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ABSTRACT 
 
 
 

Determination of Traffic Responsive Plan Selection Factors and Thresholds Using 

Artificial Neural Networks. (August 2004) 

Anuj Sharma, B.E., Regional Engineering College, Rourkela, India 

Chair of Advisory Committee: Dr. Carroll Messer 
 
 
 

Traffic congestion has become a menace to civilized society. It degrades air quality, 

jeopardizes safety and causes delay. Traffic congestion can be alleviated by providing 

an effective traffic control signal system. Closed-loop traffic control systems are an 

example of such a system. 

Closed-loop traffic control systems can be operated primarily in either of two 

modes: Time of Day Mode (TOD) or Traffic Responsive Plan Selection Mode (TRPS). 

TRPS mode, if properly configured, can easily handle time independent variation in 

traffic volumes. It can also reduce the effect of timing plan aging. Despite these 

advantages, TRPS mode is not used as frequently as TOD mode. The reason being a 

lack of methodologies and formal guidelines for predicting the factors and thresholds 

associated with TRPS mode. In this research, a new methodology is developed for 

determining the thresholds and factors associated with the TRPS mode. This 

methodology, when tested on a closed-loop system in Odem, Texas, produced a 

classification accuracy of 94%. The classification accuracy can be increased to 98% 

with a proposed TRPS architecture.  
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CHAPTER I 

INTRODUCTION 

Traffic signals are provided to separate conflicting movements in time for a given 

space. A signal timing plan is developed for efficient and safe operation of the signal 

for a given traffic demand.  Impromptu implementation of the best available timing 

plan with change in traffic demand has always been challenging. This becomes a major 

concern when traffic demand varies widely and is highly unpredictable. 

Traffic controllers usually use the time of day (TOD) mode to blindly choose a 

timing plan from a set of pre-stored plans. The timing plan schedule, which is 

developed based on historical data, chooses a timing plan for the given time. This 

scheme works on the assumption that traffic demand on a system is recursive in nature 

and repeats itself with a fixed cycle length. However, this assumption is invalid in 

cases such as special events, holiday traffic, shifting of peak times due to slight 

changes in office timings, or just due to a recursive demand with variable cycle length. 

In order to implement the most efficient timing plan for a given demand, traffic 

responsive plan selection (TRPS) mode has been developed. TRPS mode uses system 

detectors to estimate demand on the network and chooses the best available timing plan 

for the existing condition. 

 

This thesis follows the style and format of the Transportation Research Board. 
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PROBLEM STATEMENT 

The TRPS mode is intended to operate as a traffic pattern classifier. It is provided with 

a mechanism to measure the volume count and occupancy from a set of system 

detectors, essentially a feature vector of demand, and classifies the present state as one 

of the available predetermined demand classes. 

The main problem with implementing the TRPS mode is the plethora of set-up 

factors and thresholds that need to be determined for the efficient working of the mode. 

Like any other control system, desired benefits of TRPS mode can only be achieved if 

the TRPS factors and parameters are determined correctly. Traffic responsive plan 

selection logic is based on prior work done in the early 1970’s on a federal urban traffic 

control system (UTCS) project in Washington, D.C. (1, 2). UTCS classified system 

detectors in three TRPS parameters (inbound, outbound and cross street detectors). 

System detector’s volume and occupancy (V+O) were normalized and aggregated 

using weighting factors to compute the separate V+O values for TRPS parameters. 

UTCS compared these computed V+O values against respective thresholds to select a 

traffic responsive pattern. This logic has been implemented by signal controller 

manufacturers during the last 30 years with only slight variation in name and number 

of the TRPS parameters. A more detailed description of the TRPS factors and the 

threshold is provided in the following paragraphs. 
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System Detectors 

The TRPS control system uses system detectors to sense existing demand on the 

network. System volume and occupancy data are then processed to select a suitable 

timing plan for the existing demand. System detectors should be located to provide a 

reliable estimate of the demand. Federal Highway Administration (FHWA) provides 

guidelines in locating system detectors (2). Several (4, 5) other researches have been 

done in this area. The main points to be kept in mind while locating the system 

detectors are:  

• They should be able to capture the influence of major traffic generators 

• They should be located outside the influence of adjacent intersections. Queue 

lengths and acceleration zones should be taken into consideration during the 

design 

• Redundancy in information provided by the detectors should be reduced for 

optimal utilization of the available detectors 

 

Among current traffic controllers, the system detectors have been categorized in 

three groups. Each of these categories serves a different purpose in the TRPS 

mechanism as follows: 

• Cycle level detectors are used to determine the appropriate cycle length and, 

therefore, should be located near the critical intersection(s) 
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• Arterial detectors or directionality detectors are used to determine the appropriate 

offset level and, therefore, should be placed in the inbound and outbound 

directions on the arterial 

• Non-arterial detectors are used to determine the appropriate splits level and, 

therefore, should be placed on the cross streets 

 

Smoothing Factors 

Smoothing factors, as the name suggests, are used to iron out short term fluctuations in 

demand. Different controller manufacturers use slightly different approaches for this 

purpose. These approaches essentially utilize two mathematical functions. The first 

approach is called moving average. In this method, a smoothed value is calculated by 

using the formulae listed below: 

 

Smoothed value = New Value* (1-Smoothing Factor) + Old Value*  

                                          Smoothing Factor  
 

10 <≤ actorSmoothingF                                             (1.1) 

 

Selecting a larger value of smoothing factor gives a higher weight to old data; whereas, 

selecting a value of ‘0’ implies that the new value is used without smoothing. 
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The other smoothing approach is to average the value over the previous ‘n’ 

minutes sampling interval. Higher values of ‘n’ would result in less sensitivity towards 

the changes occurring in a single interval.  

 

Scaling Factors 

Scaling factors are used to standardize the data in the range of 0 to 100. Standardized 

data are independent of approach capacity. The importance of standardizing data before 

implementing pattern classification algorithm is explained in greater details in Chapter 

III.  Two sets of scaling factors are used, one each for count and occupancy. The 

highest values of count and occupancy observed on the site are recommended as 

scaling factors (6). 

 

Weighting Factors 

A weighting factor is assigned to every system detector. Weighting factors are 

multiplied to count and occupancy to obtain computational channel parameters. Some 

controllers provide different weighting factors for count and occupancy.  These factors 

form the basis of pattern recognition. This concept has been further explained in 

Chapter III.  
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TRPS Mechanism and Thresholds 

TRPS utilizes a set of Pattern Selection (PS) parameters to select a timing plan based 

on the threshold values set for each of these parameters. Figure 1.1 shows the 

mechanism of TRPS mode. System detector α1, γp etc. collect counts and occupancy 

and report these to the master controller. This information is scaled, smoothed, 

weighed and aggregated to obtain values for Computational Channel (CC) parameters. 

The name of CC parameters differs from one manufacturer to other. Most controller 

manufacturers have the same nomenclature for PS parameters, namely:  

• Cycle 

• Split  

• Offset 

 

PS parameters are a function of CC parameters. The calculated values of PS 

parameters are compared against the threshold values to select a timing plan number 

from a lookup table. Timing plan corresponding to this plan number is then activated in 

all local controllers supervised by the master controller.  
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FIGURE 1.1 General TRPS mechanism 
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Computational
Channel

CC α

Processing

Detector 
αnα1

Detector Detector 
β1

Computational
Channel

CC β

Detector 
βm

Detector 
γ1

Computational
Channel

CC γ

Detector 
γp 

Pattern Select Parameter
PS J=   F (CC α,..., C γ)

Pattern Select Parameter
PS k=   F (CC α,..., C γ)

Pattern Select Parameter
PS i=   F (CC α,..., C γ)

Timing Plan Lookup 
Table

Threshold

Computational
Channel

CC α

Processing

Detector 
αnα1

Detector

Computational
Channel

CC α

Processing

Detector 
αnα1

Detector

Computational
Channel

CC α

Processing

Detector 
αnα1

Detector Detector 
β1

Computational
Channel

CC β

Detector 
βm

Detector 
β1

Computational
Channel

CC β

Detector 
βm

Detector 
γ1

Computational
Channel

CC γ

Detector 
γp 

Detector 
γ1

Computational
Channel

CC γ

Detector 
γp 

Pattern Select Parameter
PS J=   F (CC α,..., C γ)

Pattern Select Parameter
PS J=   F (CC α,..., C γ)

Pattern Select Parameter
PS k=   F (CC α,..., C γ)

Pattern Select Parameter
PS k=   F (CC α,..., C γ)

Pattern Select Parameter
PS i=   F (CC α,..., C γ)

Pattern Select Parameter
PS i=   F (CC α,..., C γ)

Pattern Select Parameter
PS i=   F (CC α,..., C γ)

Pattern Select Parameter
PS i=   F (CC α,..., C γ)

Timing Plan Lookup 
Table

Threshold



      8 

Naztec TRPS 

As described in Naztec operational manual for closed-loop master controllers (6), 

Naztec uses only three flow values as CC parameters, namely: 

• Inbound 

• Outbound  

• Cross traffic  

 

Functions of CC parameters are then used to calculate the Pattern Select (PS) 

parameters (cycle, split and offset). Figure 1.2 shows the Naztec TRPS mechanism. 

One of the 144 patterns is selected from the lookup table using combinations of the 

cycle-offset-split PS parameter and corresponding timing plan is implemented.  
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FIGURE 1.2  Naztec TRPS mechanism  (8)  
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RESEARCH OBJECTIVE 

The primary difficulty lies in the correct determination of the factors for an efficient 

operation of TRPS mode. The objective of this research is to develop a procedure for 

determining the TRPS factors and thresholds for providing more efficient operation. 

TRPS is ideally a pattern recognition problem where the detector inputs are used to 

assign the detected traffic state to a particular pre-stored timing plan. Abbas and 

Sharma (9) used canonical discriminant analysis (10), a Bayesian-based approach, for 

addressing this pattern recognition problem.  

In this research TRPS factors and thresholds will be determined using an 

artificial neural network (ANN), which is a non-parametric approach. Neural network, 

according to Haykin (11), has an edge over deterministic approaches for pattern 

recognition, as it does not assume a distribution of the input. Therefore, they can be 

beneficial in cases where the inputs are generated by nonlinear mechanisms and when 

the distribution is heavily skewed and non-Gaussian, as is expected in this research. 

 

RESEARCH SCOPE 

This research is focused on closed-loop arterial signal control systems. Other networks 

could also be addressed in a similar manner, but they will not be addressed in this 

research. This research uses data collected in Odem, Texas during TxDOT research 

project 4421 (8). Simulation data are used for determining the factors and thresholds 

for TRPS mode. This research uses the Naztec controller as an example to determine 

TRPS factors and thresholds. 
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CHAPTER II 

BACKGROUND 

The Urban Traffic Control System program (UTCS) (1) was started in 1967 by the 

U.S. Department of Transportation, Federal Highway Administration for developing, 

implementing and evaluating urban traffic control strategies. The strategies for traffic 

control were divided into three categories as listed in Table 2.1. 

 

TABLE 2.1  Feature of UTCS/BPS Strategies (2) 

Feature First 
Generation 

Second 
Generation 

Third 
Generation 

Optimization Off-Line On-Line On-Line 
Frequency of Update 15 Minutes 10-15 Minutes 3-6 Minutes 
No. of Timing Patterns Up to 40 Unlimited Unlimited 
Traffic Prediction No Yes Yes 
Critical Intersection 
Control 

Adjusts Splits Adjusts Splits Adjusts Splits, 
Offset, and Cycle

Hierarchies of Control Pattern 
Selection 

Pattern 
Computation 

Congested 
Medium Flow 

Fixed Cycle Length Within Each 
Section 

Within Variable 
Groups of 
Intersections 

No Fixed Cycle 
Length 

 

In first generation control, a set of signal timing plans were calculated based on 

historical data. The control timing plan were selected based on the time of day mode 

(TOD), or traffic responsive (TRPS) mode, which used a set of system detectors to 

choose the optimal timing plan for the existing traffic volumes. TRPS was also tested 
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with added features like critical intersection control (CIC) and bus priority signal 

(BPS). Second generation control was midway between first and third generation in 

terms of complexity and real-time computation. Signal timing plans were calculated 

online based on surveillance data and predicted volume conditions. The timing plans 

were updated every 10-15 minutes to avoid transition disturbances. The third 

generation control also calculated and implemented the timing plan in real time. The 

main differences between the second and third generation controls were that the 

frequency of update in third generation control was 5 to 10 minutes, and variable cycle 

lengths could occur within an optimization period over the controlled intersections.  

The two important results reported by UTCS after evaluating all the controls 

were: 

• Computer-based traffic responsive alternative generally matched or exceeded the 

performance of the other traffic control alternatives (2) 

• The First Generation (TRSP) was found to be operationally effective, was the least 

expensive to apply, and should be given primary consideration for implementation 

(1) 

 

After positive feedback given on the UTCS project, first generation controllers 

were widely implemented. There are researches in progress for the development of 

second and third generation control (12). But the majority of traffic controllers present 

in the field are first generation controllers. First generation controllers are 

microcomputer-based traffic controllers. A master controller supervises a set of local 
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controllers. This control concept is termed as being a “Closed-loop System.”  Closed-

loop systems are described in next section. 

 

CLOSED-LOOP SYSTEMS 

Closed-loop systems consist of a series of signalized intersections operated by a single 

master controller. The master controller issues commands to implement timing plans 

stored in the local controllers. The master controller can also report information to a 

Traffic Management Center, if needed. Figure 2.1 shows a sketch of the closed-loop 

system. The main purpose of providing a closed-loop network is to coordinate the 

connected signalized intersections. The coordination of signals can result in a 

significant reduction in vehicular delay (13). Coordinated signals can also reduce the 

number of vehicle stops, total fuel consumption, and vehicle emissions (13). Wagner 

(14) found that “the most dramatic improvements in traffic performance on signalized 

arterials and networks are those resulting from the combined action of interconnecting 

previously uncoordinated pre-timed signals with a master controller, together with the 

introduction of new optimized timing plans.” Similar results were also shown by the 

Traffic Light Synchronization II (TLS II) program, which aimed at optimization of 

traffic signal timing plans across Texas. TLS II reported a 13.5 % (20.8 million 

gallons/year) reduction in annual fuel consumption, 29.6% (22 million hours/year) 

reduction in annual delay, and 11.5% (729 million stops / year) reduction in annual 

stops (15) based on results obtained from 1348 intersections in 43 cities.  

 



      14 

 

FIGURE 2.1  Components of a closed-loop system (16) 

 

CLOSED-LOOP SYSTEM MODES OF OPERATION 

The best way to increase the performance of a group of intersections is to operate them 

under the best suited timing plan for existing demand and coordinate them. This thesis 

aims at providing a methodology to implement the best suited timing plan. The timing 

Master Controller 
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plan required at any given time depends on the existing volume conditions (demand). 

The decision to select a particular timing plan at a given instant is taken by the 

controller. A closed-loop system essentially uses two control modes for the selection of 

the timing plan, namely: 

• Time of day mode 

• Traffic responsive plan selection mode  

 

In the TOD mode, the timing plan is selected and implemented based on the 

time of the day. In this mode, it is assumed that the traffic patterns are recursive in time 

by day of week. This assumption may be violated in cases of special events, holiday 

traffic, or in the cases where recurrence of similar conditions occur, but in a random 

manner.  These cases can be handled efficiently using the TRPS mode, which provides 

a mechanism to select a timing plan as a real-time response to measured changes in 

traffic demands. So TRPS mode, if correctly set, can result in efficient operation of 

closed-loop networks. In a study of two networks in Lafayette, Indiana, it was found 

that TRPS mode reduced total system delay by 14% compared to TOD mode for the 

midday traffic pattern (17). It was also found that TRPS system reduced the total 

system delay for morning traffic by 38%. The following section presents the 

mathematical evaluation of the two modes. 
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Mathematical Evaluation 

Timing plans are designed to serve traffic demand on a network. This relationship 

between the timing plans and demand of the network is mathematically shown below. 

If D is the demand on a particular network, then timing plan (TP) is a function 

of demand: 

TP = f (D)   (2.1) 

 

In the case of time of day and traffic responsive mode, which uses a set of pre-

calculated timing plans, the function f (D) is defined as a step function  

     TP1        if     10 dD ≤≤  

                 TP2          if    21 dDd ≤≤  

TP =          .                . 

                  .                . 

                TPn          if        nn dDd ≤≤−1      (2.2) 

where: 

di = i th level of demand on system. 

 

 

Time of Day Mode 

In this mode a new variable time (T) is introduced. The relationship between time and 

demand is modeled using historical data. And this model is used to predict the future 
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demand. So a timing plan is selected based on the time. This can be shown 

mathematically as follows: 

D = g (T)                     (2.3) 

where function g is  

        D1     if      10 tT ≤≤  

         D2     if      21 tTt ≤≤  

D =               .                . 

         .                . 

         Dn    if      nn tTt ≤≤−1                                                                (2.4) 

 

It is assumed that after time “tn” the demand will repeat itself so the timing 

plans can be scheduled as shown below: 

TP = h (t)                                                                                                        (2.5) 

such that, 

         TP1     if      10 tT ≤≤  

         TP2     if      21 tTt ≤≤  

TP =              .                  .  

         .                   . 

         TPn     if      nn tTt ≤≤−1                                                             (2.6) 
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Figure 2.2 shows a hypothetical volume distribution plotted versus time. If 

TOD mode is implemented three timing plans can be assigned: 

•  An a.m. peak timing plan from 7:00 A.M. to 11:00 A.M. 

• An off peak timing plan from 11:00 A.M. to 5:00 P.M. 

• A p.m. peak timing plan from 5:00 P.M. to 7:00 P.M.  

 

These timing plans would be repeated on each of the workdays as the traffic scenario 

can be assumed to be same through out the weekday. 

Figure 2.3 shows TOD mode routine graphically. This model works fine in case 

of recursive demand with a fixed cycle of recursion. This is not true in cases of special 

events, holiday traffic or in the cases where recurrence of similar demand pattern 

occurs, but in a random manner.  
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FIGURE 2.2  Example of TOD mode 

 

 

 

 

 

 

 

 

 

FIGURE 2.3  TOD mode routine 
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Traffic Responsive Mode  

With the advent of new detection capabilities it became possible to measure the 

demand in real time and a new routine was developed to tap the detection resources. In 

this routine the demand is directly measured and the optimal timing plan is selected 

using the function  f as defined in Equation 2.2 

Figure 2.4 presents the TRPS mode implementation on the example shown in 

Figure 2.2. In case of TRPS mode three timing plans can be assigned: 

•  TP 1 for volume ranging from 0 vph to 300 vph  

• TP 2 for volume ranging from 300 vph to 500 vph  

• TP 3 for volume greater than 500 vph  

 

These timing plans would be implemented based on the existing volume conditions.  

Figure 2.5 shows TRPS routine graphically. Notice that in this case no model is 

needed as a bridge between the demand and timing plan, thus reducing the possibilities 

of error.  

Based on the discussion above, it is clear that TRPS mode does not require any 

model relationship between time and demand; instead, it directly measures the demand 

in the field so the error induced due to modeling the time-demand relationship is 

eliminated. Hence, if properly configured, TRPS mode provides a more efficient 

operation.  
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FIGURE 2.4  Example of TRPS mode 

 

 

 

 

FIGURE 2.5  TRPS mode routine 
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PAST RESEARCH ON TRPS 

Despite the above described benefits, the TRPS mode has been rarely implemented in 

the field. The main reason why the TOD mode is preferred as compared to TRPS mode 

is the lack of literature and methodology for configuration of the TRPS mode (8). The 

insufficiency of literature and lack of experience often leads traffic engineers to fall 

back to the TOD mode although being aware of the fact that the TRPS mode might be 

efficient in operation. There has been limited research to determine the methodology 

for setting up the TRPS mode. The literature sources that have been found are 

discussed below. 

Hadi and Courage (18) used five cycle lengths equally varying from the lowest 

cycle length (sum of minimum green) to the maximum cycle length (either as accepted 

by a local traffic agency or as determined using design volumes as maximum volumes 

on each link of the system). The cycle level threshold was experimentally determined 

by running different arterial volume level in TRANSYT-7F (19) and cutoff point were 

established, when a change in volume level causes change in the optimum cycle length 

as reported by TRANSYT-7F. Detectorized approaches measured the traffic flow 

conditions. Using upper cutoff limit as a design cycle, 5 offsets plans were obtained for 

1%, 25%, 50%, 75% and 99% of total progression bandwidth. The thresholds were 

obtained marking the cutoff limit for change from one offset percentage to the other by 

varying the inbound-outbound condition for a given cycle length. Similarly, 3 sets of 

splits and their thresholds were obtained by using TRANSYT-7F for light, average and 

heavy cross street volumes.  
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In other research Abbas and Sharma (9) used canonical discriminant analysis 

for finding the TRPS factors and threshold. In this approach a set of timing plans were 

obtained using SYNCHRO 5.0 (20) for generating a set of timing plans for a design set 

of volume conditions varying at a controlled rate. The timing plans were then clustered. 

The field data were assigned to one of these clusters using root mean square distance as 

a measure of classification. CORSIM (21) was then used to simulate the chosen 

classes. The detector counts and occupancy were used as inputs in canonical 

discriminant analysis to obtain the system detector weights. The thresholds were 

determined by using discriminant analysis on the canonical variable obtained from 

previous analysis. 

One of the major drawbacks in both of these approaches is that they use timing 

plans or the measures of effectiveness (MOEs) as given by signal design software for 

classification of demand. All the signal design softwares use different models and 

criteria for developing an optimal timing plan and predicting MOEs. If these timing 

plans or MOEs are used as classification criteria for demand, an error might be induced 

due to the modeling of the software. The methodology used in this thesis directly uses 

the volume counts for the classification of demand and keeps the timing plan 

assignment to these classes as a separate module.  

The other important drawback of Haidi’s research, but improved upon by 

Abbas and Sharma, was the use of three axes of cycle, split and offset to differentiate 

among the demand classes. These might not be the optimum set of axes for separation 

and classification of demand classes. Abbas and Sharma, on the other hand, used 
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canonical distribution for determining the axis, which is best suited for demand 

classification. This provides a major breakthrough in way of thinking of cycle 

(associated with the inbound and outbound direction), split (associated with the cross-

street and main street movement) and offset (associated with the ratio of inbound and 

outbound movement) pattern selection parameter provided by the controller vendors. 

As discussed by Abbas and Sharma, the inbound, outbound and cross street movements 

are usually associated with a pattern selection parameter and might not be the best 

suited axes for classification. On the other hand, a linear combination of inbound, 

outbound and cross street movements as given by canonical distribution (which is a 

methodology to find the axis providing the maximum separation between classes) will 

provide the best classification. This thesis also includes this concept in its 

methodology.  

Following chapter provides a detailed description of the methodology and 

concept used in determination of the TRPS factors and thresholds in this thesis. 

 



      25 

CHAPTER III 

METHODOLOGY 

This chapter provides a detailed description of the methodology used for the 

determination of the TRPS factors and thresholds. Figure 3.1 presents the outline of 

research methodology. TRPS mode classifies an existing demand in one of the 

predetermined demand states (classes) and selects an appropriate signal timing plan. 

Demand states were determined by clustering the approach volumes of the network 

collected in the field. Clustering techniques (22, 23, 24) identify a set of “natural” 

groups existing in the data set. After identification of these groups (referred as demand 

states), timing plans were assigned to each of these states. The next step was to find the 

TRPS weights and thresholds in order to assign future volume scenarios to one of these 

states. This pattern recognition was done by the use of an artificial neural network. 

Each of these stages is described in detail in the following sections.  

 

CLUSTERING  

Identification of existing demand states was the first step for this research. The 

accuracy of TRPS mode and benefits achieved was dependent on efficient clustering of 

existing demands. The demand needs to be clustered due to the limitation of number of 

timing plans that could be put in traffic controllers, for example in a Naztec version 
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50/60 controller software 48 timing plans could be implemented (6). A single signal 

timing plan was associated with a range of demand patterns. Clustering techniques 

identify the demand patterns having similar attributes and group them together. The use 

of clustering technique is illustrated by an example below.  

Assume a hypothetical network having a northbound (two lane) approach and 

an eastbound (one lane) approach. The demand on this network can be represented by a 

two dimensional vector of approach volumes. Four hypothetical demands namely A, B, 

C and D are plotted in Figure 3.2. On inspection of the figure, A and B can be classified 

in one group, whereas C and D can be classified in the other. This subjective way of 

clustering is 

 

FIGURE 3.1  Flow chart of research methodology 

 

Identification of 
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Thresholds for Identification of Demand 



      27 

370
380
390

400
410
420
430

440
450
460

150 170 190 210 230 250 270 290

Eastbound (vph)

N
or

th
bo

un
d 

(v
ph

)

A B

C D

 

FIGURE 3.2  Hypothetical example of various demand states 

 

mostly used in our profession. The demand is classified as A.M. peak, P.M. peak or, 

off-peak, etc., based on perception and judgment of the engineer. In the above example, 

the human perception system is used for grouping the data. Human perception 

techniques are effective and accurate for classification of up to three dimensions. 

However, in real world scenarios, where networks may have many approaches, and in 

turn several dimensions, automated algorithms need to be used for accuracy. Clustering 

algorithms essentially have three steps: 

• Determination of feature vectors before collecting data  

• Standardization of feature vectors 

• Clustering of feature vectors with similar attributes 
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Data Collection and Standardization 

The main aim of clustering the demand data was to associate a signal timing plan to 

each group. Similar volume conditions on all approach would perform efficiently under 

a single timing plan. Volume counts on each approach of the network, for every 15 

minutes, were chosen as feature vector. Field data were collected to cover all the 

demand variation existing in the field. For a particular network, data should be 

collected during a normal day, a weekend, any special event, and during light traffic 

conditions. 

Data so collected need to be standardized to avoid the dependence on the scale 

of measurement. This dependence can be explained by revisiting the first example. 

Based on Figure 3.2 A and B were clustered together in one group and C and D in the 

other. If vehicle per hour per lane was used as a unit of measurement of flow instead of 

vehicle per hour, and plotted, as shown in Figure 3.3, A and C will be grouped in one 

cluster and B and D in the other. 

To avoid this dependence of clustering on the choice of measurement units and 

scaling, the flow needs to be standardized to corresponding flow ratio. Flow ratio is 

defined as ratio of volume on an approach and the saturation flow of that approach. 

Saturation flow is defined as the maximum number of vehicles from a lane group that 

would pass through the intersection in one hour under the prevailing traffic and 

roadway conditions if the lane group was given a continuous green signal for that hour. 

So, flow ratio represents the fraction of approach capacity being utilized. Usually the 

saturation flow volume of a single lane is in the range of 1200 to 1900 vehicles per 
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hour of green. The highway capacity manual (25) provides a well-defined methodology 

for calculating the saturation flow of any approach. So after collecting the volume data 

for each approach, it was divided by its approach saturation flow to obtain the flow 

ratio. Flow ratio is always positive and is between 0 and 1. This conversion helped to 

standardize the collected data for clustering analysis.  
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FIGURE 3.3  Plot of northbound volume (vphpln) and eastbound volume 

(vphpln) 

 

Type of Clustering Algorithms 

There are mainly two types of clustering algorithms: partitioning methods and 

hierarchical methods. Partitioning algorithms, also known as “flat clustering” 

algorithms, produce a set of disjoint clusters as shown in Figure 3.4. This figure shows 
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20 observations being clustered in three disjoint groups or partitions. A partition 

method constructs k clusters such that: 

• Each group must contain at least one object 

• The clusters must be mutually disjointed such that each observation falls in exactly 

one group 

 

Hierarchical clustering algorithm, on the other hand, gives hierarchy of nested 

clusters. A tree structure, as shown in Figure 3.5, is created to show the grouping in the 

data. This type of clustering techniques is usually used in biological applications, like 

taxonomy of plants and animals. Hierarchical clustering is usually performed on small 

data sets. 

 

 

 

 

 

 

 

 

FIGURE 3.4  Sketch of partitioning clustering algorithm having 3 clusters and   

20 observations (22) 
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FIGURE 3.5  Sketch of hierarchical cluster having 5 observations (22)  

 

The partitioning algorithm is used in this research for finding disjoint groups of 

demand states. K-Means clustering (22, 23, 24),  a partitioning method, was used in 

this research. MATLAB (26) toolbox was used for K-Means clustering. The following 

paragraph gives a brief overview of this method. 

 

K-Means Clustering 

The K-Means clustering algorithm is a widely used method for partition clustering. The 

algorithm aims to minimize the overall “within cluster distance” from the patterns to 

the centroids. Since it is not possible to perform an exhaustive search on all the possible 

distributions of clusters, an iterative approach is followed. Cluster centroids, mj, are 

iteratively adjusted by assigning each pattern to the closest centroid to find the local 

B A C D E 
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minima of the objective function. The objective function to be minimized is shown in 

Equation 3.1. 
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where: 

E = error (sum of squared deviations) of cluster partitions 

k = number of clusters  

xi = ith pattern feature vector of an element of group j  

mj = centroid feature vector of group j 

wj = jth group 

 

The main steps of the algorithm are as follows: 

1. Define the number of clusters. 

2. Initialize cluster’s centroids. 

3. Assign a data point to the cluster having closest centroid. 

4. Calculate the new cluster centroid. 

5. Repeat steps 3 and 4 unless all the data points are assigned to a cluster. 
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6. Calculate the error (sum of squared deviation) for given classification. 

7. Reassign the data points to minimize the sum of square deviation. 

 

The first two steps of the algorithm pose certain difficulty as we don’t know the 

number of clusters and their centroids beforehand. Silhouette width was used for 

determination of number of clusters in the data. The initial value of the centroids was 

randomly chosen from data points. 

Silhouettes were introduced by Rosseeuw (27) for graphical representation of 

each cluster. A silhouette plot shows those cluster points that lie within the cluster and 

those which hold only an intermediate position. The plots are used to compare the 

compactness and separation among the clusters. The procedure of constructing 

silhouettes is described below. 

Each object i is associated with a value s(i) and these values are then plotted. In 

order to define s(i), an object i is taken from the data set. If i belongs to cluster A, a(i) 

is defined as: 

a(i) = average dissimilarity of i to all other objects of A. 

and d(i, C) is defined as: 

 d(i, C) = average dissimilarity of i to all other objects of C where is C is 

different cluster from A. 

 

After calculating d(i,C) for all cluster C≠ A, the smallest value is selected and 

represented by b(i). 
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b(i) = ),(min Cid
AC≠

  (3.3) 

 

The cluster B, having the value b(i), is called the neighbor of object i. The value 

of s(i) is now obtained by the equation given below: 

s(i) = 
)}(),(max{

)()(
ibia

iaib −   (3.4) 

So, from Equation 3.4 it is evident that 

1)(1 ≤≤− is   (3.5) 

 

The value s(i) approaches 1 as the value of b(i), the smallest “between” 

dissimilarity, is much larger than the a(i), the “within” dissimilarity. A value closer to 1 

thus implies that ith point is more similar to the data points in its group (A) rather than 

any other group (B). Therefore, i can be said to be well classified.  

In a different situation, when s(i) is close to 0 when a(i) and b(i) are nearly 

equal, which means that ith point is equally close to two groups A and B. So, it is 

unclear whether i should be assigned to A or B. This represents an intermediate case of 

classification.  

The worse situation is when s(i) is close to -1 where a(i) is much larger than 

b(i). This implies that ith point is more similar data points in B, a group other than the 

group to which it is assigned (A). In this case it might be concluded that i has been 

misclassified in A. 
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Silhouette for cluster A is a plot of values of s(i), ranked in decreasing order for 

all objects in A. Figure 3.6 is a example of silhouette plot. A wide, box shaped, 

silhouette having all positive values represents a well pronounced cluster.  
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FIGURE 3.6  Silhouette plot for three clusters 

 

The average value of the s(i) for all the data points is calculated. This is denoted 

by s (k) and is called silhouette width for the entire data set. Silhouette width is used 

for selecting the best value for k (number of clusters). K is selected to give the largest 

value of s (k). The maximum value of s (k) for all values of k from 0 to n-1 (n is the 
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number of data points) is termed as Silhouette coefficient (SC). Table 3.1 enlists the 

range of SC and proposed interpretation as given by Kaufman and Rousseeuw (22). 

 

TABLE 3.1  Subjective Interpretation of Silhouette Coefficient (SC) (22) 

Silhouette 
Coefficient, SC 

Proposed Interpretation 

0.71 – 1.00 A strong structure has been found 
0.51 – 0.70 A reasonable structure has been found 
0.26 – 0.50 The structure is weak and could be artificial; try additional 

methods on this data set 
25.0≤  No substantial structure has been found 

 

In this research, K-means clustering was used, as described above, for finding 

the demand state. After identifying these states we moved on to step 2 to assign a 

signal timing plan for each of these demand states. 

A set of examples showing the K-means algorithm and plotting of silhouettes 

have been provided in Appendix A. 

 

TIMING PLAN ASSIGNMENT  

The signal timing plan is designed to optimally serve a demand state. There are many 

software programs, like SYNCHRO, PASSER II (28), TRANSYT-7F that calculate an 

optimum signal timing plan for given demand on a network. We still lack software 

which can produce an optimum signal timing plan for a group of demands. Due to time 

constraints and scope of this research, such software was not developed. Instead timing 

plans were generated using SYNCHRO 5.0 for 85 percentile approach volumes for 
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each state. Development of software which stochastically determines an optimal timing 

plan optimal for a set of demand patterns is highly recommended for future research. 

The 85 percentile approach volumes were chosen as the design demand based 

on engineering judgment. The reasoning for this choice can be explained as follows. 

Figure 3.7 plots traffic delay versus cycle length for increasing demand scenarios. It is 

evident there exists an optimal cycle length for given demand that results in minimum 

traffic delay. If a lower cycle length than the optimum cycle length is used, delay 

increases at a high rate; if a higher cycle length is used, delay increases at a slower rate. 

It can also be noticed that for a given demand cluster a higher demand requires a bigger 

cycle length. It can be inferred that cycle length corresponding the maximum demand 

in a demand group will result in least delay for entire group. So it would beneficial to 

choose a higher demand on each approach. Since it is rarely possible that all the 

approaches will simultaneously reach their maximum, the 85 percentile value for each 

approach volume in a given state (cluster) is recommended to be used as design 

demand for a given state. This also restricts from cycle lengths from becoming very 

high due to certain outliers in a given state.  Very high values of cycle length might 

cause excessive delays for cross street traffic. 

Using the design volumes, a timing plan was developed and assigned to each 

traffic state. The next step was to simulate all the demand scenarios with each of the 

timing plans. 
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FIGURE 3.7  Plot of delay versus cycle length 

 

PATTERN RECOGNITION 

After a timing plan was associated with each state, the next step was to identify these 

states using system detectors. The system detector outputs for each of the states were 

obtained by simulating the traffic network. It is important to note that a timing plan 

affects the system detector outputs for a given demand. To take this into account, all 

the demand conditions need to be simulated with each of the timing plans. FHWA 

simulation program CORSIM 5.1 was used for simulation. For an arterial network, the 

system detectors need to be placed on all input approaches to represent the demand on 

the network. After collecting the system detector count and occupancy for all possible 
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demand timing plan combinations, the next step was to use this data as input and 

validation data for neural network and determine the TRPS factors and threshold. 

TRPS mode in traffic control is based on the principle of linear discriminant 

analysis (24) (feature extraction) for classification of data. A set of pattern select (PS) 

parameters (features) are extracted as a linear combination of system detector outputs. 

These PS parameters are then used for the classification of demand. A simple example 

is used to describe this concept. Let w1 and w2 be two hypothetical demand states 

represented by a two dimensional vector. Figure 3.8 shows the graphical plot of the 

states. The elliptical circle represents the state boundaries. PS parameter essentially 

provides the axis of maximum separability between the demand states. A single feature 

(PS parameter) in this case can provide 100% classification. It is not necessary to use 

all the PS parameters for classification. The number of PS parameters to be used is 

determined by the number of demand states and their orientations.  
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FIGURE 3.8  TRPS concept of linear discriminant analysis 

 

ANN for Determination of TRPS Weights 

An artificial Neural Network (ANN) (11, 29, 30, 31) was used for determining the 

orientation or weights of PS parameters. Following paragraphs present a brief overview 

of ANN.  

An ANN tries to emulate the organizational structure of the brain. They 

constitute a set of interconnected units called neurons. The interconnections are used 

for sending signals from one unit to the other in either an amplified or an inhibited 
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way. The inhibition or amplification is provided by the use of connection weights. 

Figure 3.9 diagrammatically shows a simplistic neural network as shown in MATLAB. 

A neuron receives an input vector ]...,[ 21 ′= RpppP  which passes through a set of 

syntactic weights ]...,[ ,12,11,1 ′= RwwwW  and then is aggregated with a bias (b) to give 

value n. Activation function f then acts on value n to give the output a. This forms a 

basic building block for numerous complex ANN architectures such as multi-layer 

perceptron, support vector machine, etc.  

 

 

 

FIGURE 3.9  Simplistic diagram of ANN (26) 

 

The multi-layer perceptron was used in this research for finding TRPS weights. 

Figure 3.10 shows the architecture of the multi-layer perceptron used. The network 

constituted of an input layer, two hidden layers and an output layer. The number of 
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nodes in the input layer were equal to 2n, where n was the number of system detectors 

used in the network. Weights w1,1
1 to w1,n

1 were TRPS weights. Linear activation 

function was used in the first hidden layer. The 2nd hidden layer was provided for the 

classification purposes of PS values. A sigmoid activation function was used in this 

layer. The last layer was the output layer. Numbers of neurons in the output layers were 

equal to the number of demand states to be classified. System detector count and 

occupancy data obtained in the previous step were scaled before feeding them as input. 

Counts and occupancies were scaled to the range of 0 to 1. The processed data were 

divided into two halves (randomly selected): training data and validation data. The 

training and validation data were composed of processed count and occupancy data 

together with a target value for the network. The target value was the vector 

representation of the demand state. For example, demand State 1 in a three state system 

was represented by a three dimensional vector ( ]0,0,1[ ′ ). All the weights were 

randomly initialized and then the network was trained using the training data. The back 

propagation algorithm (11) was used for modifying network weights to converge the 

system outputs to the desired target values. MATLAB neural network toolbox was 

used for training the network. 

Weights connecting the first hidden layer to the input layer were used as system 

detector weights. This process could be repeated if there was a large overlap between 

demand states to determine weights for other PS parameters.  

One important drawback in recent traffic controllers was that negative weights 

cannot be used. This was due to the misconception that weights implied importance of 
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any detector and therefore could not be negative. The weights essentially are related to 

the slope of a hyper plane on which demand classes, when projected, attain maximum 

seperability. Even in the simple example shown in Figure 3.7, PS parameter has a 

negative slope and, hence, needs a negative set of weights. This problem needs to be 

amended by the controller vendors for achieving good seperabilty.  

Another important point to note is that the neural network architecture used for 

this research is based on the present controller architecture of TRPS mode. This was 

not the most efficient method of pattern recognition; higher accuracy was attainable 

using multiple layer perceptron with single hidden layer having sigmoidal activation 

function. This statement was validated by comparing the performance of both the 

architecture in the data analysis chapter.  The proposed modified architecture is shown 

in Figure 3.11. The proposed architecture was similar to present architecture until the 

input layer. After the input layer, the proposed network resembled MLP having a single 

hidden layer with sigmoidal function. Layer II might have up to 20 to 25 nodes. A 

portion of these, as required by a particular network, would be used for classification 

and other could be discarded by setting connection weights to zero. Layer III consisted 

of a set of nodes representing number of timing plans available in the controller. Note 

that proposed network would have two sets of connection weights, instead of one set of 

weights as in present traffic controllers. The output layer selected timing plans 

corresponding to the node of Layer III having highest value. This optimal timing plan 

would be implemented.  
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FIGURE 3.10  ANN architecture used for determination of TRPS weights 
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FIGURE 3.11  Proposed TRPS architecture 
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Determination of TRPS Thresholds 

Using TRPS weights determined in the previous step, PS parameter values were 

calculated and plotted for all demand states. These plots were then analyzed to obtain 

the values of entering and exiting thresholds. Entering and exiting thresholds provide 

hysteresis control when there is overlap between two demand states. This concept is 

further illustrated with help of an example shown in Figure 3.12a. Entering threshold 

for State 2 is set such that the probability of occurrence of State 1 above this value 

approaches zero. Exiting threshold for State 2 is set such that the probability of 

occurrence of State 2 below this value approaches zero. In case of non-overlapping 

demand states, exiting and entering thresholds are the same as shown in Figure 3.12 b. 

The next chapter illustrates the implementation of above methodology using 

data collected from Odem closed-loop arterial system in Texas. 
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FIGURE 3.12  Conceptual illustrations of entering and exiting thresholds
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CHAPTER  IV 

DATA ANALYSIS AND RESULTS 

This chapter presents an illustrative example of implementation of the proposed 

methodology. The TRPS mode was set up for a closed-loop system at Odem, Texas 

using the proposed methodology. Figure 4.1 shows the location and ID’s of the system 

detector as placed in the CORSIM network. These system detectors were placed 400 ft 

upstream of intersection to minimize the effect of braking and queuing in vicinity to 

the intersection. 

 

DETERMINATION OF DEMAND STATES 

Fifteen minute volume counts, from 2:45 P.M. December 1, 2002 to 2:00 P.M. 

December 9, 2002, were obtained from the Odem site. The approach volumes 

containing both normal day and holiday traffic were then divided by their respective 

saturation flow to give the flow ratio. These flow ratios were clustered using K-mean 

clustering. Sample flow rates and associated cluster are listed in Appendix B. Figure 

4.2 shows the plot for Silhouette Width versus increasing number of clusters tried on 

the field data. Three clusters give the highest value of Silhouette Width of 0.73 (which 

indicates a strong structure based on Table 3.1). Three demand states low, medium and 

high were finalized. Figure 4.3 shows the silhouette plot for the three demand states. 
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There were few data points in medium demand having negative values which showed 

that there was some overlap between State 2 with rest of the states. But overall the 

clusters had high silhouette values and, hence, the clustering was acceptable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.1  Odem closed-loop network 
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FIGURE 4.2  Silhouette widths versus number of clusters 
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FIGURE 4.3  Silhouette plot for three demand states 
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TRAFFIC SIGNAL PLAN ASSIGNMENT 

The next step was to assign the traffic signal plans to each of these states. SYNCHRO 

5.0 was used for designing the traffic signal plans. 85% values of approach volume for 

each demand state was used as the design volume. Tables 4.1 and 4.2 show the design 

volumes and timing plan, as given by SYNCHRO, for the three demand states. Figure 

4.4 presents a representative temporal variation of traffic demand on the Odem network 

and associated demand states. After the timing plan assignment to each demand state, 

CORSIM was used to simulate the network to obtain system detectors count and 

occupancy data. Simulations were performed for all demand state-plan combinations. 

Each scenario was simulated for 60 minutes.  System Detectors’ count and occupancy 

data were collected for every 15-minute intervals for all the simulated scenarios. These 

values were then used as training and validation data for neural network to determine 

TRPS detector weights as explained in next section.  
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TABLE 4.1  Traffic Volume States on Odem Network 

Traffic Volumes (vph) 
EB NB WB SB 

Demand 
State 

Intersection 
with US 77 

Total Thru  Left  Total  Thru  Left  
Baylor 41 375 12 66 263 5 
Willis 37 397 21 36 292 5 

Low 

Main St 23 606 21 39 276 27 
Baylor 83 640 29 108 611 17 
Willis 67 677 44 76 698 15 

Medium 

Main St 38 1024 59 75 836 61 
Baylor 79 937 29 148 1509 24 
Willis 74 1034 53 98 1728 11 

Heavy 

Main St 38 1516 59 73 1977 54 
 

TABLE 4.2  Designed Timing Plans for Odem Network 

Split (sec) Demand 
State 

Intersection 
with US 77 

Cycle 
(sec) 

SBL NB EB NBL SB WB 

Offset 
(sec) 

Baylor 50 10 16 12 10 16 12 0 

Willis 50 10 16 12 10 16 12 45 

Low 

Main St 50 9 19 11 9 19 11 23 

Baylor 55 9 22 11 9 22 13 0 

Willis 55 9 24 11 9 24 11 2 

Medium 

Main St 55 8 27 10 8 27 10 29 

Baylor 100 8 60 13 8 60 19 0 

Willis 100 8 66 12 8 66 14 93 

Heavy 

Main St 100 9 70 10 8 71 11 78 
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FIGURE 4.4  Assignment of different volume scenarios to demand states 

 

DETERMINATION OF DETECTOR WEIGHTS 

Figure 4.5 presents the neural network architecture used for determination system 

detector weights. The MATLAB neural network toolbox was used to train the artificial 
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scaled to a scale of 0 to 1 and provided as an input to the neural network. The Count 

scaling factor to be input in the controller was 30, which is the maximum number of 

arriving vehicles expected per approach per minute (that is 2 second headway between 
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form). For Odem network, demand states single PS parameter was found to be 

sufficient for significant (95%) classification accuracy.  

Table 4.3 lists the detector weights to be used in the controller. Note that 

present controllers do not have the provision for having a negative weight. So the 

weights provided by ANN have been increased by the value of most negative weight. 

This option reduces the efficiency of classification.  

 

 

FIGURE 4.5  ANN architecture used for determination system detector weights 
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TABLE 4.3  System Detector Weights 

 

 

 

 

 

 

 

 

DETERMINATION OF ENTERING AND EXITING THRESHOLDS 

Entering and exiting thresholds were decided by finding the maximum and minimum 

values of the PS parameter occurring for each of the demand states. Table 4.4 gives the 

exiting and entering thresholds for three demand states. Figure 4.6 presents the plot of 

PS values obtained for each state. Relative frequency for all the demand states were 

plotted and shown in Figure 4.7  

 

TABLE 4.4  Entering and Exiting Threshold for Demand States 

Threshold Demand State 
Entering Exiting 

Low 0 0 
Medium 4 3 
High 9 8 

Detector Weights 
 

Detector ID 

Count Occupancy 
1 9 0 
2 7 7 
3 2 4 
4 5 3 
5 4 6 
6 8 6 
7 8 9 
8 1 12 
9 7 2 
10 3 9 
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FIGURE 4.6  Plot of PS values for demand states 

 

FIGURE 4.7  Plot of relative frequency versus demand states 
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RESULTS 

The system detector weights and thresholds obtained using the training data provide 

classification accuracy of 94.40% on the training data and 94.38% on the validation 

data. The misclassification error only consisted of the demand state being misclassified 

as its nearest neighbor. This implies that the low demand state was never misclassified 

as the high demand state and vice versa. Some of the misclassification is due to 

controller design. It was observed that if negative system detector weights were 

allowed, classification accuracy increased to 96.40 %. The efficiency of the Bayesian-

based classification proposed by Abbas and Sharma (9) on the same data set was 

91.82%.  

As stated earlier, the present architecture TRPS classification can be slightly 

modified to enhance the classification power of TRPS mode. Training the multi-layer 

perceptron ANN as shown in Figure 4.8 resulted in the classification accuracy being 

increased to 98.00% using the validation data.  
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FIGURE 4.8  Proposed multi-layer perceptron ANN algorithm for TRPS mode 

 

Table 4.5 lists the classification accuracy obtained by each methodology tested 

and the standard error. The standard error of the mean for binomial population 

proportion (0) is given by the following equation: 

n
pq

p =ˆσ          (5.1) 

where: 

 p̂σ  = standard error of mean 

 p = probability of correct classification 

 q = probability of miss-classification 
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 n = sample size 

 

It was observed that classification accuracy for each methodology was 

significantly different from any other methodology with 95 percent level of confidence. 

 

 

TABLE 4.5  Classification Accuracy and Standard Error for Different 

Methodologies Tested 

Methodology Population 
(n) 

Correct 
Classification

Classification 
Accuracy 

Standard 
Error 

95% 
Confidence 
Interval 

Bayesian-
based 

4566 4187 0.92 0.004 [0.909,0.925]

ANN based 
on Present 
Controller 

4566 4309 0.94 0.003 [0.937,0.95] 

Allowing 
Negative 
Weights in 
Present 
Controller 

4566 4410 0.97 0.003 [0.961,0.971]

Proposed 
Architecture 

4566 4473 0.98 0.002 [0.976,0.984]

 

Figure 4.9 presents the classification accuracy achieved on the validation data 

set using different methodologies. An increase in benefits is observed as we move from 

left to right in Figure 4.9. Each of these methodologies involved certain cost of 

implementation. Both Bayesian-based and MLP-based controller architecture, 

approaches required a statistical toolbox like MATLAB or SAS for their 
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implementation. In the next approach, which used negative weights, the present 

controller architecture need not be significantly changed. It would only require 

upgrading the present architecture to accept negative values for weight. The last 

methodology, which used a simple multi-layer perceptron architecture, required a 

major change in present controller architecture. The best operation was achievable 

using this approach. The benefits from this approach would be higher with an increase 

in complexity and dimensionality of the data. 

In the light of above discussions, ANN based methodology using the present 

controller may prove most beneficial for the least cost for a simple network with low 

variability in demand. As the complexity of the closed-loop system increases in terms 

of dimensionality and variability of demand, more costly methodology using a 

modified controller should be considered as the benefits of a more flexible an accurate 

controller increase. The cost benefit analysis for implementing different methodologies 

was not done in this thesis, but is recommended to be done for each site. 

Based on the above discussion, it can be concluded that TRPS mode can be 

efficiently set up using a neural network approach. TRPS mode architecture may be 

slightly modified to achieve even higher benefits.  
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FIGURE 4.9  Classification accuracy for different classification approaches
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

A methodology for determination of TRPS factors and threshold has been developed in 

this research. A three step approach was used, namely: 

1. Identification of demand states using K-means clustering. 

2. Assignment of signal timing plan to each demand state using SYNCHRO 5.0. 

3. Determination of TRPS weights and threshold using ANN. 

 

Essentially, this thesis provides a step-by-step description on how to set up 

TRPS mode in present traffic controllers after collecting the traffic volume data from 

the field. The methodology presented in this research is also compared against the 

Bayesian-based approach. Misclassification rate among the demand states is used as 

the measure of comparison. This thesis also recommends a set of changes in TRPS 

mode architecture of present traffic controllers to increase the accuracy of classification 

of demand states. 

The scope of this research includes closed-loop arterial traffic control systems. 

This methodology can also extend to traffic networks, but this has not been discussed 

in this thesis. 
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CONCLUSIONS 

TRPS mode can be efficiently configured using the methodology provided in this 

thesis. An efficiency of 94.38% was achieved for the Odem closed-loop system in 

Texas. This efficiency increased to 98% with some modification, as described earlier, 

in present traffic controller architecture.  

The research methodology is transferable to any closed-loop arterial system. In 

contrast to a TOD mode, TRPS mode provided has built-in intelligence to adapt to 

changing traffic demand. TRPS mode can adapt its schedule based on the measured 

conditions.  

 

RECOMMENDATIONS 

The methodology provided in this research, though effective, involves a great deal of 

statistical analysis and complex mathematical operation for training the neural network. 

MATLAB was used for these analyses. This toolbox might not be available for the 

traffic engineer trying to setup a TRPS mode.  For a wider usage of the proposed 

methodology and to reduce the time for implementation, it is highly recommended that 

automated software with a user friendly interface be developed.  

Modification of TRPS mode architecture in present traffic controllers is also 

recommended. Figure 3.11 provided a sketch of the proposed architecture of TRPS 

mode for future controllers. The proposed architecture has two sets of weighing factors 

and the timing plans are chosen from the lookup table corresponding to node of Layer 
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II having the highest value. There would be no threshold factors. Some of the 

important points regarding connection weights are listed below:  

• Negative system detector weights should be allowed 

• Fractional values for system detector weights should be allowed 

 

The proposed architecture will significantly reduce the misclassification rates 

associated with TRPS mode and the benefits of the proposed architecture will increase 

as traffic demand patterns increase in complexity and dimensionality. 
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APPENDIX A 

EXAMPLE FOR K-MEANS CLUSTERING  

Here is a simple example of K-means clustering. Suppose we have a two dimensional 

data set with 5 points as shown in Table A-1. The data points are plotted and shown in 

Figure A-1.  

TABLE A-1  Example Data Set 

Data Point X Y 
P1 22 21 
P2 19 20 
P3 18 22 
P4 1 3 
P5 4 2 

 

FIGURE A-1  Plot of example data set 

 

0 5 10 15 20 25
0

5

10

15

20

25

X dimension

Y
 d

im
en

si
on



      69 

The initialization step of the K-Means algorithm involves: 

1. Assigning a k value. 

2. Designating cluster centroids for each k (i.e. for each cluster). 

 

The numbers of clusters in which the data points are classified are determined using 

average silhouette width. In this case we use the value of k as 2. So we would try to 

classify the data in two clusters. Cluster centroids are randomly selected. Suppose we 

choose P3 and P5 as the initial cluster centroids for clusters Class A and Class B. The 

next step is to pick a data points to their closest cluster centers. After assigning the 

point to a cluster, centroid values for the cluster are recalculated. Table A-2 shows 

these steps for the 5 points. Every data points are assigned to the class having closest 

centroid. 
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TABLE A-2  Steps for K-Means Clustering 

Step 1 
Iteration Class A 

Membership 
Class B 
Membership 

Centeroid 
Class A 

Centroid 
Class B 

1  P3 P5 [18,22] [4,2] 
Step 2 

Distance from Data 
Point Centroid A Centroid B 

Assignment 

P1 4.1 26.2 Class A 
 
Iteration Class A 

Membership 
Class B 
Membership 

Centroid 
Class A 

Centroid 
Class B 

1 P1,P3 P5 [20,21.5] [4,2] 
Step 3 

Distance from Data 
Point Centroid A Centroid B 

Assignment 

P2 1.8 23.4 Class A 
 
Iteration Class A 

Membership 
Class B 
Membership 

Centroid 
Class A 

Centroid 
Class B 

1 P1,P2,P3 P5 [19.7,21] [4,2] 
Step 4 

Distance from Data 
Point Centroid A Centroid B 

Assignment 

P4 26.0 4.5 Class B 
 
Iteration Class A 

Membership 
Class B 
Membership 

Centroid 
Class A 

Centroid 
Class B 

1 P1,P2,P3 P4,P5 [19.7,21] [2.5,2.5] 
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The next step is to check whether the points are correctly classified. Table A-3 

shows the distances of each point to the centroids of class A and B. In this case there 

exists a correct classification in the first try. So we don’t iterate further.  

TABLE A-3  Euclidean Distance of Each Point to the Centroids 

Distance from Data point 
Centroid A Centroid B 

Assignment 

P1 2.3 26.9 A 
P2 1.2 24.1 A 
P3 2.0 24.9 A 
P4 26.0 1.6 B 
P5 24.6 1.6 B 

 

TABLE A-4  Within-Cluster Sum of Squares 

Assigned Class Points Square of Distance 
from Class Centroid 

P1 5.44 
P2 1.44 

Class A 

P3 3.77 
P4 2.5 Class B 
P5 2.5 

Within-Cluster Sum of Squares (E) 15.65 
 

Table A-4 shows the within-cluster sum of square (E) for the data set. After the 

first iteration one would normally reassign data points to their closest cluster centroids. 

The initialization in this case was good so no reassignment was necessary. Therefore, 

after the first iteration the cluster centroids do not change at all and so a stable E value 

(15.65) has been reached. 
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EXAMPLE FOR SILHOUETTE PLOT  

The calculation and plotting of silhouette plot is presented here with the help of a 

simple example. This example is the continuation K-mean clustering example. After 

classification of data points, as done in previous section, Silhouette value is calculated 

for a data point. 

s(i) = 
)}(),(max{

)()(
ibia

iaib −  

where: 

s(i) = silhouette value. 

a(i) = average dissimilarity of i to all other objects of class A. 

b(i) = average dissimilarity of i to all other objects of nearest cluster other than 

A. 

For data point P1 the a(1) can be calculated as follows: 

a(1) = ( ) ( ) 5.13)2122(2218)2120(2219*2/1 2222 =⎥⎦
⎤

⎢⎣
⎡ −+−+−+−  

b(1) = ( ) ( ) 725)212(224)213(221*2/1 2222 =⎥⎦
⎤

⎢⎣
⎡ −+−+−+−  

  s(i) = 9814.0
725

5.13725
=

−  

 

Table A-5 tabulates the silhouette value for each point. A silhouette for cluster 

A is a plot of s(i) ranked in descending order. Silhouette plot for the cluster A and B is 

shown in Figure A-2. 
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TABLE A-5  Silhouette Values for Each Data Point 

Cluster Data Point Silhouette 
Value 

P1 0.98709 
P2 0.98234 

A 

P3 0.98521 
P4 0.98361 B 
P5 0.98709 
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FIGURE A-2  Silhouette plot of example data set 
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APPENDIX B 

TABLE B-1  Sample Flow Ratio for High Demand Cluster 

Flow Ratio 
NB SB EB WB 

Time Inter-
section 
with US 
77 

Thru  Left  Thru  Left Total Total 

Cluster 

Baylor 0.229 0.008 0.483 0.016 0.034 0.043 
Willis 0.262 0.015 0.521 0.003 0.027 0.027 

3:00 
PM 

Main St 0.332 0.016 0.603 0.013 0.014 0.034 

High 

Baylor 0.272 0.016 0.452 0.000 0.026 0.043 
Willis 0.366 0.000 0.536 0.000 0.032 0.051 

3:15 
PM 

Main St 0.412 0.000 0.468 0.013 0.014 0.025 

High 

Baylor 0.258 0.000 0.439 0.013 0.032 0.043 
Willis 0.298 0.000 0.499 0.000 0.020 0.087 

3:30 
PM 

Main St 0.398 0.000 0.492 0.027 0.008 0.025 

High 

 

 

TABLE B-2  Sample Flow Ratio for Medium Demand Cluster 

Flow Ratio 
NB SB EB WB 

Time Inter-
section 
with US 
77 

Thru  Left  Thru  Left Total Total 

Cluster 

Baylor 0.186 0.013 0.241 0.013 0.022 0.058 
Willis 0.164 0.021 0.260 0.000 0.039 0.029 

8:30 
PM 
 Main St 0.356 0.000 0.197 0.013 0.008 0.016 

Medium

Baylor 0.175 0.011 0.248 0.005 0.025 0.037 
Willis 0.171 0.036 0.249 0.005 0.029 0.036 

8:45 
PM 
 Main St 0.371 0.016 0.184 0.013 0.014 0.016 

Medium

Baylor 0.181 0.026 0.191 0.003 0.019 0.057 
Willis 0.175 0.029 0.213 0.000 0.019 0.026 

9:00 
PM 

Main St 0.357 0.010 0.152 0.018 0.009 0.021 

Medium
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TABLE B-3  Sample Flow Ratio for Low Demand Cluster 

Flow Ratio 
NB SB EB WB 

Time Inter-
section 
with US 
77 

Thru  Left  Thru  Left Total Total 

Cluster 

Baylor 0.089 0.003 0.065 0.000 0.019 0.020 
Willis 0.080 0.011 0.070 0.000 0.015 0.029 

8:30 
PM 
 Main St 0.201 0.003 0.044 0.005 0.009 0.013 

Low 

Baylor 0.093 0.005 0.060 0.000 0.011 0.022 
Willis 0.098 0.010 0.074 0.000 0.015 0.028 

8:45 
PM 
 Main St 0.170 0.002 0.066 0.004 0.009 0.014 

Low 

Baylor 0.100 0.011 0.038 0.001 0.015 0.035 
Willis 0.087 0.013 0.042 0.000 0.012 0.020 

9:00 
PM 

Main St 0.191 0.008 0.048 0.001 0.009 0.019 

Low 
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