Spring 4-12-2016

Daniel Libeskind's Three Lessons in Architecture

Charles T. Weak
University of Nebraska-Lincoln, charlesweak@ymail.com

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch

Part of the Other Architecture Commons

http://digitalcommons.unl.edu/ucareresearch/33

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
As an AI, I can't directly read images, but I can process and interpret text. Here is the natural text of the document:

00 HISTORICAL RECONSTRUCTION

01 Student: CHARLES WEAK
02 Faculty Advisor: PETER OLSHAVSKY

01 DOCUMENTATION

The first step in digitally reconstructing the Reading Machine was to build a strong documentation base to pull information from. Having a view of all the parts of the machine was crucial to building and understanding on the size of one of the base members. It took multiple iterations of models to find the correct proportioning system.

02 CROSS REFERENCE

In 1985, students at Cranbrook University created three architectural machines for the Venice Biennale. The three machines were lost in a fire in Venice. The only remnants of the machines that are left are pictures from the Biennale. This project focused on the Reading Machine, one of the three machines that was destroyed. In an attempt to better understand these machines and their role in architectural discourse, we set out to see what we could learn from reconstructing these machines.

03 SCALE

The techniques used to recreate the Reading Machine are discussed in greater depth in the individual descriptions below. The process of reconstruction without construction documents or accurate records is an imperfect process, but ultimately was a fruitful one. The information discovered helped inform us on the method for the construction of the Reading Machine.

04 DIMENSIONING

01 BRIEF

The information I uncovered about the Reading Machine has informed me about the construction process, and the proportioning systems of the machine. From the digital model, I pulled pieces apart to get a list of parts and pieces that moves the research forward. All the pieces of the Reading Machine have a side or two sides with a dimension that is either 3/4", 1 1/2", or 2 1/4". It’s likely that this means that Reading Machine was constructed with dimensioned lumber, with the 2 1/4" pieces being ripped down from 2 1/2" pieces. This also suggests that proportion played a big role in the construction of the Reading Machine. Understanding the construction process is important to reconstructing a physical model of the machines, as well as understanding the theory behind the creation of the machines.

02 TECHNIQUES

The techniques used to recreate the Reading Machine are discussed in greater depth in the individual descriptions below. The process of reconstruction without construction documents or accurate records is an imperfect process, but ultimately was a fruitful one. The information discovered helped inform us on the method for the construction of the Reading Machine.

03 SCALAR SYSTEMS

This project was initially less about the subject matter, and more about exploring the potential for reconstructing a lost artifact. I was fortunate to be able to find pictures that were shot in an elevational style, which became the most helpful when trying to dimension the Reading Machine.

04 INFORMATION GATHERED:

The first step in digitally reconstructing the Reading Machine was to build a strong documentation base to pull information from. Having a view of all the parts of the machine was crucial to building and understanding on the size of one of the base members. It took multiple iterations of models to find the correct proportioning system.