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ABSTRACT

Web applications are increasingly prominent in societyyiag a
wide variety of user needs. Engineers seeking to enharsteatel
maintain these applications must be able to understand lzard ¢
acterize their interfaces. Third-party programmers (@ssional or
end user) wishing to incorporate the data provided by suchicss
into their own applications would also benefit from such elar
terization when the target site does not provide adequaigr@m-
matic interfaces. In this paper, therefore, we present odetlogies
for characterizing the interfaces to web applicationsubioa form
of dynamic analysis, in which directed requests are serta@p-
plication, and responses are analyzed to draw inferencag &b
interface. We also provide mechanisms to increase thelsligla
of the approach. Finally, we evaluate the approach’s pedoce
on three well-known, non-trivial web applications.

Categories and Subject Descriptors

D.2.7 [Software Engineering: Distribution, Maintenance, and
Enhancement; D.2.55pftware Engineering: Testing and Debug-

ging

General Terms
Experimentation, Reliability

Keywords

Dynamic analysis, web application interfaces

1. INTRODUCTION

Web applications are among the fastest growing classedtef so
ware in use today, providing a wide variety of informatiord @er-
vices to a large range of users. Users typically interadh wiese
applications through a web browser, which renders web pgeres
erated by a web application. As the user navigates or suloiaiés
new requests are sent to the web application through itface

Engineers who wish to enhance, test, and maintain web applic
tions must be able to understand and characterize theifanéss,

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

WODA'06,May 23, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005%5.00.

and one way to do this is through the use of invariants thati-doc
ment those interfaces. For example, engineers maintamtrayel
support site like Travelocity could leverage invariantattbonvey
what variables must be included in a request to obtain a fist o
flights (e.g., departure location and date, return dateptwhri-
ables are optional (e.g., number of children), or whethearigp
ular variable is dependent on the value of other variableas, (&

the number of adults in a request is 0, then there must be some
seniors; if children are present, then their age must beidiec).
Such characterizations could facilitate the engineerdeustand-
ing of the potential behavior of the web application. Furthieey
may also be useful for helping assess the correctness of ebe w
application interface, and to generate test cases andesragle-
vant to the application. Such characterizations may alsesbéul

for directing maintenance tasks such as re-factoring thepages.
For example, if a certain field cannot be empty, then inputigal
tion code for that field could be duplicated on the client siding
scripting languages where it can potentially prevent retputhat
will not return useful results, thus reducing server load aser
time waiting for responses.

Characterizations of web application interfaces would die
valuable for third party developers (either professionamd-user
programmers) attempting to incorporate the rendered dadgart
of a web service (e.g., for resource coalitions [16]), or disers
making specific queries on a web application without utilizi
browser. Although web applications that are commonly used b
clients may provide interface descriptions (e.g., comiégites
offering web services often offer a WSDL-type [3] descop),
many sites do not currently provide such support mechanisms
addition, at least one class of users, end user programozensot
be expected to learn particular protocols or APIs in ordexcicess
applications [4]. Moreover the characterizations we anesying
go beyond those usually provided by such interface desmnigt
Such characterization becomes more challenging in the=pces
of numerous variables and restrictions on variable valadscam-
binations, which are relatively common for this type of aggtion
(the interface of one web application we examined had 2@bes,
several of them inter-related).

For these reasons, we have been researching methods fer auto
matically characterizing the properties of and relatigpsbetween
variables in web application interfaces. Such charactgadas can
be obtained statically or dynamically. In earlier work [4¢vmre-
sented static approaches for analyzing HTML and JavaSaoigh
to identify variable types, and a dynamic approach for plimg
simple characterizations of the values allowed for vagal{e.g.,

a variable cannot be empty). However, deeper charactienzabf
web application interfaces, such as those involving depecids,
were not obtainable through the mechanisms that we comsider
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Figure 1: Web applications

In this work we address this lack, presenting a methodology f
characterizing the interface of a web application by penfag
more sophisticated forms of dynamic analysis. Our mettamol
involves making directed requests to a target web appticatnd
analyzing the application’s responses to draw inferenbesitethe
variables that can be included in a request and the reldtiosns

(WSDL) [3] and the Really Simple Syndication (RSS) [11], awe
popular ways to describe the interfaces between a serviséder
and the clients invoking the service.

As stated in the introduction, the focus of our research ithen
characterization of web application interfaces. Such attariza-
tions will be beneficial when other types of descriptions aoé
available (e.qg., third party developers building on erigtiveb sites
without WSDL), are not appropriate (e.g., end user programm
cannot deal with complex APIs), or are not sufficient or am@hev
ing (e.g., developers of a growing and fast changing apjiich

3. METHODOLOGY

Currently, our methodology analyzes the interface of alsing
form handler of a web application. The form handler is assiitoe
be stateless and deterministic with respect to its inpusaniples
that satisfy these requirements are travel reservatiaicises, real

among those variables. We also provide mechanisms, such as gstate listings, and mapping applications.

mechanism based on intelligent request selection, thareehthe
scalability of the approach. Finally, we evaluate the apphis per-
formance on three well-known, non-trivial web applicagon

Figure 2 shows the overall architecture for our web appbcat
interface characterization methodology, WebAppSleutith war-
ious processes (sub-systems) in the methodology shownxas.bo

The remainder of the paper is organized as follows. Section 2 The methodology begins withRage Analyzeprocess, which stat-

provides background information on web applications. Bac3
describes our overall methodology for characterizing wpplia
cations, and also provides detailed descriptions of owrarfcing
and request selection techniques. Section 4 describes pini-em
cal study exploring our methodology’s ability to charaizerweb
applications, and the effect of our various request seedtch-
nigues. Section 5 discusses related work and approacteeSesn
tion 6 summarizes our contribution and discusses futurd&wor

2. BACKGROUND

Navigating through the WWW can be perceived as performing a
sequence of requests to and rendering the responses frortia mu
tude of servers. Browsers assemble such requests as thdiciser
on links. Servers generate responses to address thosstgghe
responses are channelled through the web to the client,hemd t
processed by the browser. Some requests may require addlitio
infrastructure that leads to more complex applications. éxam-
ple, in an e-commerce site, a request might include both a &iRL
data provided by the user.

Users provide data primarily through forms consisting gfuin
fields (e.g., radio buttons, text fields) that can be mantpdldy
a visitor (e.g, click on a radio button, enter text in a field)tai-
lor a request. These input fields can be thought of as vasable
Some of the variables have predefined sets of potential ¥ééug.,
radio-buttons, list-boxes), while others are set by the (esg., text
fields). After the client sets the values for the variabled submits
the form, these are sent as request parameters known asmahme-
pairs (input fields’ names and their values). For exampl€jgure
1 a user populates the form rendered in a browser to obtade-dir
tions from MapQuest. After receiving and interpreting teguest,
MapQuest provides a response (e.g., maps and directiditstaso
tion for more input data, error message) in the form of a marku
language that is again rendered by the browser, and the sigats
again.

As shown in Figure 1, web applications can also operate io+ass
ciation with other applications through direct data exgjean For
example, sites providing air-travel information often guairlines’
sites, exchanging formatted data in the process. Suchaaitens
often occur through programmatic interfaces that have rfooneal
descriptions. For example, the Web Services Descriptiomguage

ically analyzes a target page generated by the web appiicakhe
Page Analyzerdentifies all variables associated with the fields in
the form, and then associates a list of potential values eatth
identified variable. For each pull-down, radio-button, leeck-box
variable, thePage Analyzepbtains values from the possible val-
ues defined in the form. For text-type variables, Bage Analyzer
prompts the user to supply a list of values that may elicit raem
response from the web application. In addition, we also idens
the null value to indicate that a variable is not a part of #guest.

Next, theRequest Generatarreates a pool of potential requests
by exploring all combinations of values provided for eachi-va
able. Given this pool of requests, tRequest Selectatetermines
which request or requests will be submitted to the targelicgp
tion. There are two general request selection modetch (re-
quests are selected all at once) dndremental(requests are se-
lected one at a time guided by a feedback mechanism). Rigre
quest Submitteproperly assembles the http request and sends it
to the target application. The web application responseoied
and classified as valid or invalid by thResponse ClassifiefThe
selected request and the classified response are thendeteir-
ference Enginewhich infers various properties about the variables
and the relationships between variables.

The following sections provide details on the two most novel
components of this architecture: thrderence Enginand theRe-
quest SelectorFurther implementation details on the other compo-
nents are provided in Section 4.

3.1 The Inference Engine

We have devised a family of inference algorithms to charate
the variables that are part of a web application interfaoe, the
relationships between them. The algorithms operate onighefl
variable-value pairs that are part of each submitted régand on
the classified responses (valid or invalid) to those reguest

To facilitate the explanation of the subsequent algorithrasiti-
lize examples that are further elaborated on in our studyeitiGn
4. Also, we simplify terminology by defining walid requestas
one that will generate a valid response from the web apmicat
that is, a response that meets the user's expectation regdta:
application behavior. We also define iamalid requestas one that
will generate an invalid response.
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Figure 2: WebAppSleuth architecture.

3.1.1 Mandatory, Optional, and Mandatorily Absent ablesp andq as: if p is present, the must be present. After
Variables examining existing implications on many sites we decideéxo
It is common for Web applications to evo've' add|ng addmbn pand our attention to implications in Wh|Ch the r|ght hamﬂ%&ls in
and more refined services to each new deployment. As an appli-disjunctive normal fornand does not contain negations or the con-

cation evolves, it becomes less clear what variables angiresty ~ Stant TRUE. This guarantees that our implications are fégils
by that application, and what variables can be included ggaest ~ but not tautological. Further, this type of implication &latively
without being required. Distinguishing between these $yqfevari- simple to understand because it can easily be mapped to the ex
ables is helpful, for example, to anyone planning to acdesseb ~ Pected variables’ behavior. o
application interface, and to developers of the web apiiticavho Our algorithm focuses on the implications between optioas}
wish to confirm that changes in the application have the erpec ables (implications involving mandatory variables woudddf little
results in the interface. value because they would just be added to the right side aof eve
We define a mandatory variable as a variable that must be in anyimplication). The algorithm begins by initializing a sétplica-
valid request. An optional variable is one that may be inetuitha ~ tions with one implication,V’ = FALSE for each optional
valid request, but is not required. variableV. Then, it iterates through all valid requests, extending
Although an interface variable should either be mandatonpe each implication with an additional clause (an and’ing dfog-
tional, our inferences also identify a third type of varathat we  tional variables in the request) every time the implicatismot

call mandatorily absent. We define a mandatorily absenabrias ~ Satisfied by a request. Note that to generate the most general
one that should never be in a valid request. Finding a maritjato ~ Plications, the iterations through the requests progness those
sonable to assume that a variable present in a form shouldege .~ To illustrate how the algorithm works, consider the set didva
in a valid request under some circumstances. There are ttieapo ~ 'equests to MapQuest shown in Table 1, and the inferred impli

tial reasons mandatorily absent variables may be identifipthe cations in the seventh column. MapQuest offers severalsfield
web page or web application contains a possible error @field cluding an address, city, state, and zipcode, each of theionap
was left in a form but is no longer used by the web application) For each optional variable’, the starting implication i8” =
and 2) additional directed requests are needed for the whelthgy FALSE (to keep the table content simple we consider only impl
to provide an appropriate characterization of that vaeabl cations Wlthaddress on the !eﬁ'hand S!de). The first and second
Our algorithm identifies as mandatory any variable that appe ~ requests in the table do not include variaiikiress, therefore the
in all valid requests and is absent in at least one invalidesty Our ~ implicationaddress = FALSE is satisfied, and nothing needs
algorithm identifies as optional any variable that appemet least {0 be changed. The third request in the table includégress,
one valid request and is absent in at least one valid reqestal- thereforeaddress = FALSE is not satisfied, and the impli-
gorithm identifies as mandatorily absent any variable thabsent ~ cation is updated by adding another clause and'ing all obther
in all valid requests and appears in at least one invalidesgu optional variables that are present in the request, in téegip.
Observe that a variable identified as optional by the albyoriis For request 4, the implicationddress = zip is false, and
optional in the web application interface. However, opiovari- needs to be updated by adding the clati¢g A state. For request
ables may be temporarily identified as mandatory until adviai 5, the implication is satisfied and no further updating isessary.
quest without that variable is submitted. The algorithm ends up reporting that including a street eskire-
quires the user to include either a zip code or a city and $tate
3.1.2 Variable Implication order for the request to generate a valid response. Notéf tivat
Sometimes the presence of a variable requires other vesiabl ~ had discovered a request in whialidress was the only optional
be present in order to construct a valid request. Identifynch variable present, this would hgve paused dHdress implication
relationships is useful for understanding the impact ofliagfion to be removed from the set of implications. _
changes on such dependencies, or to avoid sending incamplet Another type of useful inference that can be obtained tiroug
guests to the application. Fhe same algorithm is “at least one of”. This is a special mﬁge
To investigate this type of relationship, we began by degjrire implication of the form TRUE= ..., and can be generated using

notion of implication as a conditional relationship betwesari- the same method used for implication. The eighth column bfeTa



Request| address | city state Zip Responseg| Implication At least one-of
1 absent | absent | present| absent || Valid address —> FALSE TRUE — state
2 absent | absent | absent | present|| Valid address = FALSE TRUE = state V zip
3 present | absent | absent | present|| Valid address = zip TRUE = state V zip
4 present | present| present| absent || Valid address = zip V (city A state) | TRUE = state V zip
5 present | present| present| present|| Valid address = zip V (city A state) | TRUE = state V zip

Table 1: MapQuest Requests and Variable Implications

1 provides an example in MapQuest where either state or @gco
must be selected in order for a request to be valid.

3.1.3 Value-based Extensions

The previous algorithms have focused on inferences related
the presence or absence of variables, with no attentiontpasati-
able values. Just as the characterization of presence encbsf
variables could help maintainers and developers of webiappl
tions, so could characterization involving values.

For example, if no requests involving a text variable wittsam
provided value generate valid responses, then additiantlbse
values may be required for a proper characterization. @ensi
ing values may also be useful for finding faults associatetth wi
variables whose values have been predefined through puthsdo
radio-button or checkbox fields. For example, if one field has
value that always produces an invalid request, there ifylikéault
in the form (a value in the form that should not be there) ontbb
application (failure to consider a possible value from tharf).

We extended our technique for finding mandatory and optional
variables to find a range of values for variables that prodwedid
responses. To do this, our algorithm keeps track of the salue
that appear in requests (distinguishing between thoseathar
in valid or invalid requests). It then reports a list of vedubat ap-
peared in valid requests for each variable. To reduce thebaum
of falsely reported value-based inferences, this algaritkports
an inference for a variable only after all possible valuedu@s in-
cluded in the request pool) for that variable have been uskest
once. The objective is to observe enough values for a variad
fore determining what values constitute its valid range.

Similarly, we extended the implication algorithm. Our exgimn
simply alters the initial set of implications to include iligations
of the form (V' = a) = FALSE for each variablé” and pos-
sible valuea. Our approach is motivated in part by the frequency
with which web pages use radio buttons to determine whicharoth
fields might be required in a request. For example, paymentso
often have radio buttons to select different payment typed these
payment types have different dependent variables (e.gl,rean-
ber). We intend to discover this type of implication.

3.2 The Request Selector

As mentioned earlier, one of the fundamental challengesifar-
acterizing a web application through directed requests ¢®ntrol
the number of requests. Larger numbers of requests impgdar
amounts of time required to collect request-response fat&k-
pedia, one of the objects of our studies in Section 4, eadhestq
took about 30 seconds) and this slows down the inferenciog pr
cess. In addition, sites may not be amenable to respondig to
large number of requests (for Expedia we received a warnirgjle
stating that they suspected we were launching a denial gicger
attack against their web site).

To address this problem, tliRequest Selectaran either select
a sample of requests from the pool up-front, or it can operate
crementally by selecting a request based on previous seantt
continue selecting requests until the user is satisfied domger

wishes to continue refining the inference set. We have dévige
request selection approaches. The first approach, Randoa, i
batch approach that simply selects a set of random requests f
the pool of requests without repetition.

The second approach, Inference-Guided, is incrementaktse
ing requests based on the requests already submitted ana-the
ferences already derived. To select which request to sulbanit
each unsubmitted request we determine an award value, ud se
the request with the highest award value (randomly breati@s).
When determining an award value for each unsubmitted réques
R., we only consider those requests that differ from some stabmi
ted requestR; in one variable (all other unsubmitted requests are
assigned an award value of 0). We choose to focus on this set of
requests because it seems likely that similar requestskatg to
return similar results, and we can therefore use the cleasii of
R, as a predictor for the classification &f,. The award value of
R, is equal to the number of potential inferences (inferenbas t
we have neither proven or disproven) that would be chang&d if
has the same classification Bs.

4. EMPIRICAL EVALUATION

The goal of our study is to assess whether the proposed method
ology can effectively and efficiently characterize real veébs. In
particular, we wish to answer the following research qoesti

RQ1: What is the effectiveness of the characterization?We
would like our characterization to include all the potehtelid in-
ferences (of the types specified by the algorithms in Se@iah
that can be extracted from the responses collected from aapeb
plication. We would also like the characterization to imtgyust
the inferences that truly characterize a web application.

RQ2: Whatis the tradeoff between effectiveness and efficiey?

Our inferencing algorithms are conservative in that thelf mot
discard an inference unless there is data to reject it (wevai
idate this conjecture by addressing RQ1). This consematjy
proach may result in false inferences being reported whénan
subset of the requests are submitted and analyzed. A liméted
quest data set may also hinder the inferences we can deriee. W
wish to explore the effect of requestlectionstrategies, aimed at
increasing efficiency, on the methodology’s effectiveness

4.1 Objects of Analysis

Our objects of analysis (see Table 2) are three popularagpli
tions we utilized in previous studies [4] and that are all agthe
top-40 performers on the web [10]. Expedia and Traveloaity a
travel booking applications and MapQuest is used for makupo

Table 2 lists the numbers of variables identified by Fage An-
alyzeron the main page produced by each of our target web appli-
cations, at the time of this analysis, and the numbers oftlttwst
we used for our analysis. To simulate multiple runs of ouuesq
selection techniques, we had to collect all of the requesthe
pool identified by the the request generator. Thereforefmedia
and Travelocity, we considered only nine of their varialfiespe-
dia had an additional 2 variables and Travelocity had antiadail



Object Relevant variables identifiel Variables
by Page Analyzer considered
Text | List Check & for analysis
Box | Box Radio
Expedia 4 5 2 9
MapQuest 4 0 0 4
Travelocity | 4 7 1 9
Table 2: Objects of Study.
Object Request Criteria for Valid And Invalid
Pool Size
Expedia 49996 | Valid: Available flights are displayed
Invalid: More information is requestef
MapQuest 16 Valid: Map returned
Invalid: No map was returned
Travelocity || 49996 | Valid: Available flights are displayed
Invalid: More information is requestef

Table 3: Request Pool Size and Classification Criteria.

3, considering all of them would have required many milliafs
requests) in order to reduce the number of submitted reguest

4.2 Variables and Measures

Our study requires us to apply our inferencing algorithmsaon
collected data set of requests and responses to charadteginb-
jects of study. Throughout the study we utilize two requetts
tion procedures, Random and Inference-Guided.

To quantify effectiveness we compute the recall and precisf
the characterization generated by the inferencing alyoston the
objects of study. A recall percentage of 100% indicatesahatue
inferences that characterize an application were repdgetie al-
gorithms (this might include false positives). A precismfil00%
indicates that all reported inferences are indeed validglse pos-
itives). Let ReportedInf be the number of inferences reported,
let ReportedExpectedIn f be the number of expected inferences
reported, and leT'otal ExpectedInf be the total number of ex-
pected inferences derivable from the pool of requests, ieale
recall and precision as follows:

Recall = ReportedExpectedInf /Total ExpectedInf;
Precision = Reported ExpectedInf | ReportedInf;

We define the expected inferences as the set of inferenc® of
types specified in Section 3.1, that are derived when the =enp
pool of requests is submitted. We chose to do this becauseeve a
interested in studying the effects of request selectiothauit re-
gard to the quality of the pool of requests, on recall andipi@t.

4.3 Design and Setup

We applied the WebAppSleuth methodology to each of the ob-
jects of study. Three particular steps in this process recaddi-
tional detail.

First, theRequest Generatattilized all available potential val-
ues for each variable (including the null value which intésathat
the variable is not present in a request). We used predefalads/
when possible. For example, for Expedia, we used the valsies a
sociated with the drop-down box to select the number of “Aglul
traveling. For the variables associated witlxt type fields that
have no predefined values, we provided a set of potentiatsdhat
can be involved in a request that would generate a valid respo
For example, for Expedia we provided values for “departiogr’

Inferences

Mandatory Variables:

depCity, arrCity,depDate,ret Date,
depTime, retTime

Optional Variables:

adults, seniors, children

At Least One Of:

(adults V seniors)

Values

children e {0}

Optional Variables:

address, city, state, zip
Implications:

city = zipV state

address = zip V (city A state)
All inferences from Expedia
Value Based Implications

(adults = 0) = seniors
(seniors = 0) = adults

[ Website
Expedia

MapQuest

Travelocity

Table 4: Inferences Found for each Web Application

and “going to”. The second column of Table 3 lists the gemetat
pool size for each of the sites.

Second, since we do not have a specification for each web site’
expected behavior, we had to create one so theRésponse Clas-
sifier could determine whether a response was valid or invalid. The
third column of Table 3 lists the criteria utilized to makeckla
determination. Once the determination criteria were ddfioe a
given web application, we automated the classificationgssdy
searching for the specified criteria in the returned respdifes.

Third, although the methodology is basically a sequentiat p
cess (with a loop in case of incremental request selectioa)n-
vestigated the methodology through a slightly differerprapch.

To expedite the exploration of several alternative reqselction
mechanisms and inference algorithms (without making tmeesa
set of requests multiple times), we performed all the reguies
the pool, and then simulated the application of the differeach-
anisms and algorithms. We performed this simulation 10@s$im
with each type oRequest Selectdp control for the randomness
factor in the request selection algorithms.

4.4 Results

We present the results in two steps. First, we show the ctamirac
zation provided by the methodology for each target web appitin
when the entire pool of requests is utilized. Second, weyaral
how the characterization progresses as the requests arét®ab
and analyzed, utilizing two different request selectiorthamisms.

4.4.1 RQ1: Effectiveness of the Characterization

Table 4 presents the inferences derived from the requests we
made and the responses provided by each of the target applica
tions, grouped according to the types defined in Section $l.
Expedia and Travelocity, six variables depC'ity (departure city),
arrCity (arrival city), dep Date (departure date),et Date (return
date), depTime (departure time) anaetTime (return time) —
were identified as mandatory. Indeed, when inspecting thiése,
we found that they do not provide any flight information usles
those fields have been completed. Three variables werenaptio
adults, seniors andchildren — for both Expedia and Traveloc-
ity, which means that their absence does not preclude a imer f
obtaining a valid response from the application.
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Figure 3: Recall and precision vs percent of requests submntid

Both sites also included an “at least one of” inference saitter
adults or seniors were present in all of the valid requests. Note
that this inference is not true in practice since flight infietion can
be obtained when théhildren variable is present anetults and

selection throughout the request selection process thagraphs
in Figure 3). For MapQuest, with Inference-Guided request s
lection, the precision sometimes drops as the number ofestgu
increases. This seems counter-intuitive, but is expldnab the

seniors are absent in a request. However, the available requestsresult of our criteria for reporting an inference. For exénpve

in the pool were insufficient to falsify this inference (oequests
including thechildren variable failed because we did not consider
the age variables that are required whidren is present). This

is the same reason we obtained the infereticddren € {0}.
These inferences, although correct within the limitatiofthe pool

of collected data, are an indicator that further requesisnaeded
to provide a more accurate characterization of the site.

In spite of their similarities, we found an interesting diénce
between Expedia and Travelocity regarding two additioradlie-
based implications. In Travelocity, ifdults = 0, then the vari-
able seniors must be present, and séniors = 0, then the vari-
able adults must be present. In practice, not having these two
inferences implies that Expedia provided flight informatieven
when no passengers were specified. Since flight finding ishest
first step in Expedia’s booking process, and this behavisrieen
revised in Expedia since our data was collected, this infaras
likely to indicate a bug in the earlier version of Expedia.

Last, MapQuest was unique in that we did not identify any naand
tory variables in it. In addition, we found two interestingplica-
tions, if city is present we need &p or state to locate that city,
and ifaddress is present, we need to know which city itis in.

4.4.2 RQ2: Effects of Request Selection

Figure 3 presents our results for each of the web applicaition
with respect to both Inference-Guided and Random requést-se
tion techniques. In each of the graphs, the x-axis repregéet
percentage of requests selected from the pool, and thesyreptie-
sents the average recall or precision over the 100 runs.

For two of the three objects of study (Expedia and Traveloc-
ity), Inference-Guided request selection had averagdlregaal
to or better than Random request selection regardless ofuiime
ber of requests selected (top graphs in Figure 3). The othjecth
MapQuest, was such a small example that request selectiblitis
tle help (for both Random and Inference-Guided selectiaoutd
take up to all of the requests to achieve 100% recall).

For all of the web applications, Inference-Guided requektcs
tion had average precision equal to or better than Randourestq

do not report any variable as mandatory until we have at ezt
valid request with that variable, and one invalid requeghouit
that variable. However, this does not guarantee that thahlaris
mandatory, and later requests could disprove this inferenc

These results are encouraging because they show that we can
dramatically reduce the number of requests required, vgtiillae-
porting most correct inferences and few incorrect infeesncin
particular, for the two applications with approximately0BO re-
quests in the pool (Expedia and Travelocity) we need fewan th
2500 requests (5% of the pool) to achieve 100% recall and pre-
cision with the Inference-Guided request selection, art?18e-
quests (36% of the pool) with Random request selection.

5. RELATED WORK

There has been a great deal of work to help identify deficenci
in web sites such as broken structures, bottlenecks, nopléance
with usability or accessibility guidelines, or securityncerns, to
provide information on users’s access patterns, and toostifgst-
ing of web applications [2, 5, 6, 14, 13, 17, 18, 19]. Amongsthe
tools, our request generation approach most resembleppheseh
used by load testing tools, except that our goal is not tosiive
gate the web application’s responses to extreme loads,athgrr
to generate a broad range of requests that help us chazactiee
variables in the web application interface. There are aststthat
automatically populate forms by identifying known keywsrahd
their association with a list of potential values (e.g.,coige has
a defined set of possible values, all with five characters)is Th
approach is simple but often produces incorrect or incotapie-
quests, so we refrained from using it in our studies to avi@dibg
the inferencing process.

Our work also relates to research efforts in the area of progr
characterization through dynamic analysis [1, 7, 8, 9, 1k, Phese
efforts provide approaches for inferring program propartbased
on the analysis of program runs. These approaches, howergst
more traditional programs or their byproducts (e.g., shaehile
our target is web application interfaces. Targeting webiegions



implies that the set of properties of interest to us are wiffeand
that we are making inferences on the program interfaceadssé
on the program internals. Recent approaches also atteraptite
bine dynamic inference with input generation [12, 20]. Thap-
proaches use dynamic inference techniques to classifyetaor
of the program under generated inputs to determine the lngsfu
of these inputs for finding faults. Our approach differs iattive
want to avoid executing new inputs that will not help our ettar
terization due to the high cost of execution and the largebmirof
potential requests.

6. CONCLUSION

[3] E. Christensen, F. Curbera, G. Meredith and S. Weerawara
Web services description language.
http://www.w3.org/TR/wsdl.

[4] S. Elbaum, K.-R. Chilakamarri, B. Gopal, and G. Rotherme
Helping end-users “engineer” dependable web applications
In International Symposium on Software Reliability
Engineering Nov. 2005.

[5] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II.
Leveraging user-session data to support web application
testing.IEEE Transactions on Software Engineerjpgges
187-201, Mar. 2005.

[6] Empirix. E-Tester. http://www.rswsoftware.com/pras.

We have presented and evaluated what we believe to be the first [7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

methodology for semi-automatically characterizing webliap-
tion interfaces. This methodology submits requests tocisera

web application, and analyzes the responses to make ic&Esen

about the variables and variable relationships that musbhsid-

ered to obtain a valid response. As part of the methodology we

have introduced an inference guided mechanism for sulmgité-
quests more efficiently. Further, the results of an empistady
of three popular web applications indicate that, given la eicough
pool of requests, the methodology can effectively deriveresting
inferences with an affordable number of requests.

These results suggest several directions for future workst,F
further studies are needed to determine the usefulnesafabg-
ity of the methodology. To that end, we will conduct similaud-
ies targeting a larger number of applications and buildichear
request pools. These will allow us to consider issues suaduas
methodology’s sensitivity to different input values. Alsee will

target web applications on which we have some degree ofaontr

such that we can assess the methodology’s potential in-@uch
assessments will also provide insights into how best torpaate
the methodology into existing web programming and auttgpein-
vironments.

Second, we will develop further support for the non-fullytau
mated steps of the methodology. For example, we currenligitso
a classification criterion to distinguish valid from invhtiesponses.
When invalid responses are not uniquely identifiable, @& tan

become cumbersome and fault prone. We are exploring thefuse o

clustering devices with which to, for example, solicit upartici-
pation only when the response cannot be automaticallyifibss
Finally, we will explore additional families of inference3his
exploration will consider types of inferences that are notently
present in our library (e.g., inferences involving tempoetation-
ships), and also the application of existing inferencesthermele-
ments on the site (e.g., labels associated with the fieldsparihe
application (e.g., inferences on sequences of requests).
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