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The binary-encounter dipole~BED! model for electron-impact ionization is applied to helium using the
continuum dipole oscillator strength calculated from the relativistic random-phase approximation. The result-
ing total ionization cross section agrees with available experimental data well within the quoted experimental
uncertainties. The singly differential (5energy distribution of ejected electrons! cross section agrees well in
shape with available experiments. Because of the remarkable agreement with experiment at all incident and
ejected electron energies and the compact analytic form of the cross sections, we propose that the BED cross
sections for helium serve as a normalization standard with an accuracy of65% from the threshold to 1 keV in
the primary electron energy.

PACS number~s!: 34.80.Dp

The electron-impact ionization cross section is one of the
basic properties of atoms and molecules not only for its in-
trinsic importance in atomic collision theory, but also for a
wide range of applications such as in fusion plasma diagnos-
tics, modeling of semiconductor etching in plasma reactors,
radiation effects on materials, and astrophysics.

Helium is ideally suited to serve as a cross section stan-
dard. Atomic hydrogen is the only simpler target, but it is
difficult to use experimentally. All heavier atoms have the
complication of inner shell ionization that poses both theo-
retical and experimental difficulties. Even in helium double
ionization and autoionization from doubly excited states
complicate the situation, but together they account for far
less than65% in the total ionization cross section. For in-
stance, the cross section for double ionization of helium by
electron impact@1# stays below 0.5% of the cross section for
single ionization from the threshold to 1 keV in incident
energy.

Numerous theoretical and experimental results on
electron-impact ionization of helium have been published
since the 1930s. Although most experimental results on the
total ionization cross section~TICS! are in excellent agree-
ment with each other@1–4#, singly differential cross sections
~SDCS! on the energy distribution of ejected electrons are
still discordant. The experimental SDCS is commonly ob-
tained by integrating measured angular distribution of
ejected electrons, a procedure which entails significant un-
certainties in estimating the forward and backward angle
cross sections outside the range of direct measurements@5,6#.

To emphasize the indistinguishability of the scattered and
ejected electrons after an ionizing collision, we follow the
standard terminology and designate the faster of the two free
electrons as the primary electron and the slower as the sec-
ondary electron.

On the theory side, many attempts have also been made,
but a comprehensive and accurate description of the ioniza-
tion process has eluded satisfactory solutions to date@7#. The

successful application of the convergent close coupling
~CCC! method to electron-impact ionization of helium by
Bray and associates@8,9# offers optimism. However, the
CCC method is basically for a single-electron target, and
requires ever increasing expansion for the coupled states for
higher incident electron energies. Although the CCC method
can provide detailed collision data in principle, such as the
triply differential cross section, the computational procedure
for the CCC method is too complicated to provide conve-
nient, analytic expressions for the arbitrary combinations of
primary and secondary electron energies needed by experi-
mentalists as a normalization standard for ionization cross
sections.

The binary-encounter dipole~BED! model@10# combines
a modified form of the Mott cross section@11# with the
asymptotic form of the Bethe cross section@12,13# to calcu-
late the SDCS. The resulting SDCS is then integrated over
the secondary electron energy to obtain the TICS. The BED
model provides the SDCS,ds/dW, for a given atomic or-
bital by using the continuum dipole oscillator strength,
d f /dW:

ds~W,T!
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whereT is the incident electron energy,W is the secondary
electron energy,B is the orbital electron binding energy,U
5^p2/2m& is the orbital electron kinetic energy with the tar-
get electron momentump and the electron massm,
S54pa0

2NR2/B2, a0 is the Bohr radius,N is the orbital
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electron occupation number,R is the Rydberg energy,t
5T/B, u5U/B, w5W/B, and

Ni5E
0

`d f~w!

dw
dw. ~2!

The first term in the curly brackets in Eq.~1!, which in-
cludes single powers ofw11 and t2w, comes from the
Mott cross section and represents the interference between
the direct and exchange interactions, while the second term,
which includes squares ofw11 andt2w, also comes from
the Mott cross section and represents the direct and exchange
interactions. The logarithmic term in the brackets is the lead-
ing term of the Bethe cross section.

The factor 22Ni /N results from the requirement that the
asymptotic limits of both the TICS and the stopping cross
section approach the known asymptotic limits of the Bethe
theory @10,12#. This requirement eliminates the need for an
arbitrary/empirical parameter often used in previous attempts
to combine the binary-encounter theory and the Bethe cross
section@14#.

The TICS is obtained by integrating Eq.~1! over w be-
tweenw50 and (t21)/2:

s i~ t !5
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t1u11 FD~ t !lnt1S 22
Ni
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2

lnt

t11D G ,
~3!

where

D~ t ![N21E
0

(t21)/2 1

w11

d f~w!

dw
dw. ~4!

Note that the Mott cross section part of Eq.~1! is symmetric
with respect to the energy of the primary and secondary elec-
trons after the collision, and hence the upper limit of integra-
tion in Eqs.~3! and ~4! is chosen to avoid double counting.

The continuum oscillator strength,d f /dw, was calculated
using the relativistic random-phase approximation~RRPA!
@15#, though it is not necessary to introduce relativity for
helium. It should be noted that RRPA oscillator strengths for
dipole excitations of a closed-shellN-electron atom auto-
matically satisfy the Thomas-Reiche-Kuhn sum rule,

(
i

f i1E
0

`d f~w!

dw
dw5N, ~5!

wherei ranges over all odd-parityJ51 bound states. More-
over, the gauge-independence of RRPA amplitudes insures
that length-form and velocity-form oscillator strengths are
identical.

To be able to integrated f /dw to an arbitrary upper limit,
we fitted thed f /dw calculated from the RRPA to a four-term
power series:

d f /dw5ay31by41cy51dy6, ~6!

where y5B/E5B/(W1B), and a58.24012, b
5210.4769,c53.96496, andd520.0445976. To match
the experimental threshold, we useB524.587 eV, while we
use a theoretical value ofU539.51 eV.

With Eqs.~1!–~6! and the fitting constants above, one can
generateds/dW and s i for arbitrary T and W, even forT
near the ionization threshold and forW;0, two regions
which pose severe difficulties to experiment.

In Fig. 1, we compares i from the BED model to three
sets of experimental data, which agree well among them-
selves. Our BED results fall well within the uncertainties of
the experimental data, which range between65% and
67%, indicating that the TICS from the BED model pre-
sented here can be used as a normalization standard with a
maximum uncertainty of65%. The CCC cross section@8# at
T,100 eV is also in excellent agreement with the experi-
ments, though the CCC cross section falls below the experi-
ments at higherT, indicating the need for extending the basis
set.

The SDCS atT5100 eV is compared in Fig. 2 to experi-
mental data, which were obtained by integrating doubly dif-
ferential cross sections~DDCS!, or the angular distribution
of secondary electrons. The integration of DDCS requires

FIG. 1. Total cross section for ionization of He by electron
impact. The abscissa is the incident electron energyT in eV. Solid
line, BED cross section; filled circles, experimental data by Rapp
and Englander-Golden@3#; filled triangles, data by Montagueet al.
@4#; filled squares, data by Shahet al. @1#; open squares, CCC
theory by Fursa and Bray@8#.

FIG. 2. Singly differential cross section of He atT5100 eV.
Solid line, BED cross section; open circles, experimental data by
Müller-Fiedler et al. @6#; filled triangles, data by Opalet al. @5#;
filled circle, data by Grissomet al. @17#; open squares, CCC theory
by Bray and Fursa@9#.
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extrapolationsof experimental data to forward and backward
angles. For fast secondary electrons, the angular distribution
is sharply peaked around the binary collision peak, and the
accuracy of the integration of such a peak will depend on the
size of the angular steps used for observation. In spite of
these experimental difficulties, the agreement between the
BED model and experimental data on SDCS shown in Fig. 2
is remarkable.

A more informative way to compare SDCS is to use the
Platzman plot@16#, which is the ratio of SDCS to the Ruth-
erford cross section for one electron:

Y[
ds/dW

4pa0
2R2/TE2

~7!

as a function ofR/E. Note that the simple relationship,E
5W1B, holds only for targets with a single orbital, such as
atomic hydrogen, helium, and molecular hydrogen.

In the Platzman plot, the ordinate,Y, indicates the effec-
tive number of electrons being ionized—as in the concept of
dipole oscillator strength—while the area under the curve
betweenW50 and Wmax5(T2B)/2 is (T/4pa0

2R)s i . In
other words, the Platzman plot compares not only the shape
but also the normalization of SDCS.

Comparison of theoretical and experimental SDCS atT
5500 eV is shown as a Platzman plot in Fig. 3, which
clearly demonstrates that the shapes of the two sets of ex-
perimental data are similar, but their magnitudes must be
renormalized to match the known TICS. Comparisons of
SDCS at other primary electron energies exhibit the same
trend, and we are confident that the shape and magnitude
obtained from Eq.~1! are trustworthy, particularly forT<1
keV.

In both Figs. 2 and 3 we included the experimental data
by Grissomet al. @17#, who measuredds/dW at W50. This
is a unique experiment which uses a potential trap and pro-
vides SDCS atW50, which is an ejected electron energy
that is very difficult to measure by conventional methods.

Although we have presented a successful application of
the BED model, the model has some inherent limitations
owing to its relatively simple origin. The Mott cross section
uses Coulomb wave functions for the primary and secondary
electrons. The Bethe cross section uses plane waves for the
primary electron, while realistic wave functions should be
used for the initial and final target states to calculated f /dw.
Therefore, these two theories, though well understood,
should be combined with care.

Furthermore, the exchange effect between the primary
and secondary electrons is fully accounted for in the Mott
cross section, while the Bethe cross section ignores it. The
electron correlation included in the RRPA is between the two
bound electrons of helium, but not between the primary and

secondary electrons. Fortunately, the latter exchange effect
diminishes at highT, where the Bethe cross section begins to
dominate. The fact that the TICS based on the BED model
agrees so well with experiment for helium is a strong indi-
cation that at lowT the dipole interaction is less important
than the non-dipole interaction represented by the Mott cross
section.

Our preliminary results on the application of the BED
model withd f /dw from the RRPA to neon yields a level of
agreement in the TICS betweenT550 and 500 eV similar to
that for helium. Details of the BED cross sections of helium
and neon withd f /dw from the RRPA will be reported later.
Examples of BED cross sections and a simplified version of
the theory—the binary-encounter-Bethe~BEB! cross
sections—for some atoms and dozens of molecules as well
as on-line computation of SDCS and TICS of atomic hydro-
gen, helium, and molecular hydrogen for arbitraryT andW
are available on the Internet@18#.

We conclude that the energy distribution and the total
ionization cross section of helium given by the BED model,
Eqs.~1!–~6!, with thed f /dw calculated from the RRPA can
be used as a normalization standard for electron-impact ion-
ization experiments on atoms and molecules. The theoretical
data are expected to be accurate to65% based on the com-
parison with available experimental data, and where appli-
cable, with the CCC theory.
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