5 Cell groups containing place cells with multipeaked

place fields. Black dots correspond to cell groups for the
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reconstructed space shown in Figure 6B. The reconstruction was

obtained from the simulated activity of 127 cells, 13 of which had

multipeaked place fields. For each of the 13 place cells with

multipeaked place fields, all cell groups containing that place cell

are plotted in red (plots 1–13). Cell groups for a pair of single-

peaked place fields are also shown (plots 14, 15).

Found at: doi:10.1371/journal.pcbi.1000205.s005 (11.61 MB EPS)

Figure S6 Multipeak pairwise error and mismatch for coverage

by 90 and 140 fields. The presence of place cells with multipeaked

place fields does not affect the performance of the metric

reconstructions so long as the double fields are themselves fully

covered by other place fields, in which case the corresponding cell

groups are fully disambiguated by other cells. (A,B) For a total

coverage by only 90 fields (including double fields for multipeaked

cells), both the pairwise error and mismatch have increasing mean

and variance for increasing percentages of multipeaked cells. This

is because 90 randomly-located fields for the given range of radii

(shaded region, dashed line indicates mean place field radius) are

not enough to double-cover the environment. (C,D) The

environment is fully double-covered with 140 fields. Accordingly,

there is no significant decrease in performance for increasing

percentages (up to 11%) of multipeaked place fields. ((D) is the

same as Figure 6C.)

Found at: doi:10.1371/journal.pcbi.1000205.s006 (0.92 MB EPS)

Figure S7 Place cells with multipeaked place fields can be

detected from cell groups. Overlapping circles (middle) illustrate

an example place field configuration for an environment with no

holes. Cell 8 has a double-peaked place field, consisting of two

disconnected regions (shaded gray areas). A graph, as in Figure 3,

can be constructed from the correspondingly activated cells groups

(not shown). For each cell, there is an associated subgraph induced

by restricting only to cell groups (vertices) that contain the given

cell. The subgraph associated to cell 8 (left) has two connected

components, indicating that this place cell has a place field with

two disconnected firing fields. In contrast, the subgraph for cell 3

(right) is connected, as are the subgraphs for all other place cells

(1–7) in this example (not shown). Note that identification of

multipeaked place fields requires that they be entirely covered by

other fields, as is the case of cell 8. For this reason, we must have

enough cells to double-cover the environment by place fields in

order to guarantee that we can identify place cells with

multipeaked fields and disambiguate disconnected fields.

Found at: doi:10.1371/journal.pcbi.1000205.s007 (0.61 MB EPS)

Text S1 Supplementary Text

Found at: doi:10.1371/journal.pcbi.1000205.s008 (0.11 MB PDF)
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