
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

1-1-2006

Web Application Characterization through
Directed Requests
Sebastian Elbaum
University of Nebraska - Lincoln, selbaum2@unl.edu

KalyanRam Chilakamarri
University of Nebraska at Lincoln, chilaka@cse.unl.edu

Marc Randall Fisher II
University of Nebraska at Lincoln, fisherii@google.com

Gregg Rothermel
University of Nebraska - Lincoln, grothermel2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Elbaum, Sebastian; Chilakamarri, KalyanRam; Fisher II, Marc Randall; and Rothermel, Gregg, "Web Application Characterization
through Directed Requests" (2006). CSE Technical reports. Paper 34.
http://digitalcommons.unl.edu/csetechreports/34

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/34?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages

Web Application Characterization
through Directed Requests

Sebastian Elbaum, Kalyan-Ram Chilakamarri, Marc Fisher II, Gregg Rothermel
Computer Science and Engineering Department

University of Nebraska-Lincoln

{elbaum,chilaka,mfisher,grother}@cse.unl.edu

ABSTRACT
Web applications are increasingly prominent in society, serving a
wide variety of user needs. Engineers seeking to enhance, test, and
maintain these applications must be able to understand and char-
acterize their interfaces. Third-party programmers (professional or
end user) wishing to incorporate the data provided by such services
into their own applications would also benefit from such charac-
terization when the target site does not provide adequate program-
matic interfaces. In this paper, therefore, we present methodologies
for characterizing the interfaces to web applications through a form
of dynamic analysis, in which directed requests are sent to the ap-
plication, and responses are analyzed to draw inferences about its
interface. We also provide mechanisms to increase the scalability
of the approach. Finally, we evaluate the approach’s performance
on three well-known, non-trivial web applications.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Experimentation, Reliability

Keywords
Dynamic analysis, web application interfaces

1. INTRODUCTION
Web applications are among the fastest growing classes of soft-

ware in use today, providing a wide variety of information and ser-
vices to a large range of users. Users typically interact with these
applications through a web browser, which renders web pagesgen-
erated by a web application. As the user navigates or submitsdata,
new requests are sent to the web application through its interface.

Engineers who wish to enhance, test, and maintain web applica-
tions must be able to understand and characterize their interfaces,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA’06,May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

and one way to do this is through the use of invariants that docu-
ment those interfaces. For example, engineers maintaininga travel
support site like Travelocity could leverage invariants that convey
what variables must be included in a request to obtain a list of
flights (e.g., departure location and date, return date), what vari-
ables are optional (e.g., number of children), or whether a partic-
ular variable is dependent on the value of other variables (e.g., if
the number of adults in a request is 0, then there must be some
seniors; if children are present, then their age must be included).
Such characterizations could facilitate the engineer’s understand-
ing of the potential behavior of the web application. Further, they
may also be useful for helping assess the correctness of the web
application interface, and to generate test cases and oracles rele-
vant to the application. Such characterizations may also beuseful
for directing maintenance tasks such as re-factoring the web pages.
For example, if a certain field cannot be empty, then input valida-
tion code for that field could be duplicated on the client sideusing
scripting languages where it can potentially prevent requests that
will not return useful results, thus reducing server load and user
time waiting for responses.

Characterizations of web application interfaces would also be
valuable for third party developers (either professional or end-user
programmers) attempting to incorporate the rendered data as a part
of a web service (e.g., for resource coalitions [16]), or forusers
making specific queries on a web application without utilizing a
browser. Although web applications that are commonly used by
clients may provide interface descriptions (e.g., commercial sites
offering web services often offer a WSDL-type [3] description),
many sites do not currently provide such support mechanisms. In
addition, at least one class of users, end user programmers,cannot
be expected to learn particular protocols or APIs in order toaccess
applications [4]. Moreover the characterizations we are pursuing
go beyond those usually provided by such interface descriptions.
Such characterization becomes more challenging in the presence
of numerous variables and restrictions on variable values and com-
binations, which are relatively common for this type of application
(the interface of one web application we examined had 29 variables,
several of them inter-related).

For these reasons, we have been researching methods for auto-
matically characterizing the properties of and relationships between
variables in web application interfaces. Such characterizations can
be obtained statically or dynamically. In earlier work [4] we pre-
sented static approaches for analyzing HTML and JavaScriptcode
to identify variable types, and a dynamic approach for providing
simple characterizations of the values allowed for variables (e.g.,
a variable cannot be empty). However, deeper characterizations of
web application interfaces, such as those involving dependencies,
were not obtainable through the mechanisms that we considered.

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2006-0007
Issued 4/15/2006

Web

Application

Web-Application client

HTTP request:
url [get/post][name=value]*

HTML/XML response

SOAP request: xml
WSDL

API

In
te

r
fa

c
e

Web-browser client

Figure 1: Web applications

In this work we address this lack, presenting a methodology for
characterizing the interface of a web application by performing
more sophisticated forms of dynamic analysis. Our methodology
involves making directed requests to a target web application, and
analyzing the application’s responses to draw inferences about the
variables that can be included in a request and the relationships
among those variables. We also provide mechanisms, such as a
mechanism based on intelligent request selection, that enhance the
scalability of the approach. Finally, we evaluate the approach’s per-
formance on three well-known, non-trivial web applications.

The remainder of the paper is organized as follows. Section 2
provides background information on web applications. Section 3
describes our overall methodology for characterizing web appli-
cations, and also provides detailed descriptions of our inferencing
and request selection techniques. Section 4 describes an empiri-
cal study exploring our methodology’s ability to characterize web
applications, and the effect of our various request selection tech-
niques. Section 5 discusses related work and approaches, and Sec-
tion 6 summarizes our contribution and discusses future work.

2. BACKGROUND
Navigating through the WWW can be perceived as performing a

sequence of requests to and rendering the responses from a multi-
tude of servers. Browsers assemble such requests as the userclicks
on links. Servers generate responses to address those requests, the
responses are channelled through the web to the client, and then
processed by the browser. Some requests may require additional
infrastructure that leads to more complex applications. For exam-
ple, in an e-commerce site, a request might include both a URLand
data provided by the user.

Users provide data primarily through forms consisting of input
fields (e.g., radio buttons, text fields) that can be manipulated by
a visitor (e.g, click on a radio button, enter text in a field) to tai-
lor a request. These input fields can be thought of as variables.
Some of the variables have predefined sets of potential values (e.g.,
radio-buttons, list-boxes), while others are set by the user (e.g., text
fields). After the client sets the values for the variables and submits
the form, these are sent as request parameters known as name-value
pairs (input fields’ names and their values). For example, inFigure
1 a user populates the form rendered in a browser to obtain direc-
tions from MapQuest. After receiving and interpreting the request,
MapQuest provides a response (e.g., maps and directions, solicita-
tion for more input data, error message) in the form of a markup
language that is again rendered by the browser, and the cyclestarts
again.

As shown in Figure 1, web applications can also operate in asso-
ciation with other applications through direct data exchanges. For
example, sites providing air-travel information often query airlines’
sites, exchanging formatted data in the process. Such interactions
often occur through programmatic interfaces that have moreformal
descriptions. For example, the Web Services Description Language

(WSDL) [3] and the Really Simple Syndication (RSS) [11], aretwo
popular ways to describe the interfaces between a service provider
and the clients invoking the service.

As stated in the introduction, the focus of our research is onthe
characterization of web application interfaces. Such characteriza-
tions will be beneficial when other types of descriptions arenot
available (e.g., third party developers building on existing web sites
without WSDL), are not appropriate (e.g., end user programmers
cannot deal with complex APIs), or are not sufficient or are evolv-
ing (e.g., developers of a growing and fast changing application).

3. METHODOLOGY
Currently, our methodology analyzes the interface of a single

form handler of a web application. The form handler is assumed to
be stateless and deterministic with respect to its inputs. Examples
that satisfy these requirements are travel reservation searches, real
estate listings, and mapping applications.

Figure 2 shows the overall architecture for our web application
interface characterization methodology, WebAppSleuth, with var-
ious processes (sub-systems) in the methodology shown as boxes.
The methodology begins with aPage Analyzerprocess, which stat-
ically analyzes a target page generated by the web application. The
Page Analyzeridentifies all variables associated with the fields in
the form, and then associates a list of potential values witheach
identified variable. For each pull-down, radio-button, or check-box
variable, thePage Analyzerobtains values from the possible val-
ues defined in the form. For text-type variables, thePage Analyzer
prompts the user to supply a list of values that may elicit a correct
response from the web application. In addition, we also consider
the null value to indicate that a variable is not a part of the request.

Next, theRequest Generatorcreates a pool of potential requests
by exploring all combinations of values provided for each vari-
able. Given this pool of requests, theRequest Selectordetermines
which request or requests will be submitted to the target applica-
tion. There are two general request selection modes:Batch (re-
quests are selected all at once) andIncremental(requests are se-
lected one at a time guided by a feedback mechanism). TheRe-
quest Submitterproperly assembles the http request and sends it
to the target application. The web application response is stored
and classified as valid or invalid by theResponse Classifier. The
selected request and the classified response are then fed into theIn-
ference Engine, which infers various properties about the variables
and the relationships between variables.

The following sections provide details on the two most novel
components of this architecture: theInference Engineand theRe-
quest Selector. Further implementation details on the other compo-
nents are provided in Section 4.

3.1 The Inference Engine
We have devised a family of inference algorithms to characterize

the variables that are part of a web application interface, and the
relationships between them. The algorithms operate on the list of
variable-value pairs that are part of each submitted request, and on
the classified responses (valid or invalid) to those requests.

To facilitate the explanation of the subsequent algorithmswe uti-
lize examples that are further elaborated on in our study in Section
4. Also, we simplify terminology by defining avalid requestas
one that will generate a valid response from the web application,
that is, a response that meets the user’s expectation regarding the
application behavior. We also define aninvalid requestas one that
will generate an invalid response.

Request Selector

Page

Analyzer

Request

Generator

Response

Classifier

Inference

Engine

Incremental

Target
Page

Variables

& Values

Pool of

Potential

Requests

Response

Page

Valid or

Invalid

Request

Submitter

Selected

Request

Characterization

Batch

Partial Inferences

Request-Response History

Figure 2: WebAppSleuth architecture.

3.1.1 Mandatory, Optional, and Mandatorily Absent
Variables

It is common for web applications to evolve, adding additional
and more refined services to each new deployment. As an appli-
cation evolves, it becomes less clear what variables are required
by that application, and what variables can be included in a request
without being required. Distinguishing between these types of vari-
ables is helpful, for example, to anyone planning to access the web
application interface, and to developers of the web application who
wish to confirm that changes in the application have the expected
results in the interface.

We define a mandatory variable as a variable that must be in any
valid request. An optional variable is one that may be included in a
valid request, but is not required.

Although an interface variable should either be mandatory or op-
tional, our inferences also identify a third type of variable that we
call mandatorily absent. We define a mandatorily absent variable as
one that should never be in a valid request. Finding a mandatorily
absent variable implies the presence of an anomaly, since itis rea-
sonable to assume that a variable present in a form should be used
in a valid request under some circumstances. There are two poten-
tial reasons mandatorily absent variables may be identified: 1) the
web page or web application contains a possible error (e.g.,a field
was left in a form but is no longer used by the web application),
and 2) additional directed requests are needed for the methodology
to provide an appropriate characterization of that variable.

Our algorithm identifies as mandatory any variable that appears
in all valid requests and is absent in at least one invalid request. Our
algorithm identifies as optional any variable that appears in at least
one valid request and is absent in at least one valid request.Our al-
gorithm identifies as mandatorily absent any variable that is absent
in all valid requests and appears in at least one invalid request.

Observe that a variable identified as optional by the algorithm is
optional in the web application interface. However, optional vari-
ables may be temporarily identified as mandatory until a valid re-
quest without that variable is submitted.

3.1.2 Variable Implication
Sometimes the presence of a variable requires other variables to

be present in order to construct a valid request. Identifying such
relationships is useful for understanding the impact of application
changes on such dependencies, or to avoid sending incomplete re-
quests to the application.

To investigate this type of relationship, we began by defining the
notion of implication as a conditional relationship between vari-

ablesp and q as: if p is present, thenq must be present. After
examining existing implications on many sites we decided toex-
pand our attention to implications in which the right hand side is in
disjunctive normal formand does not contain negations or the con-
stant TRUE. This guarantees that our implications are satisfiable
but not tautological. Further, this type of implication is relatively
simple to understand because it can easily be mapped to the ex-
pected variables’ behavior.

Our algorithm focuses on the implications between optionalvari-
ables (implications involving mandatory variables would be of little
value because they would just be added to the right side of every
implication). The algorithm begins by initializing a set,Implica-
tions, with one implication,V =⇒ FALSE for each optional
variableV . Then, it iterates through all valid requests, extending
each implication with an additional clause (an and’ing of all op-
tional variables in the request) every time the implicationis not
satisfied by a request. Note that to generate the most generalim-
plications, the iterations through the requests progress from those
with the fewest variables to those with the most variables.

To illustrate how the algorithm works, consider the set of valid
requests to MapQuest shown in Table 1, and the inferred impli-
cations in the seventh column. MapQuest offers several fields in-
cluding an address, city, state, and zipcode, each of them optional.
For each optional variableV , the starting implication isV =⇒
FALSE (to keep the table content simple we consider only impli-
cations withaddress on the left-hand side). The first and second
requests in the table do not include variableaddress, therefore the
implicationaddress =⇒ FALSE is satisfied, and nothing needs
to be changed. The third request in the table includesaddress,
thereforeaddress =⇒ FALSE is not satisfied, and the impli-
cation is updated by adding another clause and’ing all of theother
optional variables that are present in the request, in this casezip.
For request 4, the implicationaddress =⇒ zip is false, and
needs to be updated by adding the clausecity ∧ state. For request
5, the implication is satisfied and no further updating is necessary.
The algorithm ends up reporting that including a street address re-
quires the user to include either a zip code or a city and statein
order for the request to generate a valid response. Note thatif we
had discovered a request in whichaddress was the only optional
variable present, this would have caused theaddress implication
to be removed from the set of implications.

Another type of useful inference that can be obtained through
the same algorithm is “at least one of”. This is a special caseof
implication of the form TRUE=⇒ ..., and can be generated using
the same method used for implication. The eighth column of Table

Request address city state zip Response Implication At least one-of
1 absent absent present absent Valid address =⇒ FALSE TRUE =⇒ state
2 absent absent absent present Valid address =⇒ FALSE TRUE =⇒ state ∨ zip
3 present absent absent present Valid address =⇒ zip TRUE =⇒ state ∨ zip
4 present present present absent Valid address =⇒ zip ∨ (city ∧ state) TRUE =⇒ state ∨ zip
5 present present present present Valid address =⇒ zip ∨ (city ∧ state) TRUE =⇒ state ∨ zip

Table 1: MapQuest Requests and Variable Implications

1 provides an example in MapQuest where either state or zipcode
must be selected in order for a request to be valid.

3.1.3 Value-based Extensions
The previous algorithms have focused on inferences relatedto

the presence or absence of variables, with no attention paidto vari-
able values. Just as the characterization of presence or absence of
variables could help maintainers and developers of web applica-
tions, so could characterization involving values.

For example, if no requests involving a text variable with a user-
provided value generate valid responses, then additional suitable
values may be required for a proper characterization. Consider-
ing values may also be useful for finding faults associated with
variables whose values have been predefined through pull-down,
radio-button or checkbox fields. For example, if one field hasa
value that always produces an invalid request, there is likely a fault
in the form (a value in the form that should not be there) or theweb
application (failure to consider a possible value from the form).

We extended our technique for finding mandatory and optional
variables to find a range of values for variables that produced valid
responses. To do this, our algorithm keeps track of the values
that appear in requests (distinguishing between those thatappear
in valid or invalid requests). It then reports a list of values that ap-
peared in valid requests for each variable. To reduce the number
of falsely reported value-based inferences, this algorithm reports
an inference for a variable only after all possible values (values in-
cluded in the request pool) for that variable have been used at least
once. The objective is to observe enough values for a variable be-
fore determining what values constitute its valid range.

Similarly, we extended the implication algorithm. Our extension
simply alters the initial set of implications to include implications
of the form(V = a) =⇒ FALSE for each variableV and pos-
sible valuea. Our approach is motivated in part by the frequency
with which web pages use radio buttons to determine which other
fields might be required in a request. For example, payment forms
often have radio buttons to select different payment types,and these
payment types have different dependent variables (e.g., card num-
ber). We intend to discover this type of implication.

3.2 The Request Selector
As mentioned earlier, one of the fundamental challenges forchar-

acterizing a web application through directed requests is to control
the number of requests. Larger numbers of requests imply larger
amounts of time required to collect request-response data (for Ex-
pedia, one of the objects of our studies in Section 4, each request
took about 30 seconds) and this slows down the inferencing pro-
cess. In addition, sites may not be amenable to responding toa
large number of requests (for Expedia we received a warning email
stating that they suspected we were launching a denial of service
attack against their web site).

To address this problem, theRequest Selectorcan either select
a sample of requests from the pool up-front, or it can operatein-
crementally by selecting a request based on previous results and
continue selecting requests until the user is satisfied or nolonger

wishes to continue refining the inference set. We have devised two
request selection approaches. The first approach, Random, is a
batch approach that simply selects a set of random requests from
the pool of requests without repetition.

The second approach, Inference-Guided, is incremental, select-
ing requests based on the requests already submitted and thein-
ferences already derived. To select which request to submit, for
each unsubmitted request we determine an award value, and select
the request with the highest award value (randomly breakingties).
When determining an award value for each unsubmitted request
Ru, we only consider those requests that differ from some submit-
ted requestRs in one variable (all other unsubmitted requests are
assigned an award value of 0). We choose to focus on this set of
requests because it seems likely that similar requests are likely to
return similar results, and we can therefore use the classification of
Rs as a predictor for the classification ofRu. The award value of
Ru is equal to the number of potential inferences (inferences that
we have neither proven or disproven) that would be changed ifRu

has the same classification asRs.

4. EMPIRICAL EVALUATION
The goal of our study is to assess whether the proposed method-

ology can effectively and efficiently characterize real websites. In
particular, we wish to answer the following research questions:

RQ1: What is the effectiveness of the characterization?We
would like our characterization to include all the potential valid in-
ferences (of the types specified by the algorithms in Section3.1)
that can be extracted from the responses collected from a webap-
plication. We would also like the characterization to include just
the inferences that truly characterize a web application.

RQ2: What is the tradeoff between effectiveness and efficiency?
Our inferencing algorithms are conservative in that they will not
discard an inference unless there is data to reject it (we will val-
idate this conjecture by addressing RQ1). This conservative ap-
proach may result in false inferences being reported when only a
subset of the requests are submitted and analyzed. A limitedre-
quest data set may also hinder the inferences we can derive. We
wish to explore the effect of requestselectionstrategies, aimed at
increasing efficiency, on the methodology’s effectiveness.

4.1 Objects of Analysis
Our objects of analysis (see Table 2) are three popular applica-

tions we utilized in previous studies [4] and that are all among the
top-40 performers on the web [10]. Expedia and Travelocity are
travel booking applications and MapQuest is used for map lookup.

Table 2 lists the numbers of variables identified by thePage An-
alyzeron the main page produced by each of our target web appli-
cations, at the time of this analysis, and the numbers of those that
we used for our analysis. To simulate multiple runs of our request
selection techniques, we had to collect all of the requests in the
pool identified by the the request generator. Therefore, forExpedia
and Travelocity, we considered only nine of their variables(Expe-
dia had an additional 2 variables and Travelocity had an additional

Object Relevant variables identified Variables
by Page Analyzer considered

Text List Check & for analysis
Box Box Radio

Expedia 4 5 2 9
MapQuest 4 0 0 4
Travelocity 4 7 1 9

Table 2: Objects of Study.

Object Request Criteria for Valid And Invalid
Pool Size

Expedia 49996 Valid: Available flights are displayed
Invalid: More information is requested

MapQuest 16 Valid: Map returned
Invalid: No map was returned

Travelocity 49996 Valid: Available flights are displayed
Invalid: More information is requested

Table 3: Request Pool Size and Classification Criteria.

3, considering all of them would have required many millionsof
requests) in order to reduce the number of submitted requests.

4.2 Variables and Measures
Our study requires us to apply our inferencing algorithms ona

collected data set of requests and responses to characterize the ob-
jects of study. Throughout the study we utilize two request selec-
tion procedures, Random and Inference-Guided.

To quantify effectiveness we compute the recall and precision of
the characterization generated by the inferencing algorithms on the
objects of study. A recall percentage of 100% indicates thatall true
inferences that characterize an application were reportedby the al-
gorithms (this might include false positives). A precisionof 100%
indicates that all reported inferences are indeed valid (nofalse pos-
itives). Let ReportedInf be the number of inferences reported,
let ReportedExpectedInf be the number of expected inferences
reported, and letTotalExpectedInf be the total number of ex-
pected inferences derivable from the pool of requests, we define
recall and precision as follows:

Recall = ReportedExpectedInf/TotalExpectedInf ;

Precision = ReportedExpectedInf/ReportedInf ;

We define the expected inferences as the set of inferences, ofthe
types specified in Section 3.1, that are derived when the complete
pool of requests is submitted. We chose to do this because we are
interested in studying the effects of request selection, without re-
gard to the quality of the pool of requests, on recall and precision.

4.3 Design and Setup
We applied the WebAppSleuth methodology to each of the ob-

jects of study. Three particular steps in this process require addi-
tional detail.

First, theRequest Generatorutilized all available potential val-
ues for each variable (including the null value which indicates that
the variable is not present in a request). We used predefined values
when possible. For example, for Expedia, we used the values as-
sociated with the drop-down box to select the number of “Adults”
traveling. For the variables associated withtext type fields that
have no predefined values, we provided a set of potential values that
can be involved in a request that would generate a valid response.
For example, for Expedia we provided values for “departing from”

Website Inferences

Expedia Mandatory Variables:
depCity, arrCity,depDate,retDate,
depT ime, retT ime
Optional Variables:
adults, seniors, children
At Least One Of:
(adults ∨ seniors)
Values:
children ǫ {0}

MapQuest Optional Variables:
address, city, state, zip
Implications:
city =⇒ zip ∨ state
address =⇒ zip ∨ (city ∧ state)

Travelocity All inferences from Expedia
Value Based Implications:
(adults = 0) =⇒ seniors
(seniors = 0) =⇒ adults

Table 4: Inferences Found for each Web Application

and “going to”. The second column of Table 3 lists the generated
pool size for each of the sites.

Second, since we do not have a specification for each web site’s
expected behavior, we had to create one so that theResponse Clas-
sifier could determine whether a response was valid or invalid. The
third column of Table 3 lists the criteria utilized to make such a
determination. Once the determination criteria were defined for a
given web application, we automated the classification process by
searching for the specified criteria in the returned response files.

Third, although the methodology is basically a sequential pro-
cess (with a loop in case of incremental request selection),we in-
vestigated the methodology through a slightly different approach.
To expedite the exploration of several alternative requestselection
mechanisms and inference algorithms (without making the same
set of requests multiple times), we performed all the requests in
the pool, and then simulated the application of the different mech-
anisms and algorithms. We performed this simulation 100 times
with each type ofRequest Selectorto control for the randomness
factor in the request selection algorithms.

4.4 Results
We present the results in two steps. First, we show the characteri-

zation provided by the methodology for each target web application
when the entire pool of requests is utilized. Second, we analyze
how the characterization progresses as the requests are submitted
and analyzed, utilizing two different request selection mechanisms.

4.4.1 RQ1: Effectiveness of the Characterization
Table 4 presents the inferences derived from the requests we

made and the responses provided by each of the target applica-
tions, grouped according to the types defined in Section 3.1.In
Expedia and Travelocity, six variables —depCity (departure city),
arrCity (arrival city),depDate (departure date),retDate (return
date),depT ime (departure time) andretT ime (return time) —
were identified as mandatory. Indeed, when inspecting thesesites,
we found that they do not provide any flight information unless
those fields have been completed. Three variables were optional —
adults, seniors andchildren — for both Expedia and Traveloc-
ity, which means that their absence does not preclude a user from
obtaining a valid response from the application.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%Request Pool

R
ec

al
l

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%Request Pool

R
ec

al
l

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%Request Pool

R
ec

al
l

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%Request Pool

P
re

ci
si

o
n

(a) Expedia

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%Request Pool

P
re

ci
si

o
n

(b) MapQuest

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%Request Pool

P
re

ci
si

o
n

(c) Travelocity

 Random Inference-Guided

Figure 3: Recall and precision vs percent of requests submitted

Both sites also included an “at least one of” inference sinceeither
adults or seniors were present in all of the valid requests. Note
that this inference is not true in practice since flight information can
be obtained when thechildren variable is present andadults and
seniors are absent in a request. However, the available requests
in the pool were insufficient to falsify this inference (our requests
including thechildren variable failed because we did not consider
the age variables that are required whenchildren is present). This
is the same reason we obtained the inferencechildren ∈ {0}.
These inferences, although correct within the limitationsof the pool
of collected data, are an indicator that further requests are needed
to provide a more accurate characterization of the site.

In spite of their similarities, we found an interesting difference
between Expedia and Travelocity regarding two additional value-
based implications. In Travelocity, ifadults = 0, then the vari-
ableseniors must be present, and ifseniors = 0, then the vari-
able adults must be present. In practice, not having these two
inferences implies that Expedia provided flight information even
when no passengers were specified. Since flight finding is justthe
first step in Expedia’s booking process, and this behavior has been
revised in Expedia since our data was collected, this inference is
likely to indicate a bug in the earlier version of Expedia.

Last, MapQuest was unique in that we did not identify any manda-
tory variables in it. In addition, we found two interesting implica-
tions, if city is present we need azip or state to locate that city,
and ifaddress is present, we need to know which city it is in.

4.4.2 RQ2: Effects of Request Selection
Figure 3 presents our results for each of the web applications

with respect to both Inference-Guided and Random request selec-
tion techniques. In each of the graphs, the x-axis represents the
percentage of requests selected from the pool, and the y-axis repre-
sents the average recall or precision over the 100 runs.

For two of the three objects of study (Expedia and Traveloc-
ity), Inference-Guided request selection had average recall equal
to or better than Random request selection regardless of thenum-
ber of requests selected (top graphs in Figure 3). The other object,
MapQuest, was such a small example that request selection isof lit-
tle help (for both Random and Inference-Guided selection itcould
take up to all of the requests to achieve 100% recall).

For all of the web applications, Inference-Guided request selec-
tion had average precision equal to or better than Random request

selection throughout the request selection process (bottom graphs
in Figure 3). For MapQuest, with Inference-Guided request se-
lection, the precision sometimes drops as the number of requests
increases. This seems counter-intuitive, but is explainable as the
result of our criteria for reporting an inference. For example, we
do not report any variable as mandatory until we have at leastone
valid request with that variable, and one invalid request without
that variable. However, this does not guarantee that the variable is
mandatory, and later requests could disprove this inference.

These results are encouraging because they show that we can
dramatically reduce the number of requests required, whilestill re-
porting most correct inferences and few incorrect inferences. In
particular, for the two applications with approximately 50000 re-
quests in the pool (Expedia and Travelocity) we need fewer than
2500 requests (5% of the pool) to achieve 100% recall and pre-
cision with the Inference-Guided request selection, and 18121 re-
quests (36% of the pool) with Random request selection.

5. RELATED WORK
There has been a great deal of work to help identify deficiencies

in web sites such as broken structures, bottlenecks, non-compliance
with usability or accessibility guidelines, or security concerns, to
provide information on users’s access patterns, and to support test-
ing of web applications [2, 5, 6, 14, 13, 17, 18, 19]. Among these
tools, our request generation approach most resembles the approach
used by load testing tools, except that our goal is not to investi-
gate the web application’s responses to extreme loads, but rather
to generate a broad range of requests that help us characterize the
variables in the web application interface. There are also tools that
automatically populate forms by identifying known keywords and
their association with a list of potential values (e.g., zipcode has
a defined set of possible values, all with five characters). This
approach is simple but often produces incorrect or incomplete re-
quests, so we refrained from using it in our studies to avoid biasing
the inferencing process.

Our work also relates to research efforts in the area of program
characterization through dynamic analysis [1, 7, 8, 9, 15, 21]. These
efforts provide approaches for inferring program properties based
on the analysis of program runs. These approaches, however,target
more traditional programs or their byproducts (e.g., traces) while
our target is web application interfaces. Targeting web applications

implies that the set of properties of interest to us are different and
that we are making inferences on the program interface instead of
on the program internals. Recent approaches also attempt tocom-
bine dynamic inference with input generation [12, 20]. These ap-
proaches use dynamic inference techniques to classify the behavior
of the program under generated inputs to determine the usefulness
of these inputs for finding faults. Our approach differs in that we
want to avoid executing new inputs that will not help our charac-
terization due to the high cost of execution and the large number of
potential requests.

6. CONCLUSION
We have presented and evaluated what we believe to be the first

methodology for semi-automatically characterizing web applica-
tion interfaces. This methodology submits requests to exercise a
web application, and analyzes the responses to make inferences
about the variables and variable relationships that must beconsid-
ered to obtain a valid response. As part of the methodology we
have introduced an inference guided mechanism for submitting re-
quests more efficiently. Further, the results of an empirical study
of three popular web applications indicate that, given a rich enough
pool of requests, the methodology can effectively derive interesting
inferences with an affordable number of requests.

These results suggest several directions for future work. First,
further studies are needed to determine the usefulness and scalabil-
ity of the methodology. To that end, we will conduct similar stud-
ies targeting a larger number of applications and building richer
request pools. These will allow us to consider issues such asour
methodology’s sensitivity to different input values. Also, we will
target web applications on which we have some degree of control
such that we can assess the methodology’s potential in-vivo. Such
assessments will also provide insights into how best to incorporate
the methodology into existing web programming and authoring en-
vironments.

Second, we will develop further support for the non-fully auto-
mated steps of the methodology. For example, we currently solicit
a classification criterion to distinguish valid from invalid responses.
When invalid responses are not uniquely identifiable, this task can
become cumbersome and fault prone. We are exploring the use of
clustering devices with which to, for example, solicit userpartici-
pation only when the response cannot be automatically classified.

Finally, we will explore additional families of inferences. This
exploration will consider types of inferences that are not currently
present in our library (e.g., inferences involving temporal relation-
ships), and also the application of existing inferences to other ele-
ments on the site (e.g., labels associated with the fields) and on the
application (e.g., inferences on sequences of requests).

Acknowledgements
This work was supported in part by NSF CAREER Award 0347518
and the EUSES Consortium through NSF-ITR 0325273.

7. REFERENCES
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining

specifications. InSymposium on Principles of Programming
Languages, pages 4–16, Jan. 2002.

[2] M. Benedikt, J. Freire, and P. Godefroid.
Veriweb:automatically testing dynamic web sites. In
International WWW Conference, May 2002.

[3] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana.
Web services description language.
http://www.w3.org/TR/wsdl.

[4] S. Elbaum, K.-R. Chilakamarri, B. Gopal, and G. Rothermel.
Helping end-users “engineer” dependable web applications.
In International Symposium on Software Reliability
Engineering, Nov. 2005.

[5] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II.
Leveraging user-session data to support web application
testing.IEEE Transactions on Software Engineering, pages
187–201, Mar. 2005.

[6] Empirix. E-Tester. http://www.rswsoftware.com/products.
[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to
support program evolution. InInternational Conference on
Software Engineering, pages 213–224, May 1999.

[8] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InInternational
Conference on Software Engineering, pages 291–301, May
2002.

[9] J. Henkel and A. Diwan. Discovering algebraic specifications
from java classes. InEuropean Conference on
Object-Oriented Programming,, pages 431–456, July 2003.

[10] KeyNote. Consumer top 40 sites. www.keynote.com/ solu-
tions/performanceindices/consumerindex/consumer40.html.

[11] M. Pilgrim. What is RSS? http://www.xml.com/pub/a/
2002/12/18/dive-into-xml.html.

[12] C. Pacheco and M. Ernst. Eclat: Automatic generation and
classification of test inputs. InEuropean Conference on
Object-Oriented Programming, pages 504–527, July 2005.

[13] Rational-Corporation. Rational testing robot.
http://www.rational.com/products/robot/.

[14] F. Ricca and P. Tonella. Analysis and testing of web
applications. InInternational Conference on Software
Engineering, pages 25–34, May 2001.

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs.ACM Transactions on Computer
Systems, 15(4):391–411, Nov. 1997.

[16] M. Shaw. Sufficient correctness and homeostasis in open
resource coalitions: How much can you trust your software
system? InInternational Software Architecture Workshop,
June 2000.

[17] Software QA and Testing Resource Center. Web Test Tools.
http://www.softwareqatest.com/qatweb1.html.

[18] Software Research, Inc. eValid. http://www.soft.com/eValid/.
[19] S. Tilley and H. Shihong. Evaluating the reverse engineering

capabilities of web tools for understanding site content and
structure: A case study. InInternational Conference on
Software Engineering, pages 514–523, May 2001.

[20] T. Xie and D. Notkin. Tool-assisted unit test selectionbased
on operational violations. InInternational Conference on
Automated Software Engineering, pages 40–48, Oct. 2003.

[21] J. Yang and D. Evans. Dynamically inferring temporal
properties. InWorkshop on Program Analysis for Software
Tools and Engineering, June 2004.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2006

	Web Application Characterization through Directed Requests
	Sebastian Elbaum
	KalyanRam Chilakamarri
	Marc Randall Fisher II
	Gregg Rothermel

