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In this work we provide an analysis of both fractional- and integer-order boundary

value problems, certain of which contain explicit nonlocal terms. In the discrete frac-

tional case we consider several different types of boundary value problems including

the well-known right-focal problem. Attendant to our analysis of discrete fractional

boundary value problems, we also provide an analysis of the continuity properties of

solutions to discrete fractional initial value problems. Finally, we conclude by provid-

ing new techniques for analyzing integer-order nonlocal boundary value problems.
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Chapter 1

Introduction

The fractional calculus has a long and storied history within the broader mathematical

discipline of analysis. Indeed, research into this area was initiated in 1695 when

L’Hôpital asked Leibniz about the meaning of a one-half derivative. While precise

mathematical investigation of this and related concepts would not be realized for

almost two centuries later, this simple question laid the initial foundation for the

area. At first, it seems, the questions regarding fractional derivatives and integrals

were largely academic, being as they were divorced effectively from any applicative

interest. Later, however, as the fractional calculus matured, it become clear that the

fractional calculus could be used effectively in a variety of modeling situations. In

fact, nowadays, various tools from the fractional calculus are even used in the study

of regularity of minimizers of functionals and of weak solutions to PDEs. Ostensibly,

Leibniz could not possibly have envisioned the very bright and important future for

the fractional calculus.

While we shall state in more detail certain of the fundamental properties of the

fractional calculus in Chapter 2, let us straightaway state the definition of the frac-

tional derivative of Riemann-Liouville type and the discrete fractional sum and dif-
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ference. They are as follows.

Definition 1.1. With ν > 0 and ν ∈ R, we define the ν-th Riemann-Liouville

fractional derivative to be

Dν
ay(t) :=

1

Γ(n− ν)

dn

dtn

∫ t

a

y(s)

(t− s)ν+1−n ds,

where n ∈ N is the unique positive integer satisfying n− 1 ≤ ν < n and t > a.

Definition 1.2. The ν-th fractional sum of a function f , for ν > 0, is ∆−νf(t) =

∆−νf(t; a) := 1
Γ(ν)

∑t−ν
s=a(t−s−1)ν−1f(s), for t ∈ {a+ ν, a+ ν + 1, . . . } =: Na+ν . We

also define the ν-th fractional difference for ν > 0 by ∆νf(t) := ∆N∆ν−Nf(t), where

t ∈ Na+ν and N ∈ N is chosen so that 0 ≤ N − 1 < ν ≤ N .

We present these definitions now to highlight an interesting feature of the afor-

mentioned operators, a feature that will, in fact, providing the unifying theme to this

work. Indeed, note that each of the operators contains a de facto nonlocality. That

is to say, the definition of the fractional derivative is not a pointwise calculation but

rather involves values of y on the interval [a, t]. If we recall that

f ′ (t0) := lim
t→t0

f(t)− f (t0)

t− t0
(1.1)

for a suitably differentiable function f , then we see at once that there is a considerable

difference between the definitions. Whereas in (1.1) the value of f ′ (t0) is influenced

by the behavior of f on an arbitrarily small interval about t0 (at least heuristically),

the fractional derivative is influenced by the behavior of f on the entire interval

[a, t]. In this way, then, fractional derivatives have a sort-of memory property that

is effectively non local. In part, this makes the fractional derivative very useful in

modeling situations wherein a memory-type effect is required. On the other hand,
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this makes the mathematical theory of the fractional calculus, at times, far more

complex than its integer-order counterpart.

A similar effect may be seen with the discrete fractional difference. Indeed, the

integer-order fractional difference is quite straightforward, being as it is merely

∆f(t) := f(t+ 1)− f(t). (1.2)

But from Definition 1.2 we see that in the fractional-order case we have a much

more complicated operation. Indeed, for the sake of argument, suppose that we fix

1 < ν < 2. Then Definition 1.2 implies that

∆νf(t) = ∆2∆2−νf(t) = ∆2

[
1

Γ(ν − 2)

t−ν+2∑
s=a

(t− s− 1)ν−3f(s)

]

= ∆

[
∆

[
1

Γ(ν − 2)

t−ν+2∑
s=a

(t− s− 1)ν−3f(s)

]] (1.3)

Once again, (1.3) is non local in the sense that it involves the values of f not only at

t + 1 and t as in in (1.2), but also the values of f at t − 1, t − 2, . . . , a. As in the

continuous fractional calculus and as we shall see forthwith in Chapter 3, this makes

the analysis of discrete fractional problems much more complicated than the analysis

of their integer-order counterparts. This is so much so, in fact, that well developed

theories in the discrete integer-order setting such as oscillation theory, have at present

no known counterpart in the fractional setting due to the substantial mathematical

complications encountered.

Inasmuch as the fractional calculus is concerned, there are myriad papers in the

literature dealing with the existence of one or more positive solutions to fractional-

order boundary values problems (FBVPs). The search for positive solutions holds

a special place in the theory of BVPs due to the fact that in certain applications,
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only positive (or nonnegative) solutions hold any physical meaning. As such, it is

rather an industry, so to speak, in mathematics to determine conditions under which

a given boundary value problem will possess at least one positive solution. As we

proceed through the succeeding chapters of this work, we shall discuss the various

contributions that have been made recently in this general area and just how said

contributions are related to the results we present herein. Nonetheless, let us briefly

mention just a few contributions so as to preliminarily contextualize our discussion

thus far.

Insofar as the discrete fractional calculus is concerned, the main body of results

have been presented by Atici and Eloe. In particular, in a series of papers [15, 16, 17,

18, 20] Atici and Eloe have worked out some of the basic operational properties of the

discrete fractional calculus as well as applying these properties to certain boundary

value problems. A paper by Atici and Şengül [19] is interesting for its development

of the rudiments of the discrete fractional calculus of variations and its application

to tumor growth. The treatment of discrete FBVPs has been discussed extensively

by Goodrich [41, 42, 44, 45, 46, 47, 48, 51, 54, 53, 59]. Furthermore, Holm [63] has

provided some additional operational properties, dual to the one’s given earlier by

Atici and Eloe. Other results have been given by Bastos, et al. [24, 25, 26] and Ferreira

[40], and these are interesting for their attempt to generalize the fractional calculus

away from the specific time scale Z (i.e., the difference equations case) to a completely

arbitrary time scale T; see the excellent textbook by Bohner and Peterson [29] for

an introduction to the concept of the calculus on a time scale. While this endeavor

is still in its infancy and while there seem to be some significant technical obstacles

to bringing this endeavor to any sort of meaningful fruition, it is, nonetheless, a

fascinating avenue for additional study, though one we do not address any further in

this work. Conversely, insofar as the continuous fractional calculus is concerned, there
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are so many works on boundary value problems that it would be impossible to cite

even a modest fraction of the interesting and useful papers that have appeared recently

on the subject. Indeed, the subject having been around much longer than the discrete

fractional calculus, there is correspondingly a vastly greater literature available. So,

we merely mention that [1, 3, 4, 13, 21, 22, 23, 27, 28, 33, 34, 38, 43, 50, 72, 74, 75, 76,

83, 93, 94, 95, 96, 97] are representative papers in this area, and, collectively, these

cover the entire range of continuous fractional differential equations applications such

as boundary value problems, calculus of variations, and fractional partial derivatives.

In Chapters 7 and 8, which discuss results for continuous fractional boundary value

problems, we shall discuss in more detail certain recent contributions to this area.

We should also remark that the monographs by Oldham and Spanier [77], Podlubny

[78], and Schuster [79] are excellent introductions to the theory and application of the

fractional calculus; in particular, Podlubny’s monograph is especially recommended.

Thus far, then, we have seen that the fractional calculus involves, at least implic-

itly, the notion of nonlocalities. But, in fact, the concept of nonlocalities has recently

seen substantial investigation in the integer-order setting of boundary value problems.

A good model problem for this strand of research is

−y′′(t) = f(t, y(t)), 0 < t < 1

y(0) = ϕ(y)

y(1) = 0.

(1.4)

In problem (1.4), ϕ(y) is a functional, which captures the nonlocal nature of the

boundary condition at t = 0. In particular, in most of our work (e.g., [55, 57,

58]), following the lead of Infante, Webb, Yang, and other mathematicians who have

produced work on nonlocal BVPs (see, for example, [84, 85, 90]), we realize ϕ as a
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Lebesgue-Stieltjes integral of the form

ϕ(y) :=

∫
[0,1]

y(s) dα(s), (1.5)

where the measure associated to the integrator, say µα, may be signed. This leads

to the interesting and nontrivial question of whether problem (1.4) may have at least

one positive solution under such assumptions.

In fact, there has been substantial interest in such explicitly nonlocal problems

lately. Once again, we shall comment more thoroughly on these contributions later

in the work (cf., Chapters 9, 10, and 11), but let us just mention some of these briefly

now. Principally, Infante and Webb have been instrumental in providing significant

and new ideas in the study of nonlocal BVPs with linear boundary conditions – see

[84, 85, 86, 87]. A paper by Graef and Webb [60] also provides some new ideas

in this area. Papers by Kang and Wei [68] as well as by Yang [90, 91] provide

some complementary results. More generally, nonlocal and multipoint-type BVPs

have received substantial attention in the time scales setting – see, for instance,

[9, 10, 11, 49, 52] and the references therein.

One can further complicate matters by supposing that ϕ is composed with another,

possibly nonlinear function, say H. In this case, problem (1.4) becomes

−y′′(t) = f(t, y(t)), 0 < t < 1

y(0) = H(ϕ(y))

y(1) = 0.

(1.6)

We then say that problem (1.6) is a BVP with nonlocal, nonlinear boundary condi-

tions. The inclusion of the nonlinearity as well as the nonlocality further complicates

the analysis of (1.6). Some recent works considering problems of this general sort
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include [64, 65, 66, 67]. Of course, there are other ways in which to introduce the

nonlinearity of the boundary condition. For instance, one could consider the bound-

ary condition, say,

y(0) =

∫ τ2

τ1

F (s, y(s)) ds, (1.7)

for 0 ≤ τ1 < τ2 ≤ 1. By then imposing certain restrictions on the integrand F , one

can gain sufficient control so as to deduce the existence of at least one positive solution

to the associated BVP. In any case, in this work we will only concern ourselves with

the realization of the boundary condition given in (1.6).

So, in problems (1.4) and (1.6) we have explicit nonlocalities, which is in contrast

to the implicit nonlocalities present in fractional derivatives and differences. Not dis-

similarly, though, one is confronted with the task of modifying existing techniques in

order to circumvent the difficulties caused by the presence of nonlocal terms. And,

as already mentioned, if said nonlocal terms can be nonpositive, then the existence

of positive solutions to the associated BVP is unclear, and this enhances the mathe-

matical interest of the problem.

In fact, there are a great many ways to circumvent said problems. But let us focus

on just one for now since it will feature prominently in Chapters 9, 10, and 11 in the

sequel and since it is one of the more original ideas we present herein. In the few

existing works that consider problems similar to (1.6), it seems to be a near universal

assumption that H satisfy growth conditions of the sort

η1y ≤ H(y) ≤ η2y, (1.8)

for all y ≥ 0 and some constants 0 ≤ η1 < η2 < +∞. Effectively, this means that

the graph of H is bounded between the lines, say, z = η1y and z = η2y. While not

horrendously restrictive, it actually turns out that this restriction can be replaced by
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a restriction that need only hold at +∞. In other words, we can require of H only

an asymptotic growth condition. In particular, as will be clarified later, a condition

of the form

lim
y→+∞

|H(y)− κy| = 0. (1.9)

suffices; later we will generalize this condition further, but, for the moment, this

will suffice. In terms of problem (1.6), this seems to suggest something interesting.

Namely, that if the boundary condition y(0) = H(ϕ(y)) “looks like” y(0) = ϕ(y) for

y very large (in a sense to made precise later), then the boundary value problem has

at least one positive solution. Put differently, if problem (1.6) “looks like” problem

(1.4) for y large in norm, then we can use the ideas applied to problem (1.4) to deduce

the existence of at least one positive solution to problem (1.6). We discuss this idea

much more extensively and thoroughly in Chapters 9, 10, and 11.

So, as can be seen from the preceding discussion the unifying theme of this work

is the concept of nonlocalities and their influence in the study of boundary value

problems arising in both the continuous and the discrete calculus. In the fractional

problems we study herein, the influence of the nonlocalities is more subtle, affecting

mostly the technical details of the proofs of our lemmas and theorems. Conversely,

in the problems we study wherein the boundary conditions contain explicit nonlocal

terms, the nonlocalities, unsurprisingly, have a more pervasive effect on the analysis

of the problem.

Having provided now a very general outline of the ideas we consider in this work,

we outline the specific plan of this work. As suggested above, the arc of our results

can be summarized as follows. We first familiarize the reader with the fundamen-

tal definitions in the continuous and discrete fractional calculus. This provides a

framework for the discussion that follows. Our first block of original research is then
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focused on the discrete fractional calculus. Our results explicitly illustrate just how

the nonlocal aspect of the fractional difference makes analyzing discrete fractional

BVPs rather delicate. After presenting several results in this area, we make a subtle

shift by presenting a collection of results for continuous fractional BVPs. Many of the

ideas are very similar, but it is instructive to see the differences and similarities be-

tween the discrete fractional calculus and continuous fractional calculus, for, perhaps

surprisingly, the discrete fractional calculus can sometimes be far more difficult to

use than its continuous counterpart. Finally, having pivoted to the continuous case,

we conclude this work by coming full circle and presenting some results for explicit

nonlocal BVPs in the continuous case. This, then, completes the theme of nonlocal-

ity, which really is the unifying glue holding all of these seemingly disparate results

together.
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Chapter 2

Preliminaries

In this section we wish to collect certain results, which we shall use frequently in the

sequel. In particular, we collect here the definitions of the fractional operators, which

we shall use later. Moreover, we collect certain other preliminary results, such as

relevant fixed point theorems, which will be of use to us in the sequel as well. The

proofs of these various lemmas may be found, for instance, in certain of the recent

works by Atici and Eloe [15, 16, 17, 20].

Definition 2.1. We define tν := Γ(t+1)
Γ(t+1−ν)

, for any t and ν for which the right-hand

side is defined. We also appeal to the convention that if t + 1 − ν is a pole of the

Gamma function and t+ 1 is not a pole, then tν = 0.

Definition 2.2. The ν-th fractional sum of a function f , for ν > 0, is ∆−νf(t) =

∆−νf(t; a) := 1
Γ(ν)

∑t−ν
s=a(t−s−1)ν−1f(s), for t ∈ {a+ ν, a+ ν + 1, . . . } =: Na+ν . We

also define the ν-th fractional difference for ν > 0 by ∆νf(t) := ∆N∆ν−Nf(t), where

t ∈ Na+ν and N ∈ N is chosen so that 0 ≤ N − 1 < ν ≤ N .

Lemma 2.3. Let t and ν be any numbers for which tν and tν−1 are defined. Then

∆tν = νtν−1.
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Lemma 2.4. Let 0 ≤ N − 1 < ν ≤ N . Then ∆−ν∆νy(t) = y(t) +C1t
ν−1 +C2t

ν−2 +

. . .+ CN t
ν−N , for some Ci ∈ R, with 1 ≤ i ≤ N .

Lemma 2.5. Let f be a real-value function defined on Na and let µ, ν > 0. Then

∆−νa+µ

[
∆−µa f(t)

]
= ∆−(µ+ν)

a f(t) = ∆−µa+ν

[
∆−νa f(t)

]
.

Lemma 2.6. Let 0 ≤ m − 1 < ν ≤ m, where m denotes a positive integer and y(t)

be defined on Nν−m := {ν −m, ν −m+ 1, . . . }. Then

∆ν
ν−my(t) = ∇ν

ν−my(t+ ν),

for t ∈ Z−m. Note that here we use the definition

∇−νf(t) :=
t∑

s=a

(t− ρ(s))ν−1

Γ(ν)
f(s),

where ν ∈ R \ {. . . ,−2,−1, 0} – see [18].

Lemma 2.7. Let a ∈ R, µ ∈ R \ {. . . ,−2,−1, 0}, ν > 0, and (t− a)µ : Na+µ → R.

Then:

1. ∆−νa+µ(t− a)µ = Γ(µ+1)
Γ(µ+1+ν)

(t− a)µ+ν, for t ∈ Na+µ+ν; and

2. ∆ν
a+µ(t− a)µ = Γ(µ+1)

Γ(µ+1−ν)
(t− a)µ−ν, for t ∈ Na+µ+N−ν,

where N ∈ N is the unique positive integer satisfying N − 1 < ν ≤ N .

Remark 2.8. We remind the reader that by the notation ∆ν
ν−my(t), for instance, as

occurs in the statement of Lemma 2.6 above, the subscript ν −m implies that sum

defining the fractional difference (or sum) begins at s = ν −m. (cf., Definition 2.2)

Of course, the superscript ν implies that the order of the fractional difference is ν.
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While it is crucial to keep track of domains in the discrete fractional calculus, as will

be seen very shortly, if it is clear from the context, we shall omit the subscript from

the fractional operator.

The next set of definitions and lemmas as well as other related results and their

proofs can be found, for example, in [23, 78]. In particular, the monograph by Pod-

lubny [78] is an excellent introduction to the theory of the continuous fractional

calculus and certain of its attendant applications.

Definition 2.9. Let ν > 0 with ν ∈ R. Suppose that y : [a,+∞) → R. Then the

ν-th Riemann-Liouville fractional integral is defined to be

D−νa y(t) :=
1

Γ(ν)

∫ t

a

y(s)(t− s)ν−1 ds,

whenever the right-hand side is defined. Similarly, with ν > 0 and ν ∈ R, we define

the ν-th Riemann-Liouville fractional derivative to be

Dν
ay(t) :=

1

Γ(n− ν)

dn

dtn

∫ t

a

y(s)

(t− s)ν+1−n ds,

where n ∈ N is the unique positive integer satisfying n− 1 ≤ ν < n and t > a.

Remark 2.10. In the sequel, we shall suppress the explicit dependence of Dν
a on a. It

will be clear from the context.

Lemma 2.11. Let α ∈ R. Then DnDαy(t) = Dn+αy(t), for each n ∈ N0, where y(t)

is assumed to be sufficiently regular so that both sides of the equality are well defined.

Moreover, if β ∈ (−∞, 0] and γ ∈ [0,+∞), then DγDβy(t) = Dγ+βy(t).

Lemma 2.12. The general solution to Dνy(t) = 0, where n− 1 < ν ≤ n and ν > 0,

is the function y(t) = c1t
ν−1 + c2t

ν−2 + · · ·+ cnt
ν−n, where ci ∈ R for each i.
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Finally, let us also recall as a preliminary lemma Krasnosel’skĭı’s fixed point theo-

rem – see [2]. We shall use this classical fixed point theorem frequently in the sequel.

Lemma 2.13. Let B be a Banach space and let K ⊆ B be a cone. Assume that Ω1

and Ω2 are bounded open sets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2. Assume,

further, that T : K ∩
(
Ω2 \ Ω1

)
→ K is a completely continuous operator. If either

1. ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2; or

2. ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2;

then T has at least one fixed point in K ∩
(
Ω2 \ Ω1

)
.
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Chapter 3

Continuity of Solutions of Discrete

Fractional IVPs with Respect to

Derivative Order and Initial

Conditions

3.1 Introduction to the Problem

In this chapter we consider a fractional initial value problem of the sort considered in

a recent paper by Atici and Eloe [17]. In that paper, the authors demonstrated that

a ν-th order discrete fractional initial value problem has a unique solution, and they

presented a variety of solution algorithms. However, [17] did not address a question

of theoretical interest – that is, whether or not solutions to such equations satisfy a

continuity condition not only with respect to initial conditions but also with respect

to the order, ν, of the fractional difference. In a paper by Diethelm and Ford [34]

it was shown that in the case of continuous fractional initial value problems, the
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preceding two questions may be answered in the affirmative. In this paper, we argue

that the same sort of continuity condition holds in the case of discrete fractional

IVPs and that a number of interesting corollaries follow from this. Thus, the present

work can be considered both an extension of [17] and a complement to certain of the

results in [34]. Although this sort of result is not shocking, to be sure, given that a

discrete analogue of the well known Gronwall inequality holds (cf., the proof in the

sequel), we do believe it is nonetheless interesting since it addresses a question that

cannot arise in the integer-order setting. Moreover, as will be seen in the sequel, the

proof of this result, while essentially “elementary,” is hardly trivial. Moreover, as we

indicate in the sequel (cf., Remark 3.15), it may be interesting to attempt to refine

this result in future work, and so, we believe that the result we give here may yet

generate additional, interesting mathematics.

In any case, we first wish to collect two basic lemmas that will be important to

us in the sequel and are rather specific in their use to this chapter. In particular, we

begin with the following simple result.

Lemma 3.1. Let ν ∈ R and let t, s ∈ R such that (t − s)ν is well defined. Then

∆s(t− s)ν = −ν(t− s− 1)ν−1.

Proof. Using Definition 2.1 and the fundamental properties of the gamma function,

we get the following.

∆s(t− s)ν = (t− s− 1)ν − (t− s)ν

=
Γ(t− s)

Γ(t− s− ν)
− Γ(t− s+ 1)

Γ(t− s− ν + 1)

=
(t− s− ν)Γ(t− s)− Γ(t− s+ 1)

Γ(t− s− ν + 1)

= −ν(t− s− 1)ν−1.
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And this completes the proof.

Secondly, we need to recall the following generalization of the Gronwall inequality

to the set Na+ν := {a+ ν, a+ ν + 1, . . . }, where ν ∈ R. A proof of this may be found

in [29], for instance.

Lemma 3.2. Let a, ν ∈ R be given. If y and f are functions that are defined on

Nν+a and γ > 0 is a constant such that

y(t) ≤ f(t) + γ
t−1∑

τ=ν−1

y(τ)

for all t ∈ Nν+a, then

y(t) ≤ f(t) + γ
t−1∑

τ=ν−1

f(τ)(1 + γ)t−τ−1.

3.2 A Continuity Result

We are now ready to prove our main theorem of this chapter. Throughout this section,

we assume that ν ∈ (0, 1] and f : (Nν−1 ∪ Nν−ε−1)×R→ R is given. We consider the

nonlinear discrete fractional initial value problem

∆νy(t) = f(t+ ν − 1, y(t+ ν − 1))

∆ν−1y(t)
∣∣
t=0

= y(ν − 1) = y0,

(3.1)

where t ∈ N0. Observe that

∆ν−1y(t)
∣∣
t=0

= y(ν − 1) (3.2)
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holds by a completely straightforward and elementary calculation, whose proof we

omit. Now, let 0 < ε0 < ν ≤ 1 be given. Fix an ε > 0 sufficiently small so that

0 < ε0 ≤ ν − ε < ν ≤ 1 and consider the problem

∆ν−εz(t) = f(t+ ν − ε− 1, y(t+ ν − ε− 1))

∆ν−ε−1z(t)
∣∣
t=0

= z(ν − ε− 1) = z0,

(3.3)

where t ∈ N0. Once again, it is trivial to show that

∆ν−ε−1z(t)
∣∣
t=0

= z(ν − ε− 1) (3.4)

holds.

Note that (3.3) is the problem (3.1) perturbed both in the order of the difference

(ν versus ν − ε) and in the initial condition (y0 versus z0). Our goal is to show that

under appropriate conditions on f , the solutions to the problems (3.1) and (3.3) are

close in some reasonable sense as ε→ 0+ and z0 → y0. That is, problem (3.1) satisfies

a continuity condition with respect to ν and y0. To prove this result, we shall show

that it is implied by Theorem 3.4 below. We now state and prove this theorem, but

we require first a preliminary lemma, whose proof may be found in [17].

Lemma 3.3. The solution to the problem (3.1) is given by

y(t) =
tν−1

Γ(ν)
a0 +

1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − 1, y(s+ ν − 1)),

for t ∈ Nν−1.

Now we state and prove Theorem 3.4.

Theorem 3.4. Consider the discrete fractional initial value problems given by (3.1)
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and (3.3). Let f(t, y), where f : (Nν−1 ∪ Nν−ε−1) × R → R, be a function such that

f(t, y) satisfies a Lipschitz condition in both t and y – that is, there exists constants

L, M > 0 such that

|f (t1, y1)− f (t2, y2)| ≤ L |t1 − t2|+M |y1 − y2| ,

for all y1, y2, and t1, t2 ∈ Nν−1 ∪ Nν−ε−1. Let ξ ∈ Nν−1, ξ ≥ ν, be given. Put

N := max

{
max

t∈[ν−1,ξ]Nν−1

∣∣∣∣ tν−1

Γ(ν)
y0

∣∣∣∣ , max
t∈[ν−ε−1,ξ−ε]Nν−ε−1

∣∣∣∣(t− ε)ν−ε−1

Γ(ν − ε)
z0

∣∣∣∣
}

and

Q0 := max
(t,y)∈[ν−1,ξ]Nν−1

∪[ν−ε−1,ξ−ε]Nν−ε−1
×[−2N,2N ]

f(t, y),

and assume that

max
t∈[ν−1,ξ]Nν−1

t−ν∑
s=0

∣∣(t− s− 1)ν−1
∣∣ , max

t∈[ν−ε−1,ξ−ε]Nν−ε−1

t−ν+ε∑
s=0

∣∣(t− s− 1)ν−ε−1
∣∣

≤ Γ(ν − ε)
Q0

N.

Then if y is a solution of (3.1) and z is a solution of (3.3), it follows that for t ∈

[ν − 1, ξ]Nν−1

|y(t)− z(t− ε)| ≤ φ(t) +
MK0

Γ(ν)

t−1∑
τ=ν−1

φ(τ)

(
1 +

MK0

Γ(ν)

)t−τ−1

,



19

where K0 := max(t,τ)∈[ν−1,ξ]Nν−1
×[ν−1,ξ−1]Nν−1

|(t− τ + ν − 2)ν−1| and

φ(t) :=

∣∣∣∣ tν−1

Γ(ν)
y0 −

(t− ε)ν−ε−1

Γ(ν − ε)
z0

∣∣∣∣+
1

Γ(ν)
Q0

∣∣∣∣tνν − (t− ε)ν−ε

ν − ε

∣∣∣∣
+Q0

∣∣∣∣ Γ(ν − ε)− Γ(ν)

Γ(ν)Γ(ν − ε+ 1)
(t− ε)ν−ε

∣∣∣∣+ ε
L

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1.

Proof. By Lemma 3.1 we know that

y(t) =
tν−1

Γ(ν)
y0 +

1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − 1, y(s+ ν − 1)) (3.5)

and that

z(t) =
tν−ε−1

Γ(ν − ε)
z0+

1

Γ(ν − ε)

t−ν+ε∑
s=0

(t−s−1)ν−ε−1f(s+ν−ε−1, z(s+ν−ε−1)), (3.6)

where we can see from (3.5) that y(t) is defined on the set Nν−1 := {ν−1, ν, ν+1, . . . }

and from (3.6) that z(t) is defined on the set Nν−ε−1 := {ν−ε−1, ν−ε, ν−ε+1, . . . }.

So, at once we encounter a difficulty not encountered in the proof of the corresponding

result in the continuous case – cf., [34]. Indeed, as y and z are defined on different

sets, a direct comparison of the sort |y(t)−z(t)| is not sensible. Therefore, we consider

a shift of z, which amounts to a right shift of length ε of the graph of z; this will

allow a direct comparison of the two functions.

To this end, let us put

z̃(t) := z(t− ε). (3.7)

For reference in the sequel, let us note that

z̃(t) =
(t− ε)ν−ε−1

Γ(ν − ε)
z0 +

1

Γ(ν − ε)

t−ν∑
s=0

(t−ε−s−1)ν−ε−1f(s+ν−ε−1, z(s+ν−ε−1)).

(3.8)



20

Note, as (3.8) demonstrates, that we leave the summand of the right-hand side of

(3.8) above in terms of z, for this shall be useful in the sequel. Next, observe that

(3.5) and (3.8) together imply that

|y(t)− z̃(t)| =

∣∣∣∣∣ tν−1

Γ(ν)
y0 −

(t− ε)ν−ε−1

Γ(ν − ε)
z0

+
1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − 1, y(s+ ν − 1))

− 1

Γ(ν − ε)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣
≤
∣∣∣∣ tν−1

Γ(ν)
y0 −

(t− ε)ν−ε−1

Γ(ν − ε)
z0

∣∣∣∣
+

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − 1, y(s+ ν − 1))

− 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣
+

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − ε− 1, z(s+ ν − ε+ 1))

− 1

Γ(ν)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣
+

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

− 1

Γ(ν − ε)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣.
(3.9)

We shall now analyze each of the four pairs of terms on the right-hand side of
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(3.9). We consider first the term

∣∣∣∣ tν−1

Γ(ν)
y0 −

(t− ε)ν−ε−1

Γ(ν − ε)
z0

∣∣∣∣ , (3.10)

where t ∈ [ν−1, ξ]Nν−1 . For the moment, we shall not rewrite (3.10) but merely notice

that

lim
ε→0+

∣∣∣∣ tν−1

Γ(ν)
y0 −

(t− ε)ν−ε−1

Γ(ν − ε)
z0

∣∣∣∣ = |y0 − z0|
tν−1

Γ(ν)
,

which implies that if |y0 − z0| < δ, where δ > 0 is fixed, then

lim
ε→0+

∣∣∣∣ tν−1

Γ(ν)
y0 −

(t− ε)ν−ε−1

Γ(ν − ε)
z0

∣∣∣∣ = |y0 − z0|
tν−1

Γ(ν)
<
tν−1

Γ(ν)
δ,

whence by choosing δ and ε sufficiently small, (3.10) can be made arbitrarily small

for t ∈ [ν − 1, ξ]Nν−1 .

We next focus our attention on the third term in (3.9), which is

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − ε− 1, z(s+ ν − ε+ 1))

− 1

Γ(ν)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣.
(3.11)

Let us observe that (3.11) may be rewritten as

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

[
(t− s− 1)ν−1 − (t− ε− s− 1)ν−ε−1

]
f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣ .
(3.12)

Now, let N be as given in the statement of the theorem and put

Q0 := max
(t,y)∈[ν−1,ξ]Nν−1

∪[ν−ε−1,ξ−ε]Nν−ε−1
×[−2N,2N ]

f(t, y). (3.13)
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Observe by the hypotheses given in the statement of the theorem that

|y(t)| ≤ N +
1

Γ(ν)

t−ν∑
s=0

∣∣(t− s− 1)ν−1
∣∣ |f(s+ν−1, y(s+ν−1))| ≤ N +

Q0

Γ(ν)
· Γ(ν)

Q0

·N

so that |y(t)| ≤ 2N . A similar argument shows that |z(t)| ≤ 2N , too. So, from (3.12)

and (3.13), we find that

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

[
(t− s− 1)ν−1 − (t− ε− s− 1)ν−ε−1

]
f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣
≤ Q0

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

[
(t− s− 1)ν−1 − (t− ε− s− 1)ν−ε−1

]∣∣∣∣∣
=

1

Γ(ν)
Q0

∣∣∣∣∣
[
−1

ν
(t− s)ν

]t−ν+1

0

+

[
1

ν − ε
(t− ε− s)ν−ε

]t−ν+1

0

∣∣∣∣∣ (by Lemma 3.1 )

=
1

Γ(ν)
Q0

∣∣∣∣tνν − (t− ε)ν−ε

ν − ε

∣∣∣∣ .
(3.14)

Let us notice, which will be important in the sequel, that

lim
ε→0+

1

Γ(ν)
Q0

∣∣∣∣tνν − (t− ε)ν−ε

ν − ε

∣∣∣∣ = 0,

so that (3.11) tends to zero as ε→ 0+.

We consider next the fourth term in (3.9), which is

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

− 1

Γ(ν − ε)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣.
(3.15)

We wish to rewrite (3.15) in a way similar to the way in which (3.11) was rewritten
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above. So, using (3.13), we have

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

− 1

Γ(ν − ε)

t−ν∑
s=0

(t− ε− s− 1)ν−ε−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣
≤ Q0

∣∣∣∣∣Γ(ν − ε)− Γ(ν)

Γ(ν)Γ(ν − ε)

[
− 1

ν − ε
(t− ε− s)ν−ε

]t−ν+1

0

∣∣∣∣∣
= Q0

∣∣∣∣ Γ(ν − ε)− Γ(ν)

Γ(ν)Γ(ν − ε+ 1)
(t− ε)ν−ε

∣∣∣∣ .

(3.16)

As above, if we focus on the right-hand side of (3.16), we note that

lim
ε→0+

Q0

∣∣∣∣ Γ(ν − ε)− Γ(ν)

Γ(ν)Γ(ν − ε+ 1)
(t− ε)ν−ε

∣∣∣∣ = 0,

so that (3.15) tends to 0 as ε→ 0+. This, too, will be important in the sequel.

Finally, let us consider the second term in (3.9),which is

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − 1, y(s+ ν − 1))

− 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣.
(3.17)
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Now, using the Lipschitz condition on f , we obtain

∣∣∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − 1, y(s+ ν − 1))

− 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1f(s+ ν − ε− 1, z(s+ ν − ε− 1))

∣∣∣∣∣
≤ 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1[Lε+M |y(s+ ν − 1)− z(s+ ν − ε− 1)|]

= ε
L

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1

+
M

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1 |y(s+ ν − 1)− z(s+ ν − ε− 1)| .

(3.18)

Notice that on the right-hand side of (3.18), we find that

lim
ε→0+

ε
L

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1 = 0, (3.19)

for t ∈ [ν − 1, ξ]Nν−1 .

We shall now summarize our results thus far. So, combining (3.10), (3.14), (3.16),

and (3.18), we find that (3.9) may be rewritten as

|y(t)− z(t− ε)|

= |y(t)− z̃(t)|

≤
∣∣∣∣ tν−1

Γ(ν)
y0 −

(t− ε)ν−ε−1

Γ(ν − ε)
z0

∣∣∣∣+
1

Γ(ν)
Q0

∣∣∣∣tνν − (t− ε)ν−ε

ν − ε

∣∣∣∣
+Q0

∣∣∣∣ Γ(ν − ε)− Γ(ν)

Γ(ν)Γ(ν − ε+ 1)
(t− ε)ν−ε

∣∣∣∣+ ε
L

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1

+
M

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1 |y(s+ ν − 1)− z(s+ ν − ε− 1)| .

(3.20)
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Now, if we put

φ(t) :=

∣∣∣∣ tν−1

Γ(ν)
y0 −

(t− ε)ν−ε−1

Γ(ν − ε)
z0

∣∣∣∣+
1

Γ(ν)
Q0

∣∣∣∣tνν − (t− ε)ν−ε

ν − ε

∣∣∣∣
+Q0

∣∣∣∣ Γ(ν − ε)− Γ(ν)

Γ(ν)Γ(ν − ε+ 1)
(t− ε)ν−ε

∣∣∣∣+ ε
L

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1,

(3.21)

then we can use (3.21) together with a change of index, τ := s+ ν − 1, to rewrite the

inequality (3.20) as

|y(t)− z(t− ε)| = |y(t)− z̃(t)|

≤ φ(t) +
M

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1 |y(s+ ν − 1)− z(s+ ν − ε− 1)|

= φ(t) +
M

Γ(ν)

t−1∑
τ=ν−1

(t− τ + ν − 2)ν−1 |y(τ)− z(τ − ε)| ,

(3.22)

for t ∈ [ν − 1, ξ]Nν−1 .

Finally, we use the Gronwall inequality given in Lemma 3.2. In order to apply

Lemma 3.2 to (3.22), let us put

K0 := max
(t,τ)∈[ν−1,ξ]Nν−1

×[ν−1,t−1]Nν−1

∣∣(t− τ + ν − 2)ν−1
∣∣ .

Thus, (3.22) becomes

|y(t)− z(t− ε)| ≤ φ(t) +
MK0

Γ(ν)

t−1∑
τ=ν−1

|y(τ)− z(τ − ε)| . (3.23)

Finally, note that we can apply the Gronwall inequality to (3.23). Doing so, we
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get that

|y(t)− z(t− ε)| = |y(t)− z̃(t)| ≤ φ(t) +
MK0

Γ(ν)

t−1∑
τ=ν−1

φ(τ)

(
1 +

MK0

Γ(ν)

)t−τ−1

, (3.24)

which completes the proof.

Remark 3.5. Let us make one observation regarding the statement of Theorem 3.4

and its proof. Notice that the number Q0 is necessary if and only if ε 6= 0. Thus, in

the case where ε = 0, we need not worry about the number Q0, and, consequently,

the hypotheses of Theorem 3.4 can be suitably relaxed. In the sequel, we shall not

differentiate between these cases, but the reader should be aware of this difference.

Now, having proved Theorem 3.4, we deduce a number of corollaries from it.

Corollary 3.6. Suppose that the hypotheses of Theorem 3.4 hold. Suppose, further,

that |y0 − z0| := δ. Then given a solution y of problem (3.1) and a solution z of

problem (3.3), it follows that for each η > 0, we can choose δ, ε > 0 in such a way

that the bound

|y(t)− z(t− ε)| < η (3.25)

holds for t ∈ [ν − 1, ξ]Nν−1, for ξ > 0 given.

Proof. Let us begin by noting that by writing φ in terms of the gamma function, we
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see that

φ(t) =

∣∣∣∣Γ(t+ 1)Γ(ν − ε)y0 − Γ(t− ε+ 1)Γ(ν)z0

Γ(ν)Γ(t− ν + 2)Γ(ν − ε)

∣∣∣∣
+

Q0

Γ(ν)

∣∣∣∣(ν − ε)Γ(t+ 1)− νΓ(t− ε+ 1)

νΓ(t− ν + 1)

∣∣∣∣
+Q0|Γ(ν − ε)− Γ(ν)| ·

∣∣∣∣ Γ(t− ε+ 1)

Γ(ν)Γ(ν − ε+ 1)Γ(t− ν + 1)

∣∣∣∣
+

εL

Γ(ν)

t−ν∑
s=0

Γ(t− s)
Γ(t− s− ν + 1)

.

(3.26)

We now argue that each term in (3.26) can be made arbitrarily small by picking δ,

ε > 0 sufficiently small.

To this end, let η0 > 0 be given. Notice that we can select N1 > 0 such that

whenever 0 < ε < N1, we find by the uniform continuity of Γ(·) on [ν − ε,+∞) that

|Γ(ν − ε)− Γ(ν)| < η0

4Q0

∣∣∣ Γ(t−ε+1)
Γ(ν)Γ(ν−ε+1)Γ(t−ν+1)

∣∣∣+ 4
<
η0

4
, (3.27)

for all t ∈ [ν − 1, ξ]Nν−1 .

Similarly, there exists a number N2 > 0 such that for 0 < ε < N2, we find that

Q0

Γ(ν)

∣∣∣∣(ν − ε)Γ(t+ 1)− νΓ(t− ε+ 1)

νΓ(t− ν + 1)

∣∣∣∣
≤ Q0

Γ(ν)

[
|Γ(t+ 1)− Γ(t+ 1− ε)| · 1

Γ(t− ν + 1)
− ε · Γ(t+ 1)

Γ(t− ν + 1)

]
≤ η0

8
+
η0

8

=
η0

4
,

(3.28)

say, where this again follows from the uniform continuity of the gamma function on

the set [ν − ε,+∞). (Note that ν − ε is, by construction, bounded away from 0.)
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Moreover, for some number N3 > 0, we have that whenever 0 < ε < N3 and

δ := |y0 − z0| <
η0

8
· max
t∈[ν−1,ξ]Nν−1

1

Γ(t− ε+ 1)Γ(ν)
,

it follows that

1

Γ(ν)Γ(t− ν + 2)Γ(ν − ε)
|Γ(t+ 1)Γ(ν − ε)y0 − Γ(t− ε+ 1)Γ(ν)z0|

≤ |y0| |Γ(t+ 1)Γ(ν − ε)− Γ(t− ε+ 1)Γ(ν)|+ |y0 − z0| |Γ(t− ε+ 1)Γ(ν)|

≤ |y0| [|Γ(t+ 1)− Γ(t+ 1− ε)| · |Γ(ν − ε)|+ |Γ(t− ε+ 1)| · |Γ(ν − ε)− Γ(ν)|]

+ |y0 − z0| |Γ(t− ε+ 1)Γ(ν)|

≤ η0

8
+
η0

8

≤ η0

4
,

(3.29)

say.

Finally, it is clear that we can choose N4 > 0 so that

εL

Γ(ν)

t−ν∑
s=0

Γ(t− s)
Γ(t− s− ν + 1)

<
η0

4
(3.30)

whenever 0 < ε < N4 because both the sum in (3.30) above and the quantity L
Γ(ν)

are

bounded.

Now, put N := min {N1, N2, N3, N4}. Then combining (3.27)–(3.30) implies that

whenever 0 < ε < N ,

|φ(t)| < η0, (3.31)

and so, for t ∈ [ν − 1, ξ]Nν−1 , φ(t) can be made arbitrarily small.
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So, now let η > 0 be given. It is clear that

max
t∈[ν−1,ξ]Nν−1

∣∣∣∣∣MK0

Γ(ν)

t−1∑
τ=ν−1

(
1 +

MK0

Γ(ν)

)t−τ−1
∣∣∣∣∣ ≤ N5, (3.32)

for some number N5 ≥ 0. Then (3.31) and (3.32) together imply that we can choose

δ and ε sufficiently small so that

max
t∈[ν−1,ξ]Nν−1

φ(t) < min

{
η

2
,

η

2N5 + 1

}
. (3.33)

So, it follows, then, from (3.31)–(3.33) that for any given η > 0, we have

|y(t)− z(t− ε)| < η,

whenever δ and ε are chosen sufficiently small, and so, the proof is complete.

Corollary 3.7. Suppose that the hypotheses of Theorem 3.4 hold. Suppose, further,

that |y0 − z0| := δ. Let ξ > 0 be given. Suppose that ε = 0 in (3.3). Then given a

solution y of problem (3.1) and a solution z of problem (3.3), it follows that for each

η > 0, we can choose δ > 0 in such a way that the bound

|y(t)− z(t)| < η (3.34)

holds for t ∈ [ν − 1, ξ]Nν−1.

Proof. Note that if ε = 0, then we find from (3.22) that

φ(t) =
tν−1

Γ(ν)
|y0 − z0| .

Now, on the compact set [ν − 1, ξ]Nν−1 , there exists a number ξ0 ∈ [ν − 1, ξ]Nν−1 such
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that

max
τ∈[ν−1,ξ−1]Nν−1

φ(τ) =
ξ
ν−1
0

Γ(ν)
|y0 − z0| .

Put K1 := max(t,τ)∈[ν−1,ξ]Nν−1
×[ν−1,t−1]Nν−1

(
1 + MK0

Γ(ν)

)t−τ−1

. Then we find that

|y(t)− z(t)| ≤ ξ
ν−1
0

Γ(ν)
δ +

MK0

Γ(ν)

t−1∑
τ=ν−1

ξ
ν−1
0

Γ(ν)

(
1 +

MK0

Γ(ν)

)t−τ−1

δ

≤ δ

[
ξ
ν−1
0

Γ(ν)
+
MK0K1ξ

ν−1
0 (ξ − ν + 1)

(Γ(ν))2

]
.

(3.35)

So, pick

0 < δ <
η

ξ
ν−1

0

Γ(ν)
+

MK0K1ξ
ν−1

0 (ξ−ν+1)

(Γ(ν))2

. (3.36)

Then (3.35) and (3.36) together imply that

|y(t)− z(t)| ≤ δ

(
ξ
ν−1
0

Γ(ν)
+
MK0K1ξ

ν−1
0 (ξ − ν + 1)

(Γ(ν))2

)
< η, (3.37)

and the proof is complete.

Corollary 3.8. Suppose that the hypotheses of Theorem 3.4 hold. Furthermore, let

y(t) be a solution of (3.1) and z(t) a solution of (3.3). Then in case ν = 1, we get

that

|y(t)− z(t− ε)| ≤ φ(t) +MK0

t−1∑
τ=0

φ(τ) (1 +MK0)t−τ−1 ,

where

φ(t) :=

∣∣∣∣y0 −
(t− ε)−ε

Γ(1− ε)
z0

∣∣∣∣
+Q0

[∣∣∣∣t− (t− ε)1−ε

1− ε

∣∣∣∣+

∣∣∣∣(Γ(1− ε)− 1)(t− ε)−ε

Γ(2− ε)

∣∣∣∣]+ tεL.

(3.38)

Proof. Immediate from (3.24).
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Corollary 3.9. Suppose that the hypotheses of Theorem 3.4 hold and that ν = 1.

Suppose, further, that |y0 − z0| := δ. Suppose that ε = 0 in (3.3). Then given a

solution y of problem (3.1) and a solution z of problem (3.3), it follows that for each

η > 0, we can choose δ > 0 in such a way that the bound

|y(t)− z(t)| < η (3.39)

holds for t ∈ [ν − 1, ξ]Nν−1 for ξ > 0 given.

Proof. From (3.37), pick 0 < δ < η
1+MK0K1ξ

. Then Corollary 3.7 implies the conclu-

sion.

We conclude by first giving an example of Corollary 3.7 and then making some

remarks about Theorem 3.4 and its corollaries.

Example 3.10. Suppose that we put ε := 0, ν := 9
10

, η := 2, and ξ := 99
10

. Let us

also suppose that f(t, y) := t+ y. Thus, we wish to apply the result of Corollary 3.7

to the pair of FBVPs

∆
9
10y(t) =

(
t− 1

10

)
+ y

(
t− 1

10

)
∆−

1
10y(t)

∣∣
t=0

= y

(
− 1

10

)
= y0

(3.40)

and

∆
9
10 z(t) =

(
t− 1

10

)
+ y

(
t− 1

10

)
∆−

1
10 z(t)

∣∣
t=0

= z

(
− 1

10

)
= z0,

(3.41)
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and then determine how large δ := |y0 − z0| may be chosen so that

|y(t)− z(t)| < 2 = η (3.42)

for all t ∈
[
− 1

10
, 99

10

]
Nν−1

, where y and z are the solutions to problems (3.40) and

(3.41), respectively.

To this end, we can deduce the following quantities.

M := 1

ξ0 := − 1

10

K0 := max
(t,τ)∈[− 1

10
, 99
10 ]Nν−1

×[− 1
10
,t−1]Nν−1

∣∣∣∣∣
(
t− τ − 11

10

)− 1
10

∣∣∣∣∣ ≈ 1.07

K1 := max
(t,τ)∈[− 1

10
, 99
10 ]Nν−1

×[− 1
10
,t−1]Nν−1

(
1 +

MK0

Γ(ν)

)t−τ−1

≈ 512

(3.43)

Thus, using estimate (3.36) together with the values given by (3.43), we find that

we should take

δ <
η

(− 1
10)

9
10−1

Γ( 9
10)

+
1.07·512·(− 1

10)
9
10−1

·( 99
10
− 9

10
+1)

(Γ( 9
10))

2

≈ η

5121
, (3.44)

whence by putting η = 2 into (3.44), we find that

δ < 0.000391. (3.45)

Consequently, (3.45) implies that if we wish the solutions y and z to remain within

η = 2 units of each other on the interval
[
− 1

10
, 99

10

]
Nν−1

, then the initial conditions y0

and z0 must be within no more than approximately 0.000391 units. Clearly, if we
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either shorten the interval [ν − 1, ξ]Nν−1 or relax the closeness, η, that y and z must

remain to each other, then the maximum value of δ will increase.

Remark 3.11. Note that Corollary 3.6 implies that given solutions to (3.1) and (3.3),

the solutions remain close (in the sense of Theorem 3.2) provided that (i) the initial

conditions are sufficiently close and (ii) the orders of the differences are sufficiently

close. So, this is a statement regarding continuity of solutions to two different IVPs

wherein both the order of difference and the initial conditions are not (necessarily)

equal.

Remark 3.12. Note that Corollary 3.7 implies that given solutions to (3.1) and (3.3)

with ε = 0, the solutions remain close (in the sense of Theorem 3.2). So, this is a

statement regarding continuity of solutions to two different IVPs wherein the order

of difference is equal but the initial conditions are not (necessarily) equal.

Remark 3.13. Note that Corollary 3.8 implies that for 0 < ν < 1 a ν-th order initial

value problem may be approximated by a first-order initial value problem (and vice

versa) provided that ν is sufficiently close to (and less than) unity and that ξ is kept

sufficiently close to and greater than −ε.

Remark 3.14. Note that Corollary 3.9 confirms the classical result – namely, that

solutions to a first-order discrete initial value problem are continuous with respect to

initial conditions.

Remark 3.15. In comparing our results to those that can be found in the paper by

Diethelm and Ford [34], we find that our results are somewhat weaker. For example,

we make some restrictions on the growth of f(t, y) that Diethelm and Ford do not

make. Part of the difference is that the discrete fractional difference shifts domains,

and this causes some complications, as pointed out in the proof of Theorem 3.4.

Moreover, our proof strategy is rather different than the one employed in [34]. It may
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be possible to provide a proof more analogous to that provided in [34], and this might

represent an interesting program for a future work.

As a means of concluding this chapter, we note that just as Diethelm and Ford

remark in [34] and just as we mentioned at the beginning of this chapter, we point

out that in this paper we have addressed a question that cannot arise in the classical

theory of difference equations. Indeed, in the latter theory, we put ν = 1, and so,

there is no concern as to the continuity of solutions with respect to the order of the

difference operator. Thus, the question that has been addressed in this chapter is one

unique to the fractional difference calculus, and this makes the fractional difference

equation more interesting in this respect than the integer-order counterpart. As we

continue throughout this work, we will continue to see certain of these interesting

differences arise in the problems we study.
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Chapter 4

Sequential Properties of the

Discrete Fractional Difference

Operator

In the previous chapter, we considered a particular continuity property of the frac-

tional difference operator with respect to an initial value problem. Essentially, this

is an operational property of the fractional difference, and in the present chapter we

consider another consequence of the operational properties of the fractional difference.

Indeed, we now consider a discrete fractional boundary value problem (FBVP), for

t ∈ [2− µ1 − µ2 − µ3, b+ 2− µ1 − µ2 − µ3]N2−µ1−µ2−µ3
, of the form

−∆µ1∆µ2∆µ3y(t) = f(t+ µ1 + µ2 + µ3 − 1, y(t+ µ1 + µ2 + µ3 − 1)), (4.1)

subject to the conjugate boundary conditions

y(0) = 0 = y(b+ 2), (4.2)
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where f : [1, b + 1]N0 × R → [0,+∞) is a continuous function, b ∈ N, and µ1, µ2,

µ3 ∈ (0, 1) satisfy both

1 < µ2 + µ3 < 2 (4.3)

and

1 < µ1 + µ2 + µ3 < 2. (4.4)

The purpose of this chapter is to compare and contrast problem (4.1)–(4.2) with

the non-sequential conjugate problem studied recently by Atici and Eloe [20] and

to highlight the complications that arise in the sequential setting, particularly in the

context of proving that (4.1)–(4.2) admits at least one positive solution. We point out

that Wei, et al. [88] have addressed some of these issues in the continuous fractional

setting. Indeed, because of the sequence of differences in (4.1) and the composition

rules for fractional differences, it turns out that problem (4.1) is different than the

simpler problem −∆νy(t) = −f(t + ν − 1, y(t + ν − 1)), where ν ∈ (1, 2]. We shall

expand on these differences. Moreover, our analysis will also yield complementary

results for the delta-nabla problem

−∆µ1∆µ2∇µ3y (t+ µ3) = f(t+ µ1 + µ2 + µ3 − 1, y(t+ µ1 + µ2 + µ3 − 1)), (4.5)

subject to (4.2), which has not yet been studied. In particular, our analysis will

provide the following insights.

1. We clarify the structure of sequential fractional difference equations. Due to the

lack of commutativity of the fractional difference, this represents an interesting

complication that does not arise in the integer-order setting.

2. In problem (4.5), we necessarily have a composition of two fractional differences,

which gives rise to a sequential problem. Consequently, while we believe (4.1)–
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(4.2) to be mathematically interesting for its own sake, it is the case that one

reason, among several, to be interested in problems such as (4.1)–(4.2) is due

to the fact that fractional delta-nabla problems such as (4.5) are necessarily of

this sort of sequential type. Now, it is the case that delta-nabla problems are

not of great interest on just the time scale Z. However, as clarified below, there

are now numerous attempts to extend the discrete fractional calculus to other

time scales, and so, interest in fractional delta-nabla problems may increase in

these other settings.

3. We provide some connections with the recent work [88] in the discrete setting.

Since, as mentioned earlier, we shall also obtain results for problems involving the

discrete fractional nabla operator, we remark that in the integer-order literature, the

delta-nabla boundary value problem has received considerable attention in recent

years. For example, Anderson [5] considered the problem u∆∇(t) + f(t, u(t)) = 0,

u(0) = 0, αu(η) = u(T ), on a time scale T. In case one puts T = Z, then one

obtains an integer-order delta-nabla difference equation. Kaufmann and Raffoul [69]

considered a closely related problem. Similarly, Cheung, et al. [30] considered a

delta-nabla difference equation of the form ∇∆u(k) + f(k, u(k)) = 0 together with a

couple of a different specific nonlocal conditions. For some other works on delta-nabla

boundary value problems on various time scales, see [6, 7, 8, 12, 14, 31, 35, 61, 83]

and the references therein.

Before proceeding with our program, an operational property that we require in

order to complete our program in the sequel is the following. This result, Theorem

4.1, was recently established by Holm [63] following the program in the continuous

fractional calculus outlined by Podlubny [78]. In particular, one might wonder why

we have chosen the domains in problem (4.1)–(4.2) as we have. Indeed, the choice of
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the domain seems at odds with the choice in other recent works on discrete boundary

value problems of fractional order – cf., [20]. The statement of Theorem 4.1 shall make

clear why we have made this seemingly peculiar choice. As a careful examination of

the proofs in [63] reveal, really all of this is a consequence of the peculiar domain

requirements of the power rule in Lemma 2.7 above.

Theorem 4.1. Let f : Na → R be given and suppose that ν, µ > 0 with N − 1 <

ν ≤ N and M − 1 < µ ≤M . Then for t ∈ Na+M−µ+N−ν

∆ν
a+M−µ∆µ

af(t) = ∆ν+µ
a f(t)−

∑M−1
j=0

∆j−M+µf(a+M−µ)
Γ(−ν−M+j+1)

(t− a−M + µ)−ν−M+j, ν ∈ (N − 1, N)

0, ν = N

.
(4.6)

In [63], Holm did not address the meaning of the term ∆j−M+µf(a + M − µ)

appearing in (4.6) above. In fact, in the context of our boundary value problem, this

term has a special relevance, which is very easy to prove. We do so below.

Proposition 4.2. Let y : N0 → R with µ ∈ (0, 1]. Then we find that

∆µ−1y(1− µ) = y(0). (4.7)

Proof. To see that this is true, observe that µ− 1 ≤ 0 since µ ∈ (0, 1]. By definition,
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then, it follows that

∆µ−1y(1− µ) =

[
1

Γ(1− µ)

t+µ−1∑
s=0

(t− s− 1)−µy(s)

]
t=1−µ

=
1

Γ(1− µ)

0∑
s=0

(−µ− s)−µy(s)

=
1

Γ(1− µ)
· Γ(1− µ)y(0)

= y(0),

(4.8)

as claimed.

With these results in hand, we are now ready to analyze problem (4.1)–(4.2). We

do so in the next section.

4.1 Analysis of Problem (4.1)–(4.2)

4.1.1 Green’s Function Analysis

We now provide an analysis of problem (4.1)–(4.2). We begin by repeatedly using

Theorem 4.1 to derive a representation of a solution to (4.1)–(4.2) as the fixed point of

an appropriate operator. In the sequel, the Banach space B is the set of (continuous)

real-valued maps from [0, b+2]N0 when equipped with the usual maximum norm, ‖·‖,

which, incidentally, is equivalent to the Banach space Rb+3 equipped with the same

norm. Moreover, henceforth we also put

µ̃ := µ1 + µ2 + µ3, (4.9)



40

for notational convenience. Recall, moreover, that µ1 +µ2 ∈ (1, 2) and that µ̃ ∈ (1, 2);

these facts will be important in the sequel. Finally, we give the following notation,

which will also be useful in the sequel.

T1 :=
{

(t, s) ∈ [0, b+ 2]N0 × [2− µ̃, b+ 2− µ̃]N2−µ̃ :

0 ≤ s < t− µ̃+ 1 ≤ b+ 2
}

T2 :=
{

(t, s) ∈ [0, b+ 2]N0 × [2− µ̃, b+ 2− µ̃]N2−µ̃ :

0 ≤ t− µ̃+ 1 ≤ s ≤ b+ 2
}

Theorem 4.3. Let the operator T : B → B be defined by

(Ty)(t) := α(t)y(1) +

b+2−µ̃∑
s=−µ̃+2

G(t, s)f (s+ µ̃− 1, y (s+ µ̃− 1)) , (4.10)

where α : [0, b+ 2]N0 → R is defined by

α(t) :=
(t− 2 + µ2 + µ3)µ2+µ3−1

Γ (µ2 + µ3)
− (b+ µ2 + µ3)µ2+µ3−1

(b+ µ̃)µ̃−1 Γ (µ2 + µ3)
(t+ µ̃− 2)µ̃−1 (4.11)

and G : [0, b + 2]N0 × [−µ̃ + 2,−µ̃ + b + 2]N2−µ̃ → R is the Green’s function for the

non-sequential conjugate problem given by

G(t, s) :=


(t+µ̃−2)µ̃−1(b+1−s)µ̃−1

(b+µ̃)µ̃−1 − (t− s− 1)µ̃−1, (t, s) ∈ T1

(t+µ̃−2)µ̃−1(b+1−s)µ̃−1

(b+µ̃)µ̃−1 , (t, s) ∈ T2

. (4.12)

Then whenever y ∈ B is a fixed point of T , it follows that y is a solution of problem

(4.1)–(4.2).

Proof. To prove this claim, we shall apply repeatedly Theorem 4.1. To this end, recall
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both that µ3 ∈ (0, 1) and that µ2 + µ3 ∈ (1, 2). Therefore, it follows from Lemma 2.7

and Theorem 4.1 that

∆µ1∆µ2∆µ3y(t) = ∆µ1

[
∆µ2+µ3y(t)− y(0)

Γ (−µ2)
(t− 1 + µ3)−µ2−1

]
= ∆µ1

[
∆µ2+µ3y(t)

]
− y(0)

Γ (−µ2)
∆µ1

[
(t− 1 + µ3)−µ2−1]

= ∆µ̃y(t)− y(0)

Γ (−µ2)
· Γ (−µ2)

Γ (−µ2 − µ1)
(t− 1 + µ3)−µ2−µ1−1]

−
1∑
j=0

[
∆j−2+µ2+µ3y (2− µ2 − µ3)

Γ (−µ1 − 2 + j + 1)
(t− 2 + µ2 + µ3)−µ1−2+j

]
= ∆µ̃y(t)− ∆µ2+µ3−2y (2− µ2 − µ3)

Γ (−µ1 − 1)
(t− 2 + µ2 + µ3)−µ1−2

− ∆µ2+µ3−1y (2− µ2 − µ3)

Γ (−µ1)
(t− 2 + µ2 + µ3)−µ1−1

− y(0)

Γ (−µ2 − µ1)
(t− 1 + µ3)−µ2−µ1−1 .

(4.13)

Now, the same argument as in Proposition 4.2 shows that

∆µ2+µ3−2y (2− µ2 − µ3) = y(0). (4.14)

On the other hand, note that (cf., Definition 2.2)

∆µ2+µ3−1y(t) = ∆∆µ2+µ3−2y(t)

= ∆t

[
1

Γ (2− µ2 − µ3)

t−2+µ2+µ3∑
s=0

(t− s− 1)1−µ2−µ3y(s)

]

=
1

Γ (2− µ2 − µ3)

t−1+µ2+µ3∑
s=0

(t− s)1−µ2−µ3y(s)

− 1

Γ (2− µ2 − µ3)

t−2+µ2+µ3∑
s=0

(t− s− 1)1−µ2−µ3y(s).

(4.15)
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So, from (4.15), it is clear that

∆µ2+µ3−1y (2− µ2 − µ3)

=
1

Γ (2− µ2 − µ3)

1∑
s=0

(2− µ2 − µ3 − s)1−µ2−µ3 y(s)

− 1

Γ (2− µ2 − µ3)

0∑
s=0

(1− µ2 − µ3 − s)1−µ2−µ3 y(s)

=
1

Γ (2− µ2 − µ3)
y(0)

[
(2− µ2 − µ3)1−µ2−µ3 − (1− µ2 − µ3)1−µ2−µ3]

+
1

Γ (2− µ2 − µ3)
(1− µ2 − µ3)1−µ2−µ3 y(1).

(4.16)

Putting (4.14) and (4.16) into (4.13), we find that

∆µ1∆µ2∆µ3y(t) = ∆µ̃y(t)− [y(1) + (1− µ2 − µ3) y(0)]

Γ (−µ1)
(t− 2 + µ2 + µ3)−µ1−1

− y(0)

Γ (−µ1 − 1)
(t− 2 + µ2 + µ3)−µ1−2

− y(0)

Γ (−µ2 − µ1)
(t− 1 + µ3)−µ2−µ1−1 ,

(4.17)

where have made some routine simplifications. Now, since y(0) = 0 by boundary

condition (4.2), we find that (4.17) reduces to

∆µ1∆µ2∆µ3y(t) = ∆µ̃y(t)− (t− 2 + µ2 + µ3)−µ1−1

Γ (−µ1)
y(1). (4.18)

Formally inverting the problem (4.1), we find by way of (4.18) above (together
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with Lemma 2.4) that

y(t) = −∆−µ̃

[
−(t− 2 + µ2 + µ3)−µ1−1

Γ (−µ1)
y(1)

]
−∆−µ̃f (t+ µ̃− 1, y (t+ µ̃− 1))

+ c1 (t+ µ̃− 2)µ̃−1 + c2 (t+ µ̃− 2)µ̃−2 .

(4.19)

Before continuing further, we wish to give a careful explanation for the basis

vectors (t+ µ̃− 2)µ̃−1 and (t+ µ̃− 2)µ̃−2 appearing in (4.19). (The reader should also

consult Holm [63] for a detailed discussion of this point.) The reason for this choice

is related to the peculiar statement of the power rule given in Lemma 2.7. Indeed,

observe that if y(t) is given as in (4.19) above, then in order for y to be a solution to

(4.1), it must be the case that −∆µ̃y(t) = f(t + µ̃ − 1, y(t + µ̃ − 1)), for t ∈ N2−µ̃.

But, in particular, this means that both

∆µ̃
[
(t+ µ̃− 2)µ̃−1

]
= 0 (4.20)

and

∆µ̃
[
(t+ µ̃− 2)µ̃−2

]
= 0 (4.21)

must hold for each admissible t. Whether (4.20)–(4.21) hold depends upon the ap-

plicability of the power rule, namely Lemma 2.7, in this situation. Assuming that

the power rule may be applied, it is straightforward to check that each of (4.20) and

(4.21) does indeed hold.

So, let us explicitly check that the power rule can indeed be applied in this setting.

Let us first consider (4.21). In this case, a routine calculation shows that the power

rule can be applied whenever t ∈ N2−µ̃, which, of course, it is by assumption. So,

(4.21) is valid. On the other hand, a similar calculation shows that (4.20) holds
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provided that t ∈ N3−µ̃. This would seem to be a problem since we really desire

(4.20) to hold at t = 2− µ̃, too. However, notice that

[
(t− 2 + µ̃)µ̃−1

]
t=0

= 0, (4.22)

as is easily checked, and that

∆µ̃
[
(t+ µ̃− 2)µ̃−1

]
= ∆2

[
1

Γ(2− µ̃)

t+µ̃−2∑
s=0

(t− s− 1)1−µ̃(s+ µ̃− 2)µ̃−1

]

= ∆2

[
1

Γ(2− µ̃)

t+µ̃−2∑
s=1

(t− s− 1)1−µ̃(s+ µ̃− 2)µ̃−1

] (4.23)

where to get the final equality we have used (4.22) above. So, from (4.23) we conclude

that (4.20) need only hold for t ∈ N3−µ̃ because when t = 2−µ̃, (4.20) holds vacuously.

In summary, both (4.20) and (4.21) hold for all t ∈ N2−µ̃, as desired.

Now, continuing from (4.19), it is clear that the boundary condition y(0) = 0

implies that c2 = 0. On the other hand, the boundary condition y(b+ 2) = 0, implies

that

0 = c1 (b+ µ̃)µ̃−1 +
y(1)

Γ (µ2 + µ3)
(b+ µ2 + µ3)µ2+µ3−1

− 1

Γ (µ̃)

b+2−µ̃∑
s=−µ̃+2

(b+ 1− s)µ̃−1f (s+ µ̃− 1, y (s+ µ̃− 1))

(4.24)
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From (4.24), we deduce that

c1 = − (b+ µ2 + µ3)µ2+µ3−1

(b+ µ̃)µ̃−1 Γ (µ2 + µ3)
y(1)

+
1

Γ (µ̃)

b+2−µ̃∑
s=−µ̃+2

(b+ 1− s)µ̃−1

(b+ µ̃)µ̃−1
f (s+ µ̃− 1, y (s+ µ̃− 1)) .

(4.25)

Finally, putting the obtained values of c1 and c2 back into (4.19), we find that

y(t) = α(t)y(1) +

b+2−µ̃∑
s=−µ̃+2

G(t, s)f (s+ µ̃− 1, y (s+ µ̃− 1)) , (4.26)

where α is as defined in (4.11) above and G(t, s) is as defined in (4.12) above. Now,

if (Ty)(t) is defined by the right-hand side of (4.26), then it is clear that T satisfies

both the difference equation (4.1) and the boundary conditions (4.2). Therefore, the

desired claim holds, and this completes the proof.

Remark 4.4. Observe that if f(t, y) has the special form f(t), that is, we consider the

linear problem, then from (4.26), it is easy to show that the solution to the boundary

value problem is

y(t) =

 1

1− α(1)

b+2−µ̃∑
s=−µ̃+2

G(1, s)f (s+ µ̃− 1)

α(t) +

b+2−µ̃∑
s=−µ̃+2

G(t, s)f (s+ µ̃− 1) .

On the other hand, if f(t, y) has the form a(t)y, which also gives rise to a linear

problem, then the analysis is rather much more delicate. In fact, there does not

appear to be any results in the discrete fractional calculus literature on such linear

problems. We leave this consideration, however, to future work.

We next state an easy proposition regarding the Green’s function, G(t, s), appear-

ing in the operator T .



46

Proposition 4.5. The Green’s function G(t, s) given in Theorem 4.3 satisfies:

1. G(t, s) ≥ 0 for each (t, s) ∈ [0, b+ 2]N0 × [2− µ̃, b+ 2− µ̃]N2−µ̃;

2. maxt∈[0,b+2]N0
G(t, s) = G(s+ µ̃− 1, s) for each s ∈ [2− µ̃, b+ 2− µ̃]N2−µ̃; and

3. there exists a number γ ∈ (0, 1) such that

min
[ b4 ,

3b
4 ]N0

G(t, s) ≥ γ max
t∈[0,b+2]N0

G(t, s) = γG(s+ µ̃− 1, s),

for s ∈ [2− µ̃, b+ 2− µ̃]N2−µ̃.

Proof. A straightforward modification of the proof of [20, Theorem 3.2], keeping

track of the different domains, yields this result. For example, in case (t, s) ∈ T2, it

is obvious that ∆tG(t, s) ≥ 0. On the other hand, in case (t, s) ∈ T1, we find that

∆tG(t, s) =
(µ̃− 1)(t+ µ̃− 2)µ̃−1(b+ 1− s)µ̃−1

(b+ µ̃)µ̃−1
− (µ̃− 1)(t− s− 1)µ̃−2. (4.27)

From (4.27) it is clear that ∆tG(t, s) ≤ 0 if and only if

(t+ µ̃− 2)µ̃−2(b+ 1− s)µ̃−1

(t− s− 1)µ̃−2(b+ µ̃)µ̃−1
≤ 1 (4.28)

holds. But that (4.28) holds is a consequence of the fact that tβ is increasing when

β ∈ [0, 1) and decreasing when β ∈ (−1, 0], which may be easily verified by using

the definition of tβ. As a consequence of the fact that G(t, s) is decreasing in t for

all (t, s) ∈ T1 and increasing in t for all (t, s) ∈ T2, conclusion (2) holds. Moreover,

conclusion (1) holds by combining (2) with the fact that G(0, s) = G(b + 2, s) = 0,

for each admissible s. Finally to prove (3), we can give an argument exactly similar

to that of Atici and Eloe in [20]. Therefore, we omit this part of the proof.
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We next require a preliminary lemma regarding the behavior of α appearing in

(4.11) above.

Lemma 4.6. Let α be defined as in (4.11). Then α(0) = α(b + 2) = 0. Moreover,

‖α‖ ∈ (0, 1).

Proof. That α(0) = α(b + 2) = 0 is obvious. On the other hand, to show that

0 < ‖α‖ < 1, we argue as follows.

We first show that α(t) > 0, for all t ∈ [1, b+ 1]N. Let us first note that

α(t) =
(t− 2 + µ2 + µ3)µ2+µ3−1

Γ (µ2 + µ3)
− (b+ µ2 + µ3)µ2+µ3−1

(b+ µ̃)µ̃−1 Γ (µ2 + µ3)
(t+ µ̃− 2)µ̃−1

=
Γ (t+ µ2 + µ3 − 1)

Γ(t)Γ (µ2 + µ3)
− Γ (b+ µ2 + µ3 + 1) Γ (t+ µ̃− 1)

Γ (b+ µ̃+ 1) Γ (µ2 + µ3) Γ(t)

=
Γ (t+ µ2 + µ3 − 1) Γ (b+ µ̃+ 1)− Γ (t+ µ̃− 1) Γ (b+ µ2 + µ3 + 1)

Γ(t)Γ (µ2 + µ3) Γ (b+ µ̃+ 1)
.

(4.29)

Therefore, α(t) > 0, for t ∈ [1, b+ 1]N, if and only if

Γ (t+ µ2 + µ3 − 1) Γ (b+ µ̃+ 1) > Γ (t+ µ̃− 1) Γ (b+ µ2 + µ3 + 1) (4.30)

holds for all such t. Now, (4.30) is equivalent to

Γ (t+ µ2 + µ3 − 1) Γ (b+ µ̃+ 1)

Γ (t+ µ̃− 1) Γ (b+ µ2 + µ3 + 1)
> 1,

but since

Γ (t+ µ2 + µ3 − 1) Γ (b+ µ̃+ 1)

Γ (t+ µ̃− 1) Γ (b+ µ2 + µ3 + 1)
=

(b+ µ̃) · · · (t+ µ̃− 1)

(b+ µ2 + µ3) · · · (t+ µ2 + µ3 − 1)
(4.31)

and the right-hand side of (4.31) is clearly greater than unity, it follows that (4.30)

holds, and so, we conclude from (4.29)–(4.31) that α(t) > 0, for t ∈ [1, b + 1]N, as
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claimed.

On the other hand, to argue that α(t) < 1, for t ∈ [0, b + 2]N0 , we begin by

recasting α(t) in an alternative form. In particular, define µ0 ∈ (1, 2) by

µ0 := µ2 + µ3. (4.32)

Then it follows that

µ̃ = µ0 + µ1. (4.33)

Therefore, upon putting (4.32) and (4.33) into the definition of α given in (4.11), we

find that

α(t) =
(t− 2 + µ0)µ0−1

Γ (µ0)
− (b+ µ0)µ0−1 (t+ µ0 + µ1 − 2)µ0+µ1−1

(b+ µ0 + µ1)µ0+µ1−1 Γ (µ0)
. (4.34)

Now, consider the quotient

(t+ µ0 + µ1 − 2)µ0+µ1−1

(b+ µ0 + µ1)µ0+µ1−1 (4.35)

appearing in (4.34) above. Since

(t+ µ0 + µ1 − 2)µ0+µ1−1

(b+ µ0 + µ1)µ0+µ1−1 =
(b+ 1) · · · (t+ 1)(t)

(b+ µ0 + µ1) · · · (t+ µ0 + µ1) (t+ µ0 + µ1 − 1)
, (4.36)

it is clear from (4.36) that for each fixed but arbitrary b, t, and µ0, (4.35) decreases
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as µ1 increases. Consequently, for fixed but arbitrary b, t, and µ0 we conclude that

α(t) <
(t− 2 + µ0)µ0−1

Γ (µ0)
−

[
(b+ µ0)µ0−1 (t+ µ0 + µ1 − 2)µ0+µ1−1

(b+ µ0 + µ1)µ0+µ1−1 Γ (µ0)

]
µ1=1

=
(t− 2 + µ0)µ0−1

Γ (µ0)
− (b+ µ0)µ0−1 (t+ µ0 − 1)µ0

(b+ µ0 + 1)µ0 Γ (µ0)

=
(t− 2 + µ0)µ0−1

Γ (µ0)
− Γ (b+ µ0 + 1) Γ (t+ µ0) Γ(b+ 2)

Γ(b+ 2)Γ(t)Γ (µ0) Γ (b+ µ0 + 2)

=
(t− 2 + µ0)µ0−1

Γ (µ0)
− Γ (t+ µ0)

(b+ µ0 + 1) Γ(t)Γ (µ0)
.

(4.37)

From (4.37), we see that α(t) < 1 if and only if

Γ (t+ µ0 − 1)

Γ (µ0) Γ(t)
− Γ (t+ µ0)

(b+ µ0 + 1) Γ(t)Γ (µ0)
≤ 1 (4.38)

holds, which is equivalent to

(b+ µ0 + 1) Γ (t+ µ0 − 1) Γ(t)Γ (µ0)

Γ (µ0) Γ(t) [(b+ µ0 + 1) Γ (µ0) Γ(t) + Γ (t+ µ0)]
≤ 1. (4.39)

Observe that inequality (4.39) is equivalent to

(b+ µ0 + 1) Γ (t+ µ0 − 1)

(b+ µ0 + 1) Γ (µ0) Γ(t) + Γ (t+ µ0)
≤ 1. (4.40)

We claim that (4.40) holds for each admissible triple (b, t, µ0) ∈ N× [1, b+1]N0×(1, 2).

Indeed, rewriting the left-hand side of inequality (4.40) yields

(b+ µ0 + 1) Γ (t+ µ0 − 1)

(b+ µ0 + 1) Γ (µ0) Γ(t) + Γ (t+ µ0)

=
Γ (t+ µ0 − 1)

Γ (µ0) Γ(t) + Γ(t+µ0)
b+µ0+1

=
1

Γ(µ0)Γ(t)
Γ(t+µ0−1)

+ t+µ0−1
b+µ0+1

,

(4.41)
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so that inequality (4.40) is equivalent to

Γ (µ0) Γ(t)

Γ (t+ µ0 − 1)
+
t+ µ0 − 1

b+ µ0 + 1
≥ 1. (4.42)

Now, each of the addends on the left-hand side of (4.42) is nonnegative. Moreover,

we note that

Γ (µ0) Γ(t)

Γ (t+ µ0 − 1)
≥ 1, (4.43)

for each admissible t and µ0 since t > t+µ0− 1. (Note that if µ0 = 1 we get equality

in (4.43).) But then (4.43) implies (4.42), which in turn implies that (4.38) holds.

In summary, for each admissible triple (b, t, µ0), we find that α(t) < 1. In fact,

based on the discussion regarding µ1 given in (4.35)–(4.36), we have actually shown

that, for fixed but arbitrary b, t, and µ0,

sup
µ1∈(0,1)

α (t; b, µ0) < 1. (4.44)

Hence, (4.44) implies that α(t) < 1, for each fixed but arbitrary tuple (b, t, µ0, µ1),

it holds that (b, tµ0, µ1) ∈ N× [1, b + 2]N × (1, 2)× (0, 1). As we earlier showed that

α(t) > 0 whenever t 6= 0, b+ 2, we conclude that

‖α‖ < 1, (4.45)

as desired. And this completes the proof.

Remark 4.7. We emphasize that Theorem 4.3 shows that problem (4.1)–(4.2) is not

the same as the conjugate problem studied in [20]. In fact, there is a de facto nonlocal

nature to problem (4.1)–(4.2) as evidenced by the explicit appearance of y(1) in the

operator T .
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4.1.2 An Existence Result

As an application of the preceding analysis, we now provide a typical existence the-

orem for problem (4.1)–(4.2). While the basic argument we employ in the sequel is

by now well known, it is not entirely standard given the appearance of y(1) in the

operator T .

To this end, let us next provide some standard assumptions on the nonlinearity. In

particular, for the sake of simplicity, in the sequel we assume that f(t, y) := a(t)g(y),

where we assume that a is continuous and not zero identically on [0, b+ 2]N0 . We also

assume (H1) and (H2) below. While standard assumptions, we indicate in the sequel

(cf., Remark 4.10) some potential for less standard generalizations.

H1: We find that limy→0+
g(y)
y

= 0.

H2: We find that limy→∞
g(y)
y

= +∞.

We shall also need to define a suitable cone in which to look for fixed points of T .

In particular, we consider the cone K ⊆ B, defined by

K :=

{
y ∈ B : y ≥ 0, min

t∈[ b4 ,
3b
4 ]N

y(t) ≥ γ∗‖y‖

}
, (4.46)

where γ∗ ∈ (0, 1) is the constant γ∗ := min

{
min

t∈[ b4 , 3b4 ]N
α(t)

‖α‖ , γ

}
. Note that, therefore,

the constant γ∗ is not same as the constant γ appearing in part 3 of Proposition

4.5. However, it does satisfy 0 < γ∗ < 1, as will be demonstrated in the proof of

Lemma 4.8 below. We first show that the cone K is invariant under the operator T .

We then argue that conditions (H1)–(H2) imply, as is well known in the integer-order

case (e.g., [39]), that problem (4.1)–(4.2) has at least one positive solution.
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Lemma 4.8. Let T be the operator defined in (4.10) and K the cone defined in (4.46).

Then T : K → K.

Proof. It is obvious that given y ∈ K, then (Ty)(t) ≥ 0, for each admissible t. On

the other hand, we observe that

min
t∈[ b4 ,

3b
4 ]N

(Ty)(t)

≥ γ0y(1)‖α‖+ γ

b+2−µ̃∑
s=−µ̃+2

G (s+ µ̃− 1, s) f (s+ µ̃− 1, y (s+ µ̃− 1))

≥ γ∗

y(1)‖α‖+

b+2−µ̃∑
s=−µ̃+2

G (s+ µ̃− 1, s) f (s+ µ̃− 1, y (s+ µ̃− 1))


≥ γ∗‖Ty‖,

(4.47)

where the γ appearing in (4.47) is the same γ as in part 3 of Proposition 3.3, and, in

addition, γ0 is the number satisfying

γ0 :=
mint∈[ b4 ,

3b
4 ]N

α(t)

‖α‖
, (4.48)

with γ0 ∈ (0, 1), evidently. Recall, then, that we define γ∗ by

γ∗ := min {γ0, γ} , (4.49)

where γ∗ obviously satisfies 0 < γ∗ < 1. Thus, whenever y ∈ K, it follows that

Ty ∈ K, and so, the desired claim follows.

Theorem 4.9. Assume that f(t, y) := a(t)g(y) satisfies conditions (H1)–(H2). Then

problem (4.1)–(4.2) has at least one positive solution.

Proof. First of all, note that T is trivially completely continuous in this setting.
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Second of all, recall from Lemma 4.6 that α(t) < 1, for all t ∈ [0, b+ 2]N0 . Therefore,

we may select ε > 0 so that α(t) < ε < 1 holds for all admissible t. Given this ε, we

may, by way of condition (H1), select η1 > 0 sufficiently small so that both

g(y) ≤ η1y (4.50)

and

η1

b+2−µ̃∑
s=−µ̃+2

G (s+ µ̃− 1, s) a(s) ≤ 1− ε (4.51)

hold for all 0 < y < r1, where r1 := r1 (η1). Next put

Ω1 := {y ∈ B : ‖y‖ < r1} . (4.52)

Then for y ∈ ∂Ω1 ∩ K we find, upon combining (4.50)–(4.51), that

‖Ty‖ ≤ y(1) max
t∈[0,b+2]N0

α(t) + max
t∈[0,b+2]N0

b+2−µ̃∑
s=−µ̃+2

G(t, s)a(s)g (y (s+ µ̃− 1))

< εy(1) +

b+2−µ̃∑
s=−µ̃+2

G (s+ µ̃− 1, s) a(s)η1y(s)

≤ ε‖y‖+ ‖y‖ · η1

b+2−µ̃∑
s=−µ̃+2

G (s+ µ̃− 1, s) a(s)

≤ ‖y‖,

(4.53)

whence (4.53) implies that T is a cone contraction on ∂Ω1 ∩ K.

On the other hand, from condition (H2) we may select a number η2 > 0 such that

both

η2

b+2−µ̃∑
s=−µ̃+2

γ∗G (s+ µ̃− 1, s) a(s) > 1 (4.54)
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and

g(y) > η2y (4.55)

hold whenever y > r2 > 0, for some sufficiently large number r2 := r2 (η2). Now, put

r∗2 :=

{
2r1,

r2

γ∗

}
. (4.56)

Define

Ω2 := {y ∈ B : ‖y‖ < r∗2} . (4.57)

Recall that for y ∈ K, we must have y(1) ≥ 0, and that from Lemma 3.4 we know

also that α(t) ≥ 0, for all t ∈ [0, b+ 2]N0 . Then it is now standard to show that

‖Ty‖ ≥ ‖y‖, (4.58)

whenever y ∈ ∂Ω2 ∩ K, so that T is a cone expansion on ∂Ω2 ∩ K.

In summary, we may invoke Lemma 2.13 to deduce the existence of a function

y0 ∈ K ∩
(
Ω2 \ Ω1

)
such that Ty0 = y0, where y0 is a positive solution to problem

(4.1)–(4.2). And this completes the proof.

Remark 4.10. It seems quite possible to deduce a set of corresponding existence re-

sults for problem (4.1) augmented with various sorts of nonlocal boundary conditions

replacing (4.2), as has been extensively investigated in the integer-order setting and,

more recently, by the present author in the discrete fractional setting – see [45, 47].

We leave this investigation for future work.
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4.1.3 Result for the Corresponding Delta-Nabla Problem

We conclude this section with a corollary. In particular, with the preceding analysis

in hand, it is easy to study sequential problems involving one or more nabla fractional

differences. In particular, using Lemma 2.6, we get the following corollary. Nearly

all of the proof of Corollary 4.11 follows immediately from Theorem 4.9. While there

is a modest calculation to verify the interchange of the delta and nabla differences,

since this essentially follows more or less directly from Lemma 2.6, we do not present

the proof of the following corollary.

Corollary 4.11. Consider the following sequential FBVP

−∆µ1∆µ2∇µ3y (t+ µ3) = f (t+ µ̃− 1, y (t+ µ̃− 1)) (4.59)

subject to

y(0) = 0 = y(b+ 2). (4.60)

Then supposing that f(t, y) := a(t)g(y) with g(y) satisfying conditions (H1)–(H2), it

follows that problem (4.59)–(4.60) has at least one positive solution.

Naturally, it is possible to write down all manner of permutations of (4.59) and

thus all manner of existence results. But we omit the details here.

Remark 4.12. As mentioned in Section 4.1, on the time scale Z there is much less

reason to study delta-nabla problems than on a more general time scale. However,

since the fractional calculus is beginning to progress to arbitrary time scales, a result

such as Corollary 4.11 seems relevant.

Remark 4.13. As mentioned in Remark 4.10, one could write down a result dual to

Corollary 4.11 in the case where boundary condition (4.2) is replaced with some sort
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of nonlocal condition, but, once again, we leave this to future investigations.

4.2 Extensions

We now briefly comment on some possible extensions of the results given previously.

These extensions allow us to give existence theorems analogous to Theorem 4.9 for

all manner of discrete fractional sequential BVPs. In particular, let us consider the

following sequential fractional difference

∆µn · · ·∆µ1y(t). (4.61)

where µj ∈ (0, 1) for each j = 1, . . . , n, under a couple of different additional

assumptions on the µj’s. For notational simplicity in the sequel, we define

µ̃+
j :=

j∑
k=1

µk (4.62)

and

µ̃−j :=
n−1∑
k=n−j

µk. (4.63)

As before, we continue to use the symbol µ̃ to denote the sum
∑n

j=1 µj.

Proposition 4.14. Assume that 0 <
∑n−1

j=1 µj < 1 and 1 <
∑n

j=1 µj < 2. Then it

follows that

∆µn · · ·∆µ1y(t)

= ∆µ̃+n y(t)−

(t− 1 + µ̃+
n−1

)−µn−1

Γ (−µn)
−

n−2∑
j=1

(
t− 1 + µ̃+

j

)−µ̃−n−j+1−µn−1

Γ
(
−µ̃−n−j+1 − µn

)
 y(0).

Proof. We again repeatedly appeal to Lemma 2.7 and Theorem 4.1. In particular, we
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note first that

∆µn · · ·∆µ3 [∆µ2∆µ1y(t)]

= ∆µn · · ·∆µ3

[
∆µ̃+2 y(t)− ∆µ1−1y (1− µ1)

Γ (−µ2)
(t− 1 + µ1)−µ2−1

]
= ∆µn · · ·∆µ4

[
∆µ̃+3 y(t)− ∆µ1+µ2−1y (1− µ1 − µ2)

Γ (−µ3)
(t− 1 + µ1 + µ2)−µ3−1

− ∆µ1−1y (1− µ1)

Γ (−µ2 − µ3)
(t− 1 + µ1)−µ2−µ3−1

]
.

(4.64)

Now, repeating this process yields by means of a straightforward induction argument

∆µn−1 · · ·∆µ1y(t) = ∆µ̃+n−1y(t)−
n−2∑
j=1

[
∆µ̃+j −1y

(
1− µ̃+

j

)
Γ
(
−µ̃−n−j−1

) (
t− 1 + µ̃+

j

)−µ̃−n−j−1−1

]
.

(4.65)

Consequently, it follows that

∆µn · · ·∆µ1y(t)

= ∆µn

{
∆µ̃+n−1y(t)−

n−2∑
j=1

[
∆µ̃+j −1y

(
1− µ̃+

j

)
Γ
(
−µ̃−n−j−1

) (
t− 1 + µ̃+

j

)−µ̃−n−j−1−1

]}

= ∆µ̃+n y(t)−
∆−1+µ̃+n−1y

(
1− µ̃+

n−1

)
Γ (−µn)

(
t− 1 + µ̃+

n−1

)−µn−1

+
n−2∑
j=1

[
∆µ̃+j −1y

(
1− µ̃+

j

)
Γ
(
−µ̃−n−j−1

) ·
Γ
(
−µ̃−n−j−1

)
Γ
(
−µ̃−n−j−1 − µn

) (t− 1 + µ̃+
j

)−µ̃−n−j−1−µn−1

]

= ∆µ̃+n y(t)−

(t− 1 + µ̃+
n−1

)−µn−1

Γ (−µn)
−

n−2∑
j=1

(
t− 1 + µ̃+

j

)−µ̃−n−j+1−µn−1

Γ
(
−µ̃−n−j+1 − µn

)
 y(0),

(4.66)

as claimed, which completes the proof.

Our next proposition provides for a more direct generalization of problem (4.1)

considered earlier.

Proposition 4.15. Suppose that 0 <
∑n−2

j=1 µj < 1, 1 <
∑n−1

j=1 µj < 2, and 1 <
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∑n
j=1 µj < 2. Then we find that

∆µn · · ·∆µ1y(t) = ∆µ̃y(t)−
(
t− 2 + µ̃+

n−1

)−µn−1

Γ (−µn)
y(1)

−
n−2∑
j=1

[
1

Γ
(
−µ̃−n−j−1 − µn

) (t− 1 + µ̃+
j

)−µ̃−n−j−1−µn−1

]
y(0)

−

[(
t− 2 + µ̃+

n−1

)−µn−1

Γ (−µn)

(
1− µ̃+

n−1

)
−
(
t− 2 + µ̃+

n−1

)−µn−2

Γ (−µn − 1)

]
y(0).

(4.67)

Proof. In this setting, observe that (4.65) still holds. Therefore, we need only make

some minor modifications to the proof of Proposition 4.14. In particular, we find that

∆µn · · ·∆µ1y(t)

= ∆µn

{
∆µ̃+n−1y(t)−

n−2∑
j=1

[
∆µ̃+j −1y

(
1− µ̃+

j

)
Γ
(
−µ̃−n−j−1

) (
t− 1 + µ̃+

j

)−µ̃−n−j−1−1

]}

= ∆µn∆µ̃+n−1y(t)−
n−2∑
j=1

[
∆µ̃+j −1y

(
1− µ̃+

j

)
Γ
(
−µ̃−n−j−1

) ∆µn
[(
t− 1 + µ̃+

j

)−µ̃−n−j−1−1
]]

= ∆µ̃y(t)−
1∑

k=0

∆j−2+µ̃+n−1y
(
2− µ̃+

n−1

)
Γ (−µn − 1 + j)

(
t− 2 + µ̃+

n−1

)−µn−2+j

−
n−2∑
j=1

[
∆µ̃+j −1y

(
1− µ̃+

j

)
Γ
(
−µ̃−n−j−1

) ·
Γ
(
−µ̃−n−j−1

)
Γ
(
−µ̃−n−j−1 − µn

) (t− 1 + µ̃+
j

)−µ̃−n−j−1−µn−1

]
.

(4.68)

Now notice that

∆−2+µ̃+n−1y
(
2− µ̃+

n−1

)
Γ (−µn − 1)

(
t− 2 + µ̃+

n−1

)−µn−2
=

(
t− 2 + µ̃+

n−1

)−µn−2

Γ (−µn − 1)
y(0) (4.69)
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and that

∆−1+µ̃+n−1y
(
2− µ̃+

n−1

)
Γ (−µn)

(
t− 2 + µ̃+

n−1

)−µn−1

=

(
t− 2 + µ̃+

n−1

)−µn−1

Γ (−µn)

[(
1− µ̃+

n−1

)
y(0) + y(1)

]
.

(4.70)

Therefore, it follows that

∆µn · · ·∆µ1y(t) = ∆µ̃y(t)−
(
t− 2 + µ̃+

n−1

)−µn−1

Γ (−µn)
y(1)

−
n−2∑
j=1

[
1

Γ
(
−µ̃−n−j−1 − µn

) (t− 1 + µ̃+
j

)−µ̃−n−j−1−µn−1

]
y(0)

−

[(
t− 2 + µ̃+

n−1

)−µn−1

Γ (−µn)

(
1− µ̃+

n−1

)
−
(
t− 2 + µ̃+

n−1

)−µn−2

Γ (−µn − 1)

]
y(0),

(4.71)

as claimed. And this completes the proof.

Propositions 4.14 and 4.15 again show that the sequential problems are (poten-

tially) different than the non-sequential problems and identify, in particular, the dif-

ferences. Furthermore, with Propositions 4.14 and 4.15 in hand, we can write down

a multitude of results regarding the existence of positive solutions to discrete sequen-

tial fractional BVPs. But, in particular, we would need to show that the various

coefficient functions of y(0) and y(1) appearing in Propositions 4.14 and 4.15 satisfy

inequalities similar to those of Lemma 3.3. We leave this task to future work.

Remark 4.16. It is also possible to study the problem in which, say, the right-hand

side of (4.1) is replaced with

f(t+ µ1 + µ2 + µ3 − 1, y(t+ µ1 + µ2 + µ3 − 1), y(1)), (4.72)
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since our analysis shows that problem (4.1)–(4.2) fits into this somewhat more general

framework. Nonetheless, we feel the results of this section are still relevant, partic-

ularly in the case where y(0) 6= 0 as, say, would occur in the setting of a nonlocal

boundary condition.
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Chapter 5

Analysis of a Right-Focal Discrete

Fractional BVP

We have previously considered certain of the operational properties of the fractional

difference and certain of the implications of these properties. We now wish to con-

sider these implications with rather increased specificity. To this end, In this chap-

ter we consider existence results for a certain two-point boundary value problem of

right-focal type for a fractional difference equation. A recent paper by Atici and

Eloe [20] produced a well-posed fractional boundary value problem (FBVP) of the

type we consider here. However, their paper considered only the case of Dirichlet or

conjugate-type boundary conditions. Given the interest in right-focal BVPs in the

classical literature, the present chapter can be considered an important extension of

and parallel to [20].

In particular, we will be interested in the nonlinear finite discrete FBVP given by


−∆νy(t) = f(t+ ν − 1, y(t+ ν − 1))

y(ν − 2) = 0 = ∆y(ν + b)

, (5.1)
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where t ∈ [0, b+ 1]N0 , ν ∈ (1, 2], f : [ν − 1, ν + b]Nν−1 ×R→ R, and b ∈ N0. Thus, we

shall offer results that complement and extend the exposition given in [20]. As means

toward accomplishing this task, we first deduce the existence of a unique solution to

the FBVP 
−∆νy(t) = h(t+ ν − 1)

y(ν − 2) = 0 = ∆y(ν + b)

, (5.2)

where ν ∈ (1, 2], t ∈ [0, b + 1]N0 , and h : [ν − 1, ν + b]Nν−1 → R, by means of an

appropriate Green’s function. We undertake this task next.

5.1 Derivation of the Green’s Function

In order to help us analyze the nonlinear problem (5.1), we now wish to derive a

Green’s function for (5.2). Of particular note, we shall observe at the end of this

section that in case ν = 2, the Green’s function we obtain in Theorem 5.1 below

matches the Green’s function obtained in the case when ν = 2. Before stating this

useful theorem, let us introduce the following notation, which will be important in

the sequel.

T1 :=
{

(t, s) ∈ [ν − 1, ν + b+ 1]Nν−1 × [0, b+ 1]N0 : 0 ≤ s < t− ν + 1 ≤ b+ 2
}

T2 :=
{

(t, s) ∈ [ν − 1, ν + b+ 1]Nν−1 × [0, b+ 1]N0 : 0 ≤ t− ν + 1 ≤ s ≤ b+ 2
}

Theorem 5.1. The unique solution of the FBVP (5.2) is given by

y(t) :=
b+1∑
s=0

G(t, s)h(s+ ν − 1),
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where G(t, s) is the Green’s function for the problem

−∆νy(t) = 0, y(ν − 2) = 0 = ∆y(ν + b), (*)

where 1 < ν ≤ 2, which is given by

G(t, s) :=
1

Γ(ν)


Γ(b+3)tν−1

Γ(ν+b+1)
(ν + b− s− 1)ν−2 − (t− s− 1)ν−1, (t, s) ∈ T1

Γ(b+3)tν−1

Γ(ν+b+1)
(ν + b− s− 1)ν−2, (t, s) ∈ T2

.

Proof. Observe that by inverting the fractional difference operator coupled with an

application of Lemma 2.4, we find that a general solution of the fractional difference

equation in (5.2) is

y(t) = −∆−νh(t+ ν − 1) + C1t
ν−1 + C2t

ν−2,

whence we get that

y(t) = − 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1h(s+ ν − 1) + C1t
ν−1 + C2t

ν−2.

We now would like to determine the values of C1 and C2 so that the boundary

conditions in (*) hold. To this end, applying the boundary condition y(ν − 2) = 0,

we find that

0 = −∆−νh(t+ ν − 1)
∣∣
t=ν−2

+ C1(ν − 2)ν−1 + C2(ν − 2)ν−2. (5.3)

It is obvious that (ν−2)ν−1 = 0. Similarly, it evidently holds that (ν−2)ν−2 = Γ(ν−1).
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Finally,

−∆−νh(t+ ν − 1)
∣∣
t=ν−2

= − 1

Γ(ν)

−2∑
s=0

(t− s− 1)ν−1h(s+ ν − 1) = 0

by the standard convention on sums. So, in summary, we find that (5.3) implies that

C2 = 0. Similarly, we can apply the right boundary condition – namely, ∆y(ν+b) = 0.

Doing so, we find that

0 = ∆y(ν + b) =
{

∆
[
−∆−νh(t+ ν − 1)

]}
t=ν+b

+ ∆
[
C1t

ν−1
]
t=ν+b

. (5.4)

Note that

∆
[
tν−1

]
t=ν+b

= (ν − 1) · Γ(ν + b+ 1)

Γ(b+ 3)
(5.5)

and, since by definition ∆∆−ν = ∆1−ν , that

{
∆
[
∆−νh(t+ ν − 1)

]}
t=ν+b

=
[
∆1−νh(t+ ν − 1)

]
t=ν+b

=

[
1

Γ(ν − 1)

t−ν+1∑
s=0

(t− s− 1)ν−2h(s+ ν − 1)

]
t=ν+b

=
1

Γ(ν − 1)

b+1∑
s=0

(ν + b− s− 1)ν−2h(s+ ν − 1).

(5.6)

Putting the preceding equalities together, it is a simple matter to show that

C1 =
[∆∆−νh(t+ ν − 1)]t=ν+b

(ν−1)Γ(ν+b+1)
Γ(b+3)

=
Γ(b+ 3)

Γ(ν)Γ(ν + b+ 1)

b+1∑
s=0

(ν + b− s− 1)ν−2h(s− ν + 1).

(5.7)
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But with (5.7) in hand, we can determine y(t) exactly. In particular, we find that

y(t) = −∆−νh(t+ ν − 1) + C1t
ν−1

= − 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1h(s+ ν − 1)

+
Γ(b+ 3)tν−1

Γ(ν)Γ(ν + b+ 1)

b+1∑
s=0

(ν + b− s− 1)ν−2h(s− ν + 1)

=
1

Γ(ν)

{
t−ν∑
s=0

[
Γ(b+ 3)tν−1

Γ(ν + b+ 1)
(ν + b− s− 1)ν−2 − (t− s− 1)ν−1

]
h(s+ ν + 1)

}

+
1

Γ(ν)

b+1∑
s=t−ν+1

Γ(b+ 3)tν−1

Γ(ν + b+ 1)
(ν + b− s− 1)ν−2h(s− ν + 1),

from which it is immediately clear that we may write

y(t) =
b+1∑
s=0

G(t, s)h(s+ ν − 1),

where

G(t, s) :=
1

Γ(ν)


Γ(b+3)tν−1

Γ(ν+b+1)
(ν + b− s− 1)ν−2 − (t− s− 1)ν−1, (t, s) ∈ T1

Γ(b+3)tν−1

Γ(ν+b+1)
(ν + b− s− 1)ν−2, (t, s) ∈ T2

,

is the Green’s function for (*). And this completes the proof.

Remark 5.2. Observe that G(ν − 2, s) = 0, for each s ∈ [0, b+ 1]N0 .

Remark 5.3. Let us note for the reader that in case we put ν = 2 in Theorem 5.1,

it follows that we get the “usual” Green’s function, just as we might hope would
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happen. Indeed, in case ν = 2 we find that (in case a = 0)

G(t, s) =


s+ 1, 0 ≤ s < t− 1 ≤ b+ 2

t, 0 ≤ t− 1 ≤ s ≤ b+ 2

,

with G(t, s) defined on [1, b+ 3]N0 × [0, b+ 1]N0 , which accords with the usual results.

Remark 5.4. As is implied by the definition of the sets T1 and T2 as well the form of

G(t, s) as given in Theorem 5.1, we have that the Green’s function, G(t, s), is defined

on the set [ν − 2, ν + b + 1]Nν−2 × [0, b + 1]N0 . Incidentally, it is easy to show that

G(t, b + 2) = 0, for each admissible t. So, G could be extended to [ν − 2, ν + b +

1]Nν−2 × [0, b+ 2]N0 without difficulty, but we do not require this in the sequel.

5.2 Properties of the Green’s Function

In this section of the chapter, we wish to prove that our Green’s function G(t, s)

satisfies, with appropriate and simple modifications, the usual classical properties.

Certain of these properties will be crucial when we prove our existence theorems in

the final section of this paper. We begin by stating a lemma; its proof may be found

in [20].

Lemma 5.5. Let ν be any positive real number and let a and b be two real numbers

satisfying ν < a ≤ b. Then the following hold.

(i.) 1
xν

is a decreasing function for x ∈ (ν,+∞)N.

(ii.) (a−x)ν

(b−x)ν
is a decreasing function for x ∈ [0, a− ν)N0.

We now state and prove the first of a trio of propositions regarding G(t, s).
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Proposition 5.6. The function G(t, s) defined in Theorem 5.1 satisfies G(t, s) ≥ 0

for all t ∈ [ν − 1, ν + b + 1]Nν−1 and s ∈ [0, b + 1]N0, where [ν − 1, ν + b + 1]Nν−1 :=

{ν − 1, ν, . . . , ν + b+ 1}.

Proof. To prove this proposition, we shall show directly that G(t, s) > 0 for each

(t, s) ∈ [ν− 1, ν + b+ 1]Nν−1 × [0, b+ 1]N0 . For simplicity, we shall look at Γ(ν)G(t, s),

for Γ(ν) > 0 so that if Γ(ν)G(t, s) > 0, then at once it follows that G(t, s) > 0, too.

First notice that for (t, s) ∈ T2, we have that

Γ(ν)G(t, s) =
Γ(b+ 3)tν−1

Γ(ν + b+ 1)
(ν + b− s− 1)ν−2

=
Γ(b+ 3)Γ(t+ 1)Γ(ν + b− s)

Γ(ν + b+ 1)Γ(t− ν + 2)Γ(b− s+ 2)

> 0,

clearly.

On the other hand, for (t, s) ∈ T1, we find that

Γ(ν)G(t, s) =
Γ(b+ 3)tν−1(ν + b− s− 1)ν−2

Γ(ν + b+ 1)
− (t− s− 1)ν−1

=
Γ(b+ 3)Γ(t+ 1)Γ(ν + b− s)

Γ(ν + b+ 1)Γ(t+ 2− ν)Γ(b− s+ 2)
− Γ(t− s)

Γ(t− s− ν + 1)
.

We claim that

Γ(b+ 3)Γ(t+ 1)Γ(ν + b− s)
Γ(ν + b+ 1)Γ(t+ 2− ν)Γ(b− s+ 2)

− Γ(t− s)
Γ(t− s− ν + 1)

> 0.

To see that this is true, note that it suffices to show that

Γ(b+ 3)Γ(t+ 1)Γ(ν + b− s)Γ(t− s− ν + 1)

Γ(ν + b+ 1)Γ(t+ 2− ν)Γ(b− s+ 2)Γ(t− s)
> 1
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whenever (t, s) ∈ T1. To prove this latter claim, we shall show that for each admissible

s and t, we have both that

Γ(b+ 3)Γ(ν + b− s)
Γ(ν + b+ 1)Γ(b− s+ 2)

≥ 1 (5.8)

and that

Γ(t+ 1)Γ(t− s− ν + 1)

Γ(t+ 2− ν)Γ(t− s)
> 1, (5.9)

from which the desired claim will follow at once, clearly.

To see that (5.8) holds, let s0 be an arbitrary but fixed element of [0, b + 1]N0 .

Then we find that

Γ(b+ 3)Γ(ν + b− s)
Γ(ν + b+ 1)Γ(b− s+ 2)

=
Γ(b+ 3)Γ (ν + b− s0)

Γ(ν + b+ 1)Γ (b− s0 + 2)

=
(b+ 2)!Γ (ν + b− s0)

Γ(ν + b+ 1) (b− s0 + 1)!

=
(b+ 2)(b+ 1) · · · (b− s0 + 2)

(b+ ν)(b+ ν − 1) · · · (b+ ν − s0)
.

(5.10)

But notice that b+2
b+ν
≥ 1, b+1

b+ν−1
≥ 1, . . . , b−s0+2

b+ν−s0 ≥ 1 in expression (5.10) above,

with equality occurring if and only if ν = 2. Thus, we conclude that

Γ(b+ 3)Γ(ν + b− s)
Γ(ν + b+ 1)Γ(b− s+ 2)

≥ 1,

which establishes (5.8).

On the other hand, to see that (5.9) holds, let s0, once again, be arbitrary but fixed

such that s0 ∈ [0, b+ 1]N0 . Then we have that for t to be admissible, t = s0 + k + ν,
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for some 0 ≤ k ≤ b− s0 + 1 with k ∈ N0. But then it follows that

Γ(t+ 1)Γ(t− s− ν + 1)

Γ(t+ 2− ν)Γ(t− s)

=
Γ (s0 + k + ν + 1)

Γ (s0 + k + 2)
· Γ(k + 1)

Γ(k + ν)

=
(ν + s0 + k) (ν + s0 + k − 1) · · · (ν + k) Γ(k + ν)

(s0 + k + 1)!
· k!

Γ(k + ν)

=
(ν + s0 + k) · · · (ν + k) · k!

(s0 + k + 1)!

=
(s0 + k + ν) (s0 + k − 1 + ν) · · · (k + ν)

(s0 + k + 1) (s0 + k) · · · (k + 1)
.

(5.11)

Notice, however, that each of the numerator and denominator in (5.11) has excatly

(s0 + 1)-terms. Moreover, if we consider the terms in paris, as in s0+k+ν
s0+k+1

, s0+k−1+ν
s0+k

,

. . . , k+ν
k+1

, then we notice that each pair is greater than unity. Indeed, as 1 < ν ≤ 2,

it follows at once, for example, that s0+k+ν
s0+k+1

> 1. As this argument may be applied to

each of the (s0 + 1)-terms in (5.11), it follows that

Γ(t+ 1)Γ(t− s− ν + 1)

Γ(t+ 2− ν)Γ(t− s)
> 1,

which establishes (5.9).

Finally, combining (5.8) and (5.9), we see at once that

Γ(b+ 3)Γ(t+ 1)Γ(ν + b− s)Γ(t− s− ν + 1)

Γ(ν + b+ 1)Γ(t+ 2− ν)Γ(b− s+ 2)Γ(t− s)
> 1,

whenever (t, s) ∈ T1, whence G(t, s) ≥ 0 whenever (t, s) ∈ T1. Together with the

first part of the proof, we find that G(t, s) ≥ 0 for all t ∈ [ν − 1, ν + b + 1]Nν−1 and

s ∈ [0, b+ 1]N0 , as claimed.

Before proving Proposition 5.8 below, we need an easy but important preliminary
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lemma. We remark that this lemma will get used several times in later chapters – cf.,

Chapter 6 especially.

Lemma 5.7. Fix k ∈ N and let {mj}kj=1, {nj}kj=1 ⊆ (0,+∞) such that

max
1≤j≤k

mj ≤ min
1≤j≤k

nj

and that for at least one j0, 1 ≤ j0 ≤ k, we have that mj0 < nj0. Then for fixed

α0 ∈ (0, 1), it follows that

(
n1

n1 + α0

· . . . · nk
nk + α0

)(
m1 + α0

m1

· . . . · mk + α0

mk

)
> 1.

Proof. Fix an index j0, where j0 is one of the indices, of which there exists at least

one, for which nj0 > mj0 . Notice that as nj0 > mj0 and α0 > 0, it follows that

nj0α0 > mj0α0, whence mj0nj0 + nj0α0 > mj0nj0 +mj0α0, so that

mj0 + α0

mj0

>
nj0 + α0

nj0
,

whence

nj0
nj0 + α0

· mj0 + α0

mj0

> 1.

But now the claim follows at once by repeating the above steps for each of the

remaining j0 − 1 terms and observing that the product of j terms, each of which is

at least unity and at least one of which exceeds unity, is greater than unity.

Proposition 5.8. For G(t, s) defined in Theorem 5.1, it follows that

max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = G(s+ ν − 1, s),
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whenever s ∈ [0, b+ 1]N0.

Proof. Before beginning this proof, let us make one preliminary observation. Indeed,

note that [∆tG(t, s)]t=ν+b = G(ν + b + 1, s)− G(ν + b, s) = 0, for each admissible s,

which is easy to verify by direct computation. Of course, this must be true by virtue

of the fact that G must satisfy the right-hand boundary condition in each of FBVPs

(5.1) and (5.2). Practically, this means that

max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = max
t∈[ν−1,ν+b]Nν−1

G(t, s),

for each admissible s. Consequently, this means that in the sequel, we can effectively

ignore what happens at t = ν+ b+ 1 on account of the above noted relationship, and

we do just that.

Now, let us consider the difference Γ(ν)∆tG(t, s) for (t, s) ∈ T1. In this case, we

find that

Γ(ν)∆tG(t, s)

= ∆t

[
Γ(b+ 3)tν−1

Γ(ν + b+ 1)
(ν + b− s− 1)ν−2 − (t− s− 1)ν−1

]
=

Γ(b+ 3)(ν − 1)tν−2

Γ(ν + b+ 1)
(ν + b− s− 1)ν−2 − (ν − 1)(t− s− 1)ν−2

=
Γ(b+ 3)(ν − 1)tν−2(ν + b− s− 1)ν−2 − (ν − 1)Γ(ν + b+ 1)(t− s− 1)ν−2

Γ(ν + b+ 1)

=
ν − 1

Γ(ν + b+ 1)

[
Γ(b+ 3)tν−2(ν + b− s− 1)ν−2 − Γ(ν + b+ 1)(t− s− 1)ν−2

]
.

Note that it is clear from the above expression that in case ν = 2, we find that

∆tG(t, s) = 0, as expected. Consequently, let us assume in the sequel that 1 < ν < 2.

Observe that ν−1
Γ(ν+b+1)

> 0, clearly. So, it follows that Γ(ν)∆tG(t, s) < 0 (and thus
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that ∆tG(t, s) < 0, seeing as Γ(ν) > 0) provided that

Γ(b+ 3)tν−2(ν + b− s− 1)ν−2 < Γ(ν + b+ 1)(t− s− 1)ν−2

and this is true if and only if

Γ(ν + b+ 1)Γ(t− s)Γ(b− s+ 2)

Γ(b+ 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2
> 1. (5.12)

To show that (5.12) holds, let us, as in the proof of Proposition 5.6, suppose that

s0 is a fixed but arbitrary element of [0, b + 1]N0 . Then it follows, as before, that

t = s0 + k + ν, where k ∈ N such that 0 ≤ k ≤ b− s0. But we then find that

Γ(ν + b+ 1)Γ(t− s)Γ(b− s+ 2)

Γ(b+ 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2

=
Γ(ν + b+ 1)Γ (s0 + k + ν − s0) Γ (b− s0 + 2) Γ (s0 + k + ν − ν + 3)

Γ(b+ 3)Γ (ν + b− s0) Γ (s0 + k + ν − s0 − ν + 2) Γ (s0 + k + ν + 1)

=
Γ(ν + b+ 1)Γ(k + ν)Γ (b− s0 + 2) Γ (s0 + k + 3)

Γ(b+ 3)Γ (ν + b− s0) Γ(k + 2)Γ (s0 + k + ν + 1)

=
Γ(ν + b+ 1)Γ(k + ν) (b− s0 + 1)! (s0 + k + 2)!

(b+ 2)!Γ (ν + b− s0) (k + 1)!Γ (s0 + k + ν + 1)

=
[(ν + b)(ν + b− 1) · · · (ν + b− s0)] (b− s0 + 1)! (s0 + k + 2)!

(b+ 2)!(k + 1)! [(s0 + k + ν) (s0 + k + ν − 1) · · · (k + ν)]

=
(ν + b)(ν + b− 1) · · · (ν + b− s0)

(b+ 2)(b+ 1) · · · (b− s0 + 2)
· (s0 + k + 2) (s0 + k + 1) · · · (k + 2)

(s0 + k + ν) (s0 + k + ν − 1) · · · (k + ν)
.

(5.13)

Observe that each of the numerators and denominators of each of the two fractions

in (5.13) has exactly s0 + 1 factors. Moreover, observe that in the case of the first

fraction, we can consider this fraction as the product of s0 + 1 factors as in ν+b
b+2
·

ν+b−1
b+1

· . . . · ν+b−s0
b−s0+2

. Now, put α0 := 2 − ν and note that α0 ∈ (0, 1). Also put
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nj := ν + b+ (1− j) for 1 ≤ j ≤ s0 + 1. Then we find that

(ν + b)(ν + b− 1) · · · (ν + b− s0)

(b+ 2)(b+ 1) · · · (b− s0 + 2)
=

s0+1∏
j=1

nj
nj + α0

,

where the finite sequence {nj}s0+1
j=1 ⊆ (0,∞) and the number α0 satisfy the hypotheses

of Lemma 5.7. In a completely similar way, if we put mj := k + ν + (j − 1), then we

find that

(s0 + k + 2) (s0 + k + 1) · · · (k + 2)

(s0 + k + ν) (s0 + k + ν − 1) · · · (k + ν)
=

s0+1∏
j=1

mj + α0

mj

,

which again is of the form in Lemma 5.7, for {mj}s0+1
j=1 ⊆ (0,∞). Consequently, with

mj, nj, and α0 defined as above, we note that

Γ(ν + b+ 1)Γ(t− s)Γ(b− s+ 2)

Γ(b+ 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2

=
(ν + b)(ν + b− 1) · · · (ν + b− s0)

(b+ 2)(b+ 1) · · · (b− s0 + 2)
· (s0 + k + 2) (s0 + k + 1) · · · (k + 2)

(s0 + k + ν) (s0 + k + ν − 1) · · · (k + ν)

=

(
s0+1∏
j=1

nj
nj + α0

)(
s0+1∏
j=1

mj + α0

mj

)
.

(5.14)

Now, in order to apply Lemma 5.7 to (5.14) above, we must consider three cases.

First, it is possible, depending upon the choice of s0, k, and b, that there are no

repeated factors between the two products in (5.14). In this case, we see that

maxjmj < minj nj, and so, by the argument in the preceding paragraph, we may

immediately apply Lemma 5.7 to deduce the bound given in (5.12).

Secondly, it is possible that some factors are repeated between the two products in

(5.14). In particular, there may be p such repeated factors, with 1 ≤ p ≤ s0, in each

of the numerators and denominators of each of the products in (5.14) that cancel.

This cancellation will leave s0 + 1− p factors – in particular, in this case it is easy to
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show that

Γ(ν + b+ 1)Γ(t− s)Γ(b− s+ 2)

Γ(b+ 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2

=

(
s0+1∏
j=1

nj
nj + α0

)(
s0+1∏
j=1

mj + α0

mj

)

=

(
s0+1−p∏
j=1

nj
nj + α0

)(
s0+1−p∏
j=1

mj + α0

mj

)
.

(5.15)

But then Lemma 5.7 may be applied to (5.15) above to yield the bound in (5.12) in

this case, too.

Finally, if k = b− s0, then it equally easy to show that product (5.13) is exactly

unity – that is,

Γ(ν + b+ 1)Γ(t− s)Γ(b− s+ 2)

Γ(b+ 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2
=

(
s0+1∏
j=1

nj
nj + α0

)(
s0+1∏
j=1

mj + α0

mj

)
= 1.

However, this corresponds to the case ∆t [G (t, s0)]t=ν+b, and we observed at the begin-

ning of this proof that ∆t [G (t, s0)]t=ν+b = 0, as it must from the boundary conditions.

So, in summary, in each of the three cases we can safely apply Lemma 5.7 to (5.13)

to get that

Γ(ν + b+ 1)Γ(t− s)Γ(b− s+ 2)

Γ(b+ 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2
> 1,

so that (5.12) holds. By the earlier observation, then, it follows that ∆tG(t, s) < 0

whenever 0 ≤ s < t− ν + 1 ≤ b+ 1, as desired.

We next argue that ∆tG(t, s) > 0 for 0 ≤ t− ν + 1 ≤ s ≤ b+ 1. To see that this
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is true, we simply notice that for 0 ≤ t− ν + 1 ≤ s ≤ b+ 1,

∆tG(t, s) = ∆t

[
Γ(b+ 3)tν−1

Γ(ν + b+ 1)
(ν + b− s− 1)ν−2

]
=

Γ(b+ 3)(ν − 1)tν−2

Γ(ν + b+ 1)
(ν + b− s− 1)ν−2

=
Γ(b+ 3)(ν − 1)Γ(t+ 1)Γ(ν + b− s)
Γ(ν + b+ 1)Γ(t− ν + 3)Γ(b− s+ 2)

.

(5.16)

Now, observe that each factor in (5.16) is strictly positive. Therefore, we conclude

that ∆tG(t, s) > 0 in case 0 ≤ t− ν + 1 ≤ s ≤ b+ 1, whence G(t, s) is increasing on

that interval, too.

In summary, then, we have that G(t, s) is increasing for t− ν + 1 ≤ s ≤ b+ 1 and

decreasing for 0 ≤ s < t− ν + 1. And from this we may conclude that

max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = G(s+ ν − 1, s),

whenever s ∈ [0, b+ 1]N0 , as desired.

Remark 5.9. Interestingly, we notice that in case ν ∈ (1, 2), Proposition 5.8 demon-

strates that G(t, s) is not constant for t > s+ ν− 1. This contrasts with the classical

case, ν = 2, in which the Green’s function attains its maximum at t = s and then is

constant for t > s. Furthermore, as ν → 2 from the left, our Green’s function does

tend to the known Green’s function in case ν = 2.

Before proving our final proposition, let us introduce the constants γ1 and γ2,

which will be important not only in the following proposition but also in the final

section of this paper.

γ1 :=

(
b+ν

4

)ν−1

(b+ ν)ν−1
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γ2 :=
1(

3(b+ν)
4

)ν−1

(3(b+ ν)

4

)ν−1

− b+ 1

Γ(b+ 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b+ 1)

(ν + b− 1)ν−1


Proposition 5.10. Assume that

[
b+ν

4
, 3(b+ν)

4

]
∩ Nν−1 6= ∅. For G(t, s) defined in

Theorem 5.1, it follows that there exists a number γ ∈ (0, 1), where

γ := min {γ1, γ2} ,

with γ1 and γ2 as above, such that

min
t∈[ b+ν4 ,

3(b+ν)
4 ]

G(t, s) ≥ γ · max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = γG(s+ ν − 1, s),

for s ∈ [0, b+ 1]N0.

Proof. Let us begin by noting that

G(t, s)

G(s+ ν − 1, s)

=


tν−1

(s+ν−1)ν−1 − (t−s−1)ν−1Γ(ν+b+1)

Γ(b+3)(s+ν−1)ν−1(ν+b−s−1)ν−2 , (t, s) ∈ T1

tν−1

(s+ν−1)ν−1 , (t, s) ∈ T2

,

which is obtained by direct calculation. Now, for s ≥ t− ν + 1 and b+ν
4
≤ t ≤ 3(b+ν)

4
,

we have that

G(t, s)

G(s+ ν − 1, s)
=

tν−1

(s+ ν − 1)ν−1
≥

(
b+ν

4

)ν−1

((b+ 1) + ν − 1)ν−1
=

(
b+ν

4

)ν−1

(b+ ν)ν−1
, (5.17)

because tα is increasing in t for α ∈ (0, 1).

On the other hand, the proof of Proposition 5.8 shows that G(t, s) is decreasing

in case s < t− ν + 1. Consequently, for s < t− ν + 1 and t ∈
[
b+ν

4
, 3(b+ν)

4

]
it follows
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that

min
t∈[ b+ν4 ,

3(b+ν)
4 ]

G(t, s)

G(s+ ν − 1, s)

=

[
tν−1

(s+ ν − 1)ν−1
− (t− s− 1)ν−1Γ(ν + b+ 1)

Γ(b+ 3)(s+ ν − 1)ν−1(ν + b− s− 1)ν−2

]
t=

3(b+ν)
4

=

(
3(b+ν)

4

)ν−1

(s+ ν − 1)ν−1
−

(
3(b+ν)

4
− s− 1

)ν−1

Γ(ν + b+ 1)

Γ(b+ 3)(s+ ν − 1)ν−1(ν + b− s− 1)ν−2
.

Now, put

α(s) :=
1

(s+ ν − 1)ν−1

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

Γ(ν + b+ 1)

Γ(b+ 3)(ν + b− s− 1)ν−2

 .
Notice that

(ν + b− s− 1)ν−2 =
(ν + b− s− 1)ν−1

b− s+ 1
,

which is a simple consequence of Definition 2.2. Furthermore, observe that by Lemma

5.5, part (ii) we find that (
3(b+ν)

4
− s− 1

)ν−1

(ν + b− s− 1)ν−1

is decreasing for 0 ≤ s ≤ 3(b+ν)
4
−ν+1. Consequently, these two observations together
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with an application of Lemma 5.5, part (i) imply that

α(s)

=
1

(s+ ν − 1)ν−1

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

Γ(ν + b+ 1)

Γ(b+ 3)(ν + b− s− 1)ν−2


=

1

(s+ ν − 1)ν−1

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

Γ(ν + b+ 1)

Γ(b+3)
b−s+1

· (ν + b− s− 1)ν−1


≥ 1

(s+ ν − 1)ν−1

(3(b+ ν)

4

)ν−1

− b+ 1

Γ(b+ 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b+ 1)

(ν + b− 1)ν−1


≥ 1(

3(b+ν)
4

)ν−1

(3(b+ ν)

4

)ν−1

− b+ 1

Γ(b+ 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b+ 1)

(ν + b− 1)ν−1

 ,
where to get the first inequality we set s = 0 in the expression in the square brackets.

As a result of this analysis, we conclude that in case s < t−ν+1 and t ∈
[
b+ν

4
, 3(b+ν)

4

]
,

G(t, s)

G(s+ ν − 1, s)

≥ 1(
3(b+ν)

4

)ν−1

(3(b+ ν)

4

)ν−1

− b+ 1

Γ(b+ 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b+ 1)

(ν + b− 1)ν−1

 . (5.18)

Finally, then, upon combining (5.17) and (5.18), we deduce that

min
b+ν
4
≤t≤ 3(b+ν)

4

G(t, s) ≥ γ max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = γG(s+ ν − 1, s),

where we put

γ := min {γ1, γ2} ,
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which completes the proof.

Remark 5.11. Note that it is the case that 0 < γ < 1 in Proposition 5.10. Indeed, it

is clear that 0 <
( b+ν4 )

ν−1

(b+ν)ν−1 < 1. On the other hand, to see that

0 <
1(

3(b+ν)
4

)ν−1

(3(b+ ν)

4

)ν−1

− b+ 1

Γ(b+ 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b+ 1)

(ν + b− 1)ν−1

 < 1,

we may observe that

0 <
b+ 1

Γ(b+ 3)
· 1(

3(b+ν)
4

)ν−1 ·
Γ
(

3(b+ν)
4

)
Γ(ν + b+ 1)Γ(b+ 1)

Γ
(

3(b+ν)
4
− ν + 1

)
Γ(ν + b)

=
1

b+ 2
·

Γ
(

3(b+ν)
4

)
Γ(ν + b+ 1)Γ

(
3(b+ν)

4
− ν + 2

)
Γ
(

3(b+ν)
4

+ 1
)

Γ(ν + b)Γ
(

3(b+ν)
4
− ν + 1

)
=

(b+ ν)
(

3(b+ν)
4
− ν + 1

)
(b+ 2)

(
3(b+ν)

4

)
< 1,

which suffices to prove the claim.

Remark 5.12. In case we put ν = 2 in Proposition 5.10, we find by direct calculation

that γ := min
{

1
4
, 4

3b+6

}
.

Remark 5.13. It should be noted that while the right-focal problem is simpler than

the Dirichlet problem in the case when ν = 2, it is more difficult in the fractional case

(i.e., in case 1 < ν < 2) as a comparison with the above proofs to the corresponding

proofs in [20] shows.
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5.3 Existence and Uniqueness Theorems

In this final section of the chapter, we wish to deduce certain representative existence

and uniqueness theorems. So, we now consider the nonlinear equation (5.1). We

notice that y solves (5.1) if and only if y is a fixed point of the operator

Ty :=
b+1∑
s=0

G(t, s)f(s+ ν − 1, y(s+ ν − 1)),

where G is the Green’s function derived in this paper and T : B → B, where B is the

Banach space B :=
{
y : [ν − 2, ν + b+ 1]Nν−2 → R : y(ν − 2) = ∆y(ν + b) = 0

}
equipped with the usual supremum norm, ‖ · ‖.

Let us also make the following declarations, which will be used in the sequel.

η :=
1∑b+1

s=1G(s+ ν − 1, s)

λ :=
1∑b 3(ν+b)

4
−ν+1c

s=d ν+b
4
−ν+1eG

(⌊
b+1

2

⌋
+ ν, s

)
Let us also introduce two conditions on the behavior of f that will be useful in

the sequel.

(C1) There exists a number r > 0 such that f(t, y) ≤ ηr whenever 0 ≤ y ≤ r.

(C2) There exists a number r > 0 such that f(t, y) ≥ λr whenever γr ≤ y ≤ r.

Remark 5.14. The technique that we use to deduce the existence of at least one

positive solution is very similar to the techniques found in the classical literature on

differential equations – see, for example, [39].

We now can prove the following existence result.

Theorem 5.15. Suppose that there are distinct r1, r2 > 0 such that condition (C1)
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holds at r = r1 and condition (C2) holds at r = r2. Suppose also that f(t, y) ≥ 0 and

continuous. Then the FBVP (5.1) has at least one positive solution, say y0, such that

‖y0‖ lies between r1 and r2.

Proof. We shall assume without loss of generality that 0 < r1 < r2. Consider the

set K :=
{
y ∈ B : y(t) ≥ 0 and min

t∈[ b+ν4 ,
3(b+ν)

4 ] y(t) ≥ γ‖y‖
}

, which is a cone with

K ⊆ B. Observe that T : K → K, for we observe both that

min
t∈[ b+ν4 ,

3(b+ν)
4 ]

(Ty)(t) = min
t∈[ b+ν4 ,

3(b+ν)
4 ]

b+1∑
s=0

G(t, s)f(s+ ν − 1, y(s+ ν − 1))

≥ γ
b+1∑
s=0

G(s+ ν − 1, s)f(s+ ν − 1, y(s+ ν − 1))

= γ max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

G(t, s)f(s+ ν − 1, y(s+ ν − 1))

= γ‖Ty‖,

and that (Ty)(t) ≥ 0 whenever y ∈ K, whence Ty ∈ K, as claimed. Also, it is easy

to see that T is a completely continuous operator.

Now, put Ω1 := {y ∈ K : ‖y‖ < r1}. Note that for y ∈ ∂Ω1, we have that

‖y‖ = r1 so that condition (C1) holds for all y ∈ ∂Ω1. So, for y ∈ K ∩ ∂Ω1, we find

that

‖Ty‖ = max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

G(t, s)f(s+ ν − 1, y(s+ ν − 1))

≤
b+1∑
s=0

G(s+ ν − 1, s)f(s+ ν − 1, y(s+ ν − 1))

≤ ηr1

b+1∑
s=0

G(s+ ν − 1, s)

= r1 = ‖y‖,
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whence we find that ‖Ty‖ ≤ ‖y‖ whenever y ∈ K ∩ ∂Ω1. Thus we get that the

operator T is a cone compression on K ∩ ∂Ω1.

On the other hand, put Ω2 := {y ∈ K : ‖y‖ < r2}. Note that for y ∈ ∂Ω2, we

have that ‖y‖ = r2 so that condition (C2) holds for all y ∈ ∂Ω2. Also note that{⌊
b+1

2

⌋
+ ν

}
⊂
[
b+ν

4
, 3(b+ν)

4

]
. So, for y ∈ K ∩ ∂Ω2, we find that

Ty

(⌊
b+ 1

2

⌋
+ ν

)
=

b+1∑
s=0

G

(⌊
b+ 1

2

⌋
+ ν, s

)
f(s+ ν − 1, y(s+ ν − 1))

≥
b 3(ν+b)

4
−ν+1c∑

s=d ν+b
4
−ν+1e

G

(⌊
b+ 1

2

⌋
+ ν, s

)
f(s+ ν − 1, y(s+ ν − 1))

≥ λr2

b 3(ν+b)
4
−ν+1c∑

s=d ν+b
4
−ν+1e

G

(⌊
b+ 1

2

⌋
+ ν, s

)

= r2,

whence ‖Ty‖ ≥ ‖y‖, whenever y ∈ K ∩ ∂Ω2. Thus we get that the operator T is

a cone expansion on K ∩ ∂Ω2. So, it follows by Lemma 2.13 that the operator T

has a fixed point. But this means that (5.1) has a positive solution, say y0, with

r1 ≤ ‖y0‖ ≤ r2, as claimed.

Remark 5.16. Of course, it is possible to extend Theorem 5.15. In particular, one

can provide conditions under which multiple positive solutions will exist. But as such

extensions are standard, we omit them here.

If we assume that f satisfies a Lipschitz condition, then we can get uniqueness in

addition to existence. This is the content of Theorem 5.18 below. We require first a

preliminary lemma.
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Lemma 5.17. For G(t, s) as defined in Theorem 5.1, we find that

max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

G(t, s) ≤ (b+ 2)Γ(b+ ν + 2)

Γ(ν + 1)Γ(b+ 2)
.

Proof. By invoking Theorem 5.1 together with Proposition 5.8 we find that

G(s+ ν − 1, s) =
Γ(b+ 3)(s+ ν − 1)ν−1Γ(ν + b− s)

Γ(ν)Γ(ν + b+ 1)Γ(b− s+ 2)

≤ (b+ 2)!Γ(b+ 2− s)(s+ ν − 1)ν−1

Γ(ν)(b+ 1)!Γ(b− s+ 2)

=
(b+ 2)

Γ(ν)
(s+ ν − 1)ν−1,

from which it follows that

max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

G(t, s) ≤
b+1∑
s=0

b+ 2

Γ(ν)
(s+ ν − 1)ν−1

=
b+ 2

Γ(ν)

[
1

ν
(s+ ν − 1)ν

]b+2

s=0

=
b+ 2

Γ(ν)
· 1

ν
(b+ ν + 1)ν

=
(b+ 2)Γ(b+ ν + 2)

Γ(ν + 1)Γ(b+ 2)
,

as claimed.

Now we prove a uniqueness theorem by using the Banach contraction theorem,

whose statement can be found, for example, in [92].

Theorem 5.18. Suppose that f(t, y) satisfies a Lipschitz condition in y with Lipschitz

constant α – that is, |f (t, y2)− f (t, y1)| ≤ α |y2 − y1| for all (t, y1), (t, y2). Then it

follows that if

(b+ 2)Γ(b+ ν + 2)

Γ(ν + 1)Γ(b+ 2)
<

1

α
,
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then (5.1) has a unique solution.

Proof. Let y1, y2 ∈ B, where B is the Banach space described earlier. Then we find

that

‖Ty2 − Ty1‖

≤ max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

[
|G(t, s)|

· |f (s+ ν − 1, y2(s+ ν − 1))− f (s+ ν − 1, y1(s+ ν − 1))|
]

≤ α
b+1∑
s=0

G(s+ ν − 1, s) |y2(s+ ν − 1)− y1(s+ ν − 1)|

≤ α‖y2 − y1‖
b+1∑
s=0

G(s+ ν − 1, s)

≤ α
(b+ 2)Γ(b+ ν + 2)

Γ(ν + 1)Γ(b+ 2)
‖y2 − y1‖.

So, as α (b+2)Γ(b+ν+2)
Γ(ν+1)Γ(b+2)

< 1 by assumption, it follows by the Banach contraction theorem

that (5.1) has a unique solution, as claimed.

Example 5.19. Suppose that ν := 11
10

and α := 1
75

. If f(t, y) in problem (5.1) is

Lipschitz with Lipschitz constant α, then Theorem 5.18 implies that (5.1) will have

a unique solution provided that

(b+ 2)Γ
(
b+ 31

10

)
Γ
(

21
10

)
Γ(b+ 2)

< 75, (5.19)

and (5.19) can be solved numerically to get that bmax ≈ 5.960, where bmax is the

largest value of b such that the hypotheses of Theorem 5.18 is satisfied.

Remark 5.20. The bound in Theorem 5.18 can be improved if we use a more compli-

cated bound in Lemma 5.17, which may be easily facilitated by the use of a computer.
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The bound provided by Lemma 5.17 was chosen for computational simplicity.

Remark 5.21. Using the bound given by Theorem 5.18 in case ν = 2, yields a unique

solution provided that

(b+ 3)(b+ 2)2

2
<

1

α
,

which is not as good as the integer-order bound (cf., [70]). Once again, however,

this bound can be improved by using a more complicated estimate than was used in

Lemma 5.17.
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Chapter 6

Analysis of a Three-Point Discrete

Fractional BVP

As mentioned in Chapter 1, multipoint or, more generally, nonlocal boundary value

problems have generated considerable interest in the past 20 to 30 years among math-

ematicians interested in ordinary differential equations and their discrete analogues.

The simplest possible incarnation of this type of problem is, of course, the so-called

three-point boundary value problem. In this Chapter, we wish to illustrate the anal-

ysis of such a three-point boundary value problem in the discrete fractional setting.

As will become apparent upon reading this chapter, this provides, in some way, a

generalization of the results of Chapter 5, though the results here do not subsume

those of the last Chapter – cf., Definition 6.8 and the sequel.

Similar to the preceding chapter, we shall derive first the Green’s function for the
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three-point nonlinear discrete fractional boundary value problem (FBVP)


−∆νy(t) = f(t+ ν − 1, y(t+ ν − 1))

y(ν − 2) = 0

αy(ν +K) = y(ν + b)

, (6.1)

where t ∈ [0, b]N0 , ν ∈ (1, 2], α ∈ [0, 1], K ∈ [−1, b−1]Z, and f : [ν−1, ν+b−1]Nν−1×

R → R is continuous. We then prove that this Green’s function satisfies certain

properties. Verifying that the Green’s function satisfies certain desirable properties

is one of our primary goals in this chapter, and this verification tends to be more

delicate and complicated than for continuous FBVPs.

6.1 Derivation of the Green’s Function

In this section, we deduce the Green’s function for the operator −∆ν together with

the boundary operators y(ν−2) = 0 and αy(ν+K) = y(ν+ b), where 0 ≤ α ≤ 1 and

K ∈ [−1, b− 1]Z. For reference in the sequel, let us make the following declarations.

g1(t, s) :=
1

Γ(ν)

×
[
−(t− s− 1)ν−1 +

tν−1

Ω0

[
(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1

]]
g2(t, s) :=

1

Γ(ν)

[
tν−1

Ω0

[
(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1

]]
g3(t, s) :=

1

Γ(ν)

[
−(t− s− 1)ν−1 +

tν−1

Ω0

(b+ ν − s− 1)ν−1

]
g4(t, s) :=

1

Γ(ν)

[
tν−1

Ω0

(b+ ν − s− 1)ν−1

]
Ω0 := (b+ ν)ν−1 − α(K + ν)ν−1

(6.2)
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Theorem 6.1. Let h : [ν − 1, ν + b− 1]Nν−1 → R be given. The unique solution of

the problem 
−∆νy(t) = h(t+ ν − 1)

y(ν − 2) = 0

αy(ν +K) = y(ν + b)

(6.3)

is the function

y(t) =
b∑

s=0

G(t, s)h(s+ ν − 1),

where G(t, s) is the Green’s function for the operator −∆ν together with the boundary

conditions in (6.3), and where

G(t, s) :=



g1(t, s), 0 ≤ s ≤ min{t− ν,K}

g2(t, s), 0 ≤ t− ν < s ≤ K ≤ b

g3(t, s), 0 < K < s ≤ t− ν ≤ b

g4(t, s), max{t− ν,K} < s ≤ b

,

with gi(t, s), 1 ≤ i ≤ 4, are as defined in (6.2) above.

Proof. We know from previous results in this work (cf., Chapter 5) that the general

solution to the equation −∆νy(t) = h(t+ ν − 1) is the function

y(t) = −∆−νh(t+ ν − 1) + C1t
ν−1 + C2t

ν−2,

where C1 and C2 are constants to be determined. Now, applying the boundary

condition y(ν − 2) = 0 implies at once that C2 = 0. On the other hand, applying the
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boundary condition αy(ν +K) = y(ν + b) implies that

0 = αy(ν +K)− y(ν + b)

= α
{
−∆−νh(t)

∣∣
t=ν+K

+ C1(ν +K)ν−1
}

+
{

∆−νh(t)
∣∣
t=ν+b

− C1(ν + b)ν−1
}
,

(6.4)

and (6.3) implies that

C1

[
−α(ν +K)ν−1 + (ν + b)ν−1

]
= C1Ω0 = −α∆−νh(t)

∣∣
t=ν+K

+ ∆−νh(t)
∣∣
t=ν+b

,

(6.5)

where Ω0 was defined in (6.2) above. So, from (6.5) we get that

C1 =
1

Γ(ν)Ω0

b∑
s=0

(b+ ν − s− 1)ν−1h(s+ ν − 1)

− 1

Γ(ν)Ω0

K∑
s=0

α(K + ν − s− 1)ν−1h(s+ ν − 1).

(6.6)

So, putting (6.6) into the equation for y, we find that

y(t) = − 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1h(s+ ν − 1)

+
tν−1

Γ(ν)Ω0

b∑
s=0

(b+ ν − s− 1)ν−1h(s+ ν − 1)

− tν−1

Γ(ν)Ω0

K∑
s=0

α(K + ν − s− 1)ν−1h(s+ ν − 1),

(6.7)

and this is the unique solution to problem (6.3).

Finally, define G(t, s) as in the statement of this theorem. Then it is clear from

the form of y(t) given in (6.7) as well as the definition of the gi’s in (6.2) that we can

write y(t) =
∑b

s=0 G(t, s)h(s+ ν − 1), as claimed.
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Remark 6.2. It is easy to observe that in case α = 0, not only does problem (6.1)

reduce to the usual conjugate FBVP that was considered in [20], but, moreover, the

Green’s function given by Theorem 6.1 reduces to the Green’s function derived in

[20]. Thus, our results here are, in part, a generalization of the results of [20].

6.2 Properties of the Green’s Function

We now wish to prove that the Green’s function G(t, s) in Theorem 6.1 satisfies a

variety of properties. Certain of these properties will be important in Section 6.3

when we consider existence of a solution to problem (1.1). We first prove an easy but

necessary preliminary lemma.

Lemma 6.3. Let Ω0 be as defined in (6.2). Then for each K ∈ [−1, b−1]Z, ν ∈ (1, 2],

and b ∈ N, we find that Ω0 > 0.

Proof. Recall from (6.2) that Ω0 = (b + ν)ν−1 − α(K + ν)ν−1. Clearly, this function

is decreasing in α for each fixed K, ν, and b. Consequently, it suffices to show that

Ω0 > 0 when α = 1. To see that this is indeed true, note that tµ is increasing in t,

whenever 0 < µ < 1. So, as b+ ν > K + ν, it follows at once that

Ω0

∣∣
α=1

= (b+ ν)ν−1 − (K + ν)ν−1 > 0,

which proves the claim. (Note this holds even in case ν = 2.)

Theorem 6.4. Let G(t, s) be the Green’s function given in the statement of Theorem

6.1. Then for each (t, s) ∈ [ν − 2, ν + b]Nν−2 × [0, b]N0, we find that G(t, s) ≥ 0.

Proof. We shall show that for each i, 1 ≤ i ≤ 4, gi(t, s) > 0 for each admissible pair

(t, s). Let us begin by showing both that g2(t, s) > 0 and that g4(t, s) > 0, as these
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are the easier cases. In the case of g2(t, s), observe that by the form of g2, it suffices

to show that

(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1 > 0. (6.8)

Showing that (6.8) is true is equivalent to showing that

(b+ ν − s− 1)ν−1

α(K + ν − s− 1)ν−1
> 1. (6.9)

But to see that (6.9) is true for each admissible pair (t, s) and each α ∈ (0, 1], observe

that tµ is increasing in t if µ ∈ (0, 1). It follows that

(b+ ν − s− 1)ν−1

α(K + ν − s− 1)ν−1
≥ (b+ ν − s− 1)ν−1

(K + ν − s− 1)ν−1
> 1, (6.10)

which proves (6.9) and hence (6.8). (Note that although α 6= 0 in (6.9), if α = 0, then

(6.8) is trivially true.) On the other hand, we note that by the form of g4 given in

(6.2), it is immediate that g4(t, s) > 0 since Ω0 > 0 by Lemma 6.3 and b+ν−s−1 > 0

in this case. Thus, we conclude that both g2 and g4 are positive on their respective

domains.

We next consider the function g3(t, s). Recall from (6.2) that

g3(t, s) =
1

Γ(ν)

[
−(t− s− 1)ν−1 +

tν−1

Ω0

(b+ ν − s− 1)ν−1

]
.

Evidently, to prove that g3(t, s) > 0, we may instead just prove that Γ(ν)g3(t, s) > 0.

Now, it is clear that g3 is increasing in α, for as α increases, Ω0 clearly decreases. In

particular, then, we deduce that

Γ(ν)g3(t, s) ≥ −(t− s− 1)ν−1 +
tν−1(b+ ν − s− 1)ν−1

(b+ ν)ν−1
. (6.11)
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Note that (6.11) implies that g3(t, s) > 0 if and only if

tν−1(b+ ν − s− 1)ν−1

(t− s− 1)ν−1(b+ ν)ν−1
> 1. (6.12)

To prove that (6.12) holds, recall that on the domain of g3 we have that t ≥ s+ ν >

K + ν. So, it follows that given a fixed s0 > K, we have that t = s0 + ν + j, for some

0 ≤ j ≤ b− s0 with j ∈ N0. But then for this fixed but arbitrary s0, we may rewrite

the left-hand side of (6.12) as

tν−1(b+ ν − s− 1)ν−1

(t− s− 1)ν−1(b+ ν)ν−1

=
Γ(t+ 1)Γ (b+ ν − s0) Γ (t− s0 − ν + 1) Γ(b+ 2)

Γ(t− ν + 2)Γ (b− s0 + 1) Γ (t− s0) Γ(b+ ν + 1)

=
Γ (s0 + ν + j + 1) Γ (b+ ν − s0) Γ(j + 1)Γ(b+ 2)

Γ (s0 + j + 2) Γ (b− s0 + 1) Γ(ν + j)Γ(b+ ν + 1)

=
j!(b+ 1)! [(ν + j + s0) · · · (ν + j)]

(s0 + j + 1)! (b− s0)! [(b+ ν) · · · (b+ ν − s0)]

=
(b+ 1) · · · (b− s0 + 1)

(b+ ν) · · · (b+ ν − s0)
· (ν + j + s0) · · · (ν + j)

(s0 + j + 1) · · · (j + 1)
.

(6.13)

Now, observe that each of the fractions on the right-hand side of (6.13) has exactly

s0 + 1 factors in each of its numerator and denominator. Moreover, by putting α0 :=

ν − 1 > 0, it is easy to see that this expression satisfies the hypotheses of Lemma

5.7. (Note that some repetition of factors may occur between the two fractions on

the right-hand side of (6.13), but these may always be canceled to obtain the form

required by Lemma 5.7.) Consequently, we deduce from this lemma that

tν−1(b+ ν − s− 1)ν−1

(t− s− 1)ν−1(b+ ν)ν−1
=

(b+ 1) · · · (b− s0 + 1)

(b+ ν) · · · (b+ ν − s)
· (ν + j + s0) · · · (ν + j)

(s0 + j + 1) · · · (j + 1)
> 1,

(6.14)

whence (6.12) holds. But as (6.12) holds for each admissible pair (t, s), it follows at
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once that (6.11) holds, too, so that g3(t, s) > 0, as claimed.

Finally, we wish to show that g1(t, s) > 0 on its domain, which we recall is

0 ≤ s ≤ min{t− ν,K}. Recall from (6.2) that

Γ(ν)g1(t, s) = −(t− s− 1)ν−1 +
tν−1

Ω0

[
(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1

]
,

(6.15)

where we shall again use the fact that g1 is positive if and only if Γ(ν)g1 is positive.

Let us observe at this juncture that

(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1 > 0, (6.16)

which is an important condition. Observe that (6.16) just follows from (6.8) above.

Now, observe that g1 > 0 only if

tν−1

Ω0

[
(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1

]
> (t− s− 1)ν−1. (6.17)

We shall begin by demonstrating that

F (α) :=
(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1

(b+ ν)ν−1 − α(K + ν)ν−1
(6.18)

is increasing in α for 0 ≤ α ≤ 1. Note that an easy calculation demonstrates that

F (α) is increasing in α if and only if

(b+ ν − s− 1)ν−1(K + ν)ν−1

(K + ν − s− 1)ν−1(b+ ν)ν−1
> 1. (6.19)

To see that (6.19) holds, let s0 be fixed but arbitrary such that s0 ∈ [0, b]N0 and
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0 ≤ s0 ≤ min{t− ν,K}. So, it follows that the left-hand side of (6.19) above satisfies

(b+ ν − s0 − 1)ν−1 (K + ν)ν−1

(K + ν − s0 − 1)ν−1 (b+ ν)ν−1
=

(b+ 1) · · · (b− s0 + 1)

(b+ ν) · · · (b+ ν − s0)
· (K + ν) · · · (K + ν − s0)

(K + 1) · · · (K − s0 + 1)
.

(6.20)

But it is easy to check that by putting α0 := ν − 1 > 0, we may apply Lemma 5.7 to

the right-hand side of (6.20) to conclude that (6.19) holds. Thus, F (α) is increasing

in α. In particular, this implies that to prove that (6.17) is true, it suffices to check

its truth in case α = 0. In this case, we find that proving (6.17) reduces to proving

that

tν−1(b+ ν − s− 1)ν−1

(b+ ν)ν−1(t− s− 1)ν−1
> 1 (6.21)

holds. Observe that the same proof that was used to show that (6.12) held can be

used to show that (6.21) holds, too. Thus, as (6.17) holds in case α = 0, the result

of (6.18)–(6.21) implies that (6.17) holds for each admissible α. Consequently, we

conclude that g1(t, s) > 0, from which it follows that gi(t, s) > 0 for each i, 1 ≤ i ≤ 4.

Hence, G(t, s) > 0, which concludes the proof.

Theorem 6.5. Let G(t, s) be the Green’s function given in the statement of Theorem

6.1. In addition, suppose that for given K ∈ [−1, b− 1]Z and 1 < ν ≤ 2, we have that

α satisfies the inequality

0 ≤ α ≤ min
(t,s)∈[s+ν,ν+b]Nν−1

×[0,b]N0

{
(b+ ν)ν−1

(K + ν)ν−1
− tν−2(b+ ν − s− 1)ν−1

(K + ν)ν−1(t− s− 1)ν−2

}
(6.22)

Then it follows that

max
(t,s)∈[ν−1,ν+b]Nν−1

×[0,b]N0

G(t, s) = G(s+ ν − 1, s). (6.23)

Proof. Our strategy is to show that ∆tgi(t, s) > 0 for each i = 2, 4, and that
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∆tgi(t, s) < 0 for i = 1, 3. From this the claim will follow, evidently. To this

end, we first show that the former claim holds, as this is the easier of the two cases.

For instance, when i = 2, we find by direct computation that

Γ(ν)∆tg2(t, s) =
(ν − 1)tν−2

Ω0

[
(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1

]
. (6.24)

So, it is clear from (6.23) that ∆tg2(t, s) > 0 if and only if

(b+ ν − s− 1)ν−1 > α(K + ν − s− 1)ν−1. (6.25)

But as this follows at once from (6.8)–(6.9) above, we have that ∆tg2(t, s) > 0,

as desired. On the other hand, that ∆tg4(t, s) > 0 is immediate considering that

∆tg4(t, s) = (ν−1)tν−2

Ω0
(b+ ν − s− 1)ν−1. So, this concludes the analysis of ∆tgi(t, s) in

case i is even.

We next attend to g3(t, s), and we claim that ∆tg3(t, s) < 0, for each admissible

pair (t, s). To see that this is true, note first that

Γ(ν)∆tg3(t, s) = −(ν − 1)(t− s− 1)ν−2 +
(ν − 1)tν−2

Ω0

(b+ ν − s− 1)ν−1, (6.26)

where we have used the fact that ∆t(t− s− 1)ν−1 = (ν − 1)(t− s− 1)ν−2, which may

be easily verified by definition. So, if ∆tg3 is to be nonpositive, then it must be the

case that

tν−2(b+ ν − s− 1)ν−1

Ω0

< (t− s− 1)ν−2 (6.27)

holds. Note that (6.27) holds if and only if (b+ν)ν−1−α(K+ν)ν−1 > tν−2(b+ν−s−1)ν−1

(t−s−1)ν−2
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is true. But this latter inequality is true only if

−α > tν−2(b+ ν − s− 1)ν−1

(t− s− 1)ν−2(K + ν)ν−1
− (b+ ν)ν−1

(K + ν)ν−1
(6.28)

is true. And from this, we see that by requiring α to satisfy, for each admissible K

and ν, the inequality

0 ≤ α ≤ min
(t,s)∈[s+ν,ν+b]Nν−1

×[0,b]N0

{
(b+ ν)ν−1

(K + ν)ν−1
− tν−2(b+ ν − s− 1)ν−1

(K + ν)ν−1(t− s− 1)ν−2

}
, (6.29)

it follows that (6.27) holds – that is, that g3(t, s) > 0 for each admissible pair (t, s).

Note that restriction (6.29) above is precisely restriction (6.22), which was given in

the statement of this theorem. Thus, with restriction (6.22) in place, we conclude

that g3(t, s) will be nonpositive on its domain, as desired.

Finally, we claim that ∆tg1(t, s) < 0 on its domain. Observe that by the definition

of g1 given in (6.2), it follows that we must show that

−(ν − 1)(t− s− 1)ν−2 +
(ν − 1)tν−2

Ω0

[
(b+ s− ν − 1)ν−1 − α(K + ν − s− 1)ν−1

]
< 0.

(6.30)

But note that

− (ν − 1)(t− s− 1)ν−2 +
(ν − 1)tν−2

Ω0

[
(b+ s− ν − 1)ν−1 − α(K + ν − s− 1)ν−1

]
≤ −(ν − 1)(t− s− 1)ν−2 +

(ν − 1)tν−2(b+ s− ν − 1)ν−1

Ω0

.

(6.31)

So, it follows that if

−(ν − 1)(t− s− 1)ν−2 +
(ν − 1)tν−2(b+ s− ν − 1)ν−1

Ω0

< 0, (6.32)
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then inequality (6.30) holds. But note that we can solve for α in (6.32) to get an

upper bound on α. As this calculation is exactly the same as the one given earlier

in the argument, we do not repeat it here. Instead we point out that the restriction

(6.32) implies that

0 ≤ α ≤ (b+ ν)ν−1

(K + ν)ν−1
− tν−2(b+ ν − s− 1)ν−1

(K + ν)ν−1(t− s− 1)ν−2
. (6.33)

Note that the right-hand side of (6.33) is precisely restriction (6.22). Thus, by assum-

ing (6.22) we also get that (6.30) holds. Consequently, the preceding analysis shows

that (6.30) holds, whence g1(t, s) > 0 on its domain. Thus, by the discussion in the

first paragraph of this proof, we deduce that (6.23) holds. And this completes the

proof.

Before presenting our final theorem in this section regarding G(t, s), we need to

define the following constants for convenience. We shall use this in the sequel.

γ1 :=

(
b+ν

4

)ν−1

(b+ ν)ν−1

γ2 :=
1(

3(b+ν)
4

)ν−1

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− 1
)ν−1

[(b+ ν)ν−1 − α(K + ν)ν−1]

(b+ ν − 1)ν−1


γ3 :=

1(
3(b+ν)

4

)ν−1

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− 1
)ν−1

(b+ ν)ν−1

(b+ ν − 1)ν−1


(6.34)

Theorem 6.6. Let G(t, s) be the Green’s function given in the statement of Theorem
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6.1. Let γi, 1 ≤ i ≤ 3, be defined as in (6.34) above. Then it follows that

min
t∈[ b+ν4 ,

3(b+ν)
4 ]

G(t, s) ≥ γ max
(t,s)∈[ν−2,ν+b]Nν−2

×[0,b]N0

G(t, s) = γG(s+ ν − 1, s), (6.35)

where

γ := min {γ1, γ3} , (6.36)

and γ satisfies the inequality 0 < γ < 1.

Proof. To facilitate notation in this proof, let us put, for each 1 ≤ i ≤ 4,

g̃i(t, s) :=
gi(t, s)

gk(s+ ν − 1, s)
,

where k = 2 if i = 1, 2, and k = 4 if i = 3, 4. Observe that for s ≥ t − ν + 1 and

b+ν
4
≤ t ≤ 3(b+ν)

4
, we find that

g̃2(t, s) = g̃4(t, s) =
tν−1

(s+ ν − 1)ν−1
≥
(
b+ν

4

)ν−1

(b+ ν)ν−1
, (6.37)

whence from (6.37) it is clear that in case s ≥ t− ν+ 1 and t ∈
[
b+ν

4
, 3(b+ν)

4

]
, we have

that min
t∈[ b+ν4 ,

3(b+ν)
4 ]G(t, s) ≥ γ1G(s+ ν − 1, s).

On the other hand, suppose that s < t − ν + 1 and t ∈
[
b+ν

4
, 3(b+ν)

4

]
. Then we

consider two cases depending upon whether or not the pair (t, s) lies in the domain
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of g̃1(t, s) or g̃3(t, s). In the latter case, we note that by definition

g̃3(t, s) =
−(t− s− 1)ν−1Ω0

(s+ ν − 1)ν−1(b+ ν − s− 1)ν−1
+

tν−1

(s+ ν − 1)ν−1

=
1

(s+ ν − 1)ν−1

[
tν−1 − (t− s− 1)ν−1 [(b+ ν)ν−1 − α(K + ν)ν−1]

(b+ ν − s− 1)ν−1

]
≥ 1(

3(b+ν)
4

)ν−1

×

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− 1
)ν−1

[(b+ ν)ν−1 − α(K + ν)ν−1]

(b+ ν − 1)ν−1

 .
(6.38)

So, it is clear from (6.38) that in case s < t− ν + 1 and t ∈
[
b+ν

4
, 3(b+ν)

4

]
, we get that

min
t∈[ b+ν4 ,

3(b+ν)
4 ]G(t, s) ≥ γ2G(s+ ν − 1, s).

Finally, suppose that s < t − ν + 1, t ∈
[
b+ν

4
, 3(b+ν)

4

]
, and that the pair (t, s) lies

in the domain of g̃1(t, s). By using a similar calculation as in (6.38) together with the

definition of g̃1(t, s), we find that

g̃1(t, s) =
−(t− s− 1)ν−1Ω0

(s+ ν − 1)ν−1 [(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1]

+
tν−1

(s+ ν − 1)ν−1

≥ 1(
3(b+ν)

4

)ν−1

×

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

[(b+ ν)ν−1 − α(K + ν)ν−1]

(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1

 .
(6.39)

We now need to focus on the quotient (b+ν)ν−1−α(K+ν)ν−1

(b+ν−s−1)ν−1−α(K+ν−s−1)ν−1 , which appears on

the right-hand side of (6.39). We claim that this is a decreasing function of α.
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To prove this claim, let us put

g(α) :=
(b+ ν)ν−1 − α(K + ν)ν−1

(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1
, (6.40)

where for each fixed but arbitrary b, s, ν, and K, we have that g : [0, 1]→ [0,+∞).

Now, let F (α) be defined as in (6.18) above. Note from (6.40) that g(α) = [F (α)]−1.

Recall that we already proved that F (α) is increasing in α, for 0 ≤ α ≤ 1. So, a

routine computation demonstrates that g(α) = [F (α)]−1 is thus decreasing in α, for

0 ≤ α ≤ 1, as desired.

Since g is decreasing in α, we conclude that

g̃1(t, s) ≥ 1(
3(b+ν)

4

)ν−1

×

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

[(b+ ν)ν−1 − α(K + ν)ν−1]

(b+ ν − s− 1)ν−1 − α(K + ν − s− 1)ν−1


≥ 1(

3(b+ν)
4

)ν−1

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

(b+ ν)ν−1

(b+ ν − s− 1)ν−1


≥ 1(

3(b+ν)
4

)ν−1

(3(b+ ν)

4

)ν−1

−

(
3(b+ν)

4
− 1
)ν−1

(b+ ν)ν−1

(b+ ν − 1)ν−1

 .
(6.41)

Thus, we see that in case, min
t∈[ b+ν4 ,

3(b+ν)
4 ]G(t, s) ≥ γ3G(s+ ν − 1, s).

Finally, note that since γ2 ≥ γ3, it follows that min {γ1, γ2, γ3} = min {γ1, γ3}.

Thus, we can put γ := min {γ1, γ3} as in (6.36), and the preceding part of the proof
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then shows that

min
t∈[ b+ν4 ,

3(b+ν)
4 ]

G(t, s) ≥ γ max
(t,s)∈[ν−2,ν+b]Nν−2

×[0,b]N0

G(t, s) = γG(s+ ν − 1, s), (6.42)

and as (6.42) is (6.35), the first part of the proof is complete.

To complete the proof, it remains to show that γ, as defined in (6.36), satisfies

0 < γ < 1. Let us first observe that γ1 < 1. This follows from the fact that tν−1 is an

increasing function in t whenever ν ∈ (1, 2]. Indeed, observe that

∆
[
tν−1

]
= (ν − 1) · Γ(t+ 1)

Γ(t− ν + 3)
> 0, (6.43)

clearly. So, as b+ν
4

> b + ν and
(
b+ν

4

)ν−1
, (b + ν)ν−1 6= 0, the claim follows. In

particular, this demonstrates that

γ = min {γ1, γ3} ≤ γ1 < 1. (6.44)

On the other hand, since it is clear that γ1 > 0, it remains to show that γ3 > 0.

Observe that γ3 is strictly positive if and only if

(
3(b+ν)

4

)ν−1

(b+ ν − 1)ν−1(
3(b+ν)

4
− 1
)ν−1

(b+ ν)ν−1

> 1. (6.45)

But (6.45) is true if and only if

(b+ 1)
(

3(b+ν)
4

)
(b+ ν)

(
3(b+ν)

4
− ν + 1

) > 1 (6.46)

holds for each admissible b and ν – that is, each b ∈ [2,+∞)N and ν ∈ (1, 2].
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We claim that (6.46) does hold for each admissible b and ν. To see this, for each

fixed and admissible b, put

Hb(ν) :=
(b+ 1)

(
3(b+ν)

4

)
(b+ ν)

(
3(b+ν)

4
− ν + 1

) , (6.47)

which is the left-hand side of inequality (6.46), and note both that

Hb(1) = 1 (6.48)

and that

Hb(2) =
(b+ 1)

(
3
4
b+ 3

2

)
(b+ 2)

(
3
4
b+ 1

2

) =
3b+ 3

3b+ 2
. (6.49)

Clearly, Hb(2) > 1, for each admissible b. Moreover, a routine calculation shows that

H ′b(ν) =
3(b+ 1)

(3b− ν + 4)2
. (6.50)

But (6.50) demonstrates that for each admissible b, we have that Hb(ν) is strictly

increasing in ν. Therefore, as Hb(1) = 1 and Hb(2) > 1, we get at once that

Hb(ν) > 1 (6.51)

for each ν ∈ (1, 2] and b ∈ [2,+∞)N. But from (6.51) we deduce that (6.46) holds for

each admissible b and ν.

In summary, (6.45)–(6.51) demonstrate that γ3 > 0. But we then find that

γ = min {γ1, γ3} > 0. (6.52)



103

Putting (6.44) and (6.52) together implies that γ ∈ (0, 1), as claimed. And this

completes the proof.

Remark 6.7. Note that in case α = 0, the result of Theorem 6.6 reduces to the results

obtained in [20].

We wish to conclude this section by investigating certain of the properties of the set

of admissible values of α generated by condition (6.22) in Theorem 6.5. Interestingly,

depending upon the magnitude of α, it may be the case that some α ∈ [0, 1] are not

admissible. The results in the sequel provide some analysis of this problem.

Definition 6.8. Given b ∈ N, ν ∈ (1, 2], and K ∈ [−1, b− 1]Z, let Λ(ν,K,b) be the set

of α ∈ [0, 1] such that condition (4.15) holds – that is

Λ(ν,K,b)

:=

{
α ∈ [0, 1] : 0 ≤ α ≤ min

{
(b+ ν)ν−1

(K + ν)ν−1
− tν−2(b+ ν − s− 1)ν−1

(K + ν)ν−1(t− s− 1)ν−2

}}
,

where the min is taken over all pairs (t, s) satisfying (t, s) ∈ [s+ν, ν+ b]Nν−1× [0, b]N0 .

Then we shall call Λ(ν,K,b) ⊆ [0, 1] the α-admissible set for problem (6.1).

Before proving a couple of results regarding the Lebesgue measure of Λ(ν,K,b), we

need to state and prove a preliminary lemma.

Lemma 6.9. The function f(t, s) := tν−2

(t−s−1)ν−2 is increasing in t.

Proof. Observe that

∆tf(t, s) =
(t+ 1)ν−2

(t− s)ν−2
− tν−2

(t− s− 1)ν−2

=
Γ(t+ 2)Γ(t− s− ν + 3)− (t− ν + 3)(t− s)Γ(t+ 1)Γ(t− s− ν + 2)

Γ(t− ν + 4)Γ(t− s+ 1)
.

(6.53)



104

Now, note that the numerator of ∆tf(t, s) on the right-hand side of (6.53) above may

be rewritten as [(t + 1)(t − s − ν + 2) − (t − ν + 3)(t − s)]Γ(t + 1)Γ(t − s − ν + 2).

But the coefficient of Γ(t+ 1)Γ(t− s− ν + 2) in this expression may be written as

(t+ 1)(t− s− ν + 2)− (t− ν + 3)(t− s) = s(2− ν) + (2− ν) ≥ 0, (6.54)

clearly. But from (6.53)–(6.54) it follows at once that ∆tf(t, s) ≥ 0. Thus, f(t, s) is

increasing in t, as claimed.

With this preliminary lemma in hand, we now prove three results regarding the

measure of the set Λ(ν,K,b). Henceforth, we consider the measurable space
(
[0, 1],B[0,1]

)
equipped with the usual Lebesgue measure, denoted in the sequel by m.

Theorem 6.10. Given b ∈ N, ν ∈ (1, 2], and K ∈ [−1, b− 1]Z, we find that

lim
ν→1+

m
(
Λ(ν,K,b)

)
=

2

b+ 2
(6.55)

and that

lim
ν→2−

m
(
Λ(ν,K,b)

)
=

1

K + 2
, (6.56)

for each fixed K and b.

Proof. To prove (6.55), notice that when ν = 1, we get that

Λ(1,K,b) = min
[s+1,b+1]N0×[0,b]N0

[
1− tν−2

(t− s− 1)ν−2

]
ν=1

=

[
1− (ν + b)ν−2

(ν + b− 1)ν−2

]
ν=1

=

[
1− b+ ν

b+ 2

]
ν=1

=
2

b+ 2
,
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where we have used the fact that Λ is continuous in ν, the result of Lemma 6.9, and

the fact that tν−2 is decreasing in t. Thus, (6.55) is proved.

On the other hand, to show that (6.56) is true, note that in case ν = 2, we get

that

0 ≤ α ≤ min

{
b+ 2

K + 2
− b+ 2− s− 1

K + 2

}
= min

{
s+ 1

K + 2

}
which proves the claim, for s ∈ [0, b]N0 so that Λ(2,K,b) =

[
0, 1

K+2

]
, for each admissible

triple (2, K, b). (Note that we have again used the continuity of Λ(ν,K,b) with respect

to ν.)

Corollary 6.11. For each ε > 0 and K ∈ [−1, b−1]Z given, there is ν > 1 sufficiently

close to 1 and b > 0 sufficiently large such that

m
(
Λ(ν,K,b)

)
< ε. (6.57)

Proof. By using (6.55) from Theorem 6.10, we write

lim
b→+∞

lim
ν→1+

m
(
Λ(ν,K,b)

)
= 0. (6.58)

Then (6.58) proves the claim.

In a similar way, we get the following corollary.

Corollary 6.12. If K = −1 and ν = 2, then Λ(2,−1,b) has full measure for each

admissible b – that is

m
(
Λ(2,−1,b)

)
= 1. (6.59)

Remark 6.13. Observe that (6.57) in Corollary 6.11 implies that for b sufficiently

large, we can make the set of admissible α have arbitrarily small measure. In partic-

ular, then, for ν sufficiently close to and greater than unity, we find that α may be
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significantly restricted, especially if b is very large. On the other hand, Corollary 6.12

implies that for ν sufficiently close to 2 and K small, α may not be very restricted;

in particular, in case ν = 2 and K = −1, Λ(2,−1,b) = [0, 1] for each b, and so, α is not

restricted at all.

6.3 Existence Theorems

In this section, we wish to conclude by presenting two representative existence theo-

rems. One way to deduce existence results for the general problem (6.1) is to appeal

to cone theoretic techniques. Although in light of the discussion at the end of Chapter

5 this is now rather standard, we include the relevant result for completeness. In any

case, we now consider the nonlinear equation (6.1). We notice that y solves (6.1) if

and only if y is a fixed point of the operator

(Ty)(t) :=
b∑

s=0

G(t, s)f(s+ ν − 1, y(s+ ν − 1)),

where G is the Green’s function derived in this paper and T : B → B, where B is

the Banach space consisting of all (continuous) maps from [ν − 2, ν + b]Nν−2 into R

when equipped with the usual supremum norm, ‖ · ‖.

Let us also make the following declarations, which will be used in the sequel.

η :=
1∑b

s=0G(s+ ν − 1, s)

λ :=
1∑b 3(ν+b)

4
−ν+1c

s=d ν+b
4
−ν+1e γG

(⌊
b+1

2

⌋
+ ν, s

)
Let us also introduce two conditions on the behavior of f that will be useful in
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the sequel. These are standard assumptions on the growth of the nonlinearity f(t, y).

C1: There exists a number r > 0 such that f(t, y) ≤ ηr whenever 0 ≤ y ≤ r.

C2: There exists a number r > 0 such that f(t, y) ≥ rλ whenever γr ≤ y ≤ r,

where γ is the constant deduced in Theorem 6.6.

We now can prove the following existence result.

Theorem 6.14. Suppose that there are distinct r1, r2 > 0 such that condition (C1)

holds at r = r1 and condition (C2) holds at r = r2. Suppose also that f(t, y) ≥ 0 and

continuous. Then the FBVP (6.1) has at least one positive solution, say y0, such that

‖y0‖ lies between r1 and r2.

Proof. We shall assume without loss of generality that 0 < r1 < r2. Consider the set

K :=

{
y ∈ B : y(t) ≥ 0 and min

t∈[ b+ν4 ,
3(b+ν)

4 ]
y(t) ≥ γ‖y(t)‖

}
,

which is a cone with K ⊆ B. Observe that T : K → K, for we observe that

min
t∈[ b+ν4 ,

3(b+ν)
4 ]

(Ty)(t) = min
t∈[ b+ν4 ,

3(b+ν)
4 ]

b∑
s=0

G(t, s)f(s+ ν − 1, y(s+ ν − 1))

≥ γ

b∑
s=0

G(s+ ν − 1, s)f(s+ ν − 1, y(s+ ν − 1))

= γ max
t∈[ν−1,ν+b]Nν−1

b∑
s=0

G(t, s)f(s+ ν − 1, y(s+ ν − 1))

= γ‖Ty‖,

whence Ty ∈ K, as claimed. Also, it is easy to see that T is a completely continuous

operator, for T : Rb+3 → Rb+3.
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Now, put Ω1 := {y ∈ K : ‖y‖ < r1}. Note that for y ∈ ∂Ω1, we have that

‖y‖ = r1 so that condition (C1) holds for all y ∈ ∂Ω1. So, for y ∈ K ∩ ∂Ω1, we find

that

‖Ty‖ = max
t∈[ν−1,ν+b]Nν−1

b∑
s=0

G(t, s)f(s+ ν − 1, y(s+ ν − 1))

≤
b∑

s=0

G(s+ ν − 1, s)f(s+ ν − 1, y(s+ ν − 1))

≤ ηr1

b∑
s=0

G(s+ ν − 1, s)

= r1

= ‖y‖,

whence we find that ‖Ty‖ ≤ ‖y‖ whenever y ∈ K ∩ ∂Ω1. Thus we get that the

operator T is a cone compression on K ∩ Ω1.

On the other hand, put Ω2 := {y ∈ K : ‖y‖ < r2}. Note that for y ∈ ∂Ω2, we

have that ‖y‖ = r2 so that condition (C2) holds for all y ∈ ∂Ω2. Also note that{
b b+1

2
c+ ν

}
⊂
[
b+ν

4
, 3(b+ν)

4

]
. So, for y ∈ K ∩ ∂Ω2, we find that

Ty

(⌊
b+ 1

2

⌋
+ ν

)
=

b∑
s=0

G

(⌊
b+ 1

2

⌋
+ ν, s

)
f(s+ ν − 1, y(s+ ν − 1))

≥
b 3(ν+b)

4
−ν+1c∑

s=d ν+b
4
−ν+1e

γG

(⌊
b+ 1

2

⌋
+ ν, s

)
f(s+ ν − 1, y(s+ ν − 1))

≥ λr2

b 3(ν+b)
4
−ν+1c∑

s=d ν+b
4
−ν+1e

γG

(⌊
b+ 1

2

⌋
+ ν, s

)

= r2,

whence ‖Ty‖ ≥ ‖y‖, whenever y ∈ K ∩ ∂Ω2. Thus we get that the operator T is



109

a cone expansion on K ∩ ∂Ω2. So, it follows by Lemma 2.13 that the operator T

has a fixed point. But this means that (1.1) has a positive solution, say y0, with

r1 ≤ ‖y0‖ ≤ r2, as claimed.

We now provide a second existence theorem for problem (6.1).

Theorem 6.15. Assume that there exists a constant M > 0 such that

max
(t,y)∈[ν−1,ν+b−1]Nν−1

×[−M,M ]
|f(t, y)| ≤ M∑b

s=0 G(s+ ν − 1, s)
, (6.60)

where G(t, s) is the Green’s function for problem (1.1). Then (1.1) has a solution,

say y0(t), such that |y0(t)| ≤M , for each t ∈ [ν − 2, ν + b]Nν−2.

Proof. Let T be the operator defined at the beginning of this section. Moreover, let

BM the Banach space defined by BM :=
{
y ∈ Rb+3 : ‖y‖ ≤M

}
, where M is the

constant given in the statement of this theorem. Observe that

‖Ty‖ ≤ max
t∈[ν−1,ν+b]Nν−1

b∑
s=0

|G(t, s)||f(s+ ν − 1, y(s+ ν − 1))|

≤ M∑b
s=0G(s+ ν − 1, s)

b∑
s=0

max
t∈[ν−1,ν+b]Nν−1

|G(t, s)|

=
M∑b

s=0G(s+ ν − 1, s)

b∑
s=0

G(s+ ν − 1, s)

= M,

(6.61)

whence from (6.61) we conclude that T : BM → BM . Consequently, we conclude

by the Brouwer theorem that T has a fixed point y0, with y0 ∈ BM . In particular,

y0 is thus a solution of (6.1) satisfying |y0(t)| ≤ M , for each t ∈ [ν − 2, ν + b]Nν−2 .

Consequently, the theorem is proved.
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Chapter 7

A Note on the Green’s Function

for a Certain Continuous

Fractional BVP

The preceding chapters have dealt exclusively with discrete fractional boundary value

problems as well as certain operational properties of the discrete fractional difference.

But, in fact, as elucidated in Chapter 1, it is the continuous fractional calculus which,

at least at present, has inspired a much greater body of literature, owing both to its

inception far before the discrete fractional calculus and to its realization as a powerful

tool in applied mathematics. Consequently, in this short chapter we wish to give a

simple but interesting result, which, in fact, provides a pleasant connection to the

preceding results in this work and, moreover, to the results yet to come.

In particular, we are concerned with a partial extension of a problem considered

in a very recent paper by Zhang [93]. Zhang considered the problem

Dα
0+u(t) + q(t)f

(
u, u′, . . . , u(n−2)

)
= 0, 0 < t < 1, n− 1 < α ≤ n, (7.1)
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u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0, (7.2)

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order α, q may

be singular at t = 0, and f may be singular at u = 0, u′ = 0, . . . , u(n−2) = 0. As

a consequence of the viewpoint assumed by Zhang, it is never addressed whether or

not the Green’s function associated to (7.1)–(7.2) satisfies a Harnack-like inequality.

As is well-known from the existing literature, this is a crucial property when seeking

the existence of positive solutions by means of cone theory. One may consult from

among a great many papers the classic paper of Erbe and Wang [39] to see explicitly

this fact. On the other hand and perhaps surprisingly, it was first shown by Bai and

Lü [23] that the fractional analogue of the two-point conjugate BVP does not satisfy

this property.

Here we consider, for f : [0, 1] × [0,+∞) → [0,+∞) continuous, a class of

(continuous) fractional boundary value problems (FBVPs) of the form

−Dν
0+y(t) = f(t, y(t)), 0 < t < 1, n− 1 < ν ≤ n, (7.3)

y(i)(0) = 0, 0 ≤ i ≤ n− 2, (7.4)

[
Dα

0+y(t)
]
t=1

= 0, 1 ≤ α ≤ n− 2, (7.5)

where y(i) in boundary condition (7.4) represents the ith (ordinary) derivative of y.

Clearly, (7.4)–(7.5) generalize the boundary conditions considered in [93]. We shall

assume throughout that n ∈ N is given subject to the restriction n > 3. Note

that this problem is not unrelated to the so-called (k, n− k) conjugate BVPs, which

have received much attention in recent years – see, for example, the paper by Davis

and Henderson [32] and the references therein. Moreover, in the special case when

ν = 4, problem (7.3) has been studied with a variety of boundary conditions and
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nonlinearities – see, for example, [60] and the references therein.

Our primary contribution in this brief chapter is that we improve certain of

Zhang’s results by showing that the Green’s function associated to (7.3)–(7.5) satis-

fies, among other properties, a Harnack-like inequality. Since by putting α = n−2 in

(7.5) above we get the boundary conditions given by (7.2), our results affirm that the

Green’s function associated to (7.1)–(7.2) does satisfy a Harnack-like inequality. Since

our purpose here is merely to illustrate this affirmation and comment on its signifi-

cance, we dispense with showing any existence-type results, which, in any case, would

be standard once the requisite Green’s function properties have been established.

7.1 Green’s Function Properties

We begin by deriving the Green’s function for the operator −Dν together with the

boundary conditions given in (7.4)–(7.5).

Theorem 7.1. Let g ∈ C([0, 1]) be given. Then the unique solution to problem

−Dνy(t) = g(t) together with the boundary conditions (7.4)–(7.5) is

y(t) =

∫ 1

0

G(t, s)g(s) ds, (7.6)

where

G(t, s) =


tν−1(1−s)ν−α−1−(t−s)ν−1

Γ(ν)
, 0 ≤ s ≤ t ≤ 1

tν−1(1−s)ν−α−1

Γ(ν)
, 0 ≤ t ≤ s ≤ 1

(7.7)

is the Green’s function for this problem.

Proof. We know from Lemma 2.12 that the general solution to our problem is

y(t) = c1t
ν−1 + c2t

ν−2 + · · ·+ cnt
ν−n −D−νg(t), (7.8)



113

where we note that −ν < 0. We immediately observe that boundary condition

(7.4) implies that c2 = · · · = cn = 0. On the other hand, recalling (see [78]) that

Dα [tν−1] = Γ(ν)
Γ(ν−α)

tν−α−1, we find that boundary condition (7.5) implies that

0 = c1 ·
Γ(ν)

Γ(ν − α)
(1)ν−α−1 − 1

Γ(ν − α)

∫ 1

0

(1− s)ν−α−1g(s) ds, (7.9)

where we have used Lemma 2.11. But (7.9) may be simplified to get that

c1 =
1

Γ(ν)

∫ 1

0

(1− s)ν−α−1g(s) ds. (7.10)

Finally putting (7.10) into (7.8) and using the fact that ci = 0 for each i ≥ 2, we find

that the general solution to the problem is

y(t) =
tν−1

Γ(ν)

∫ 1

0

(1− s)ν−α−1g(s) ds− 1

Γ(ν)

∫ t

0

(t− s)ν−1g(s) ds, (7.11)

from which it is easy to see that (7.6) holds with G(t, s) defined as in (7.2).

We now state and prove several properties of the Green’s function derived in

Theorem 7.1. For convenience in the sequel, let us put

G1(t, s) :=
tν−1(1− s)ν−α−1 − (t− s)ν−1

Γ(ν)
, 0 ≤ s ≤ t ≤ 1 (7.12)

and

G2(t, s) :=
tν−1(1− s)ν−α−1

Γ(ν)
, 0 ≤ t ≤ s ≤ 1. (7.13)

Theorem 7.2. Let G(t, s) be as given in the statement of Theorem 7.1. Then we

find that:

1. G(t, s) is a continuous function on the unit square [0, 1]× [0, 1];
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2. G(t, s) ≥ 0 for each (t, s) ∈ [0, 1]× [0, 1]; and

3. maxt∈[0,1]G(t, s) = G(1, s), for each s ∈ [0, 1].

Proof. That property (1) holds is trivial. Indeed, it is clear that each of G1 and G2

are continuous on their domains and that G1(s, s) = G2(s, s), whence (1) follows.

To prove that (3) is true, we begin by noting that for each fixed admissible s,

we have ∂G2

∂t
> 0, clearly. So, in particular, G2 is increasing with respect to t.

On the other hand, note that ∂G1

∂t
= (ν−1)tν−2(1−s)ν−α−1−(t−s)ν−2(ν−1)

Γ(ν)
. Put G∗(t, s) :=

∂G1

∂t
for each admissible (t, s). Evidently, G∗(t, s) > 0 on its domain if and only if

tν−2(1 − s)ν−α−1 − (t − s)ν−2 ≥ 0. But that this latter inequality holds follows from

the observation that

tν−2(1− s)ν−α−1 − tν−2
(

1− s

t

)ν−2

≥ tν−2
[
(1− s)ν−α−1 − (1− s)ν−2

]
≥ 0, (7.14)

where to get the first inequality we use the fact that 0 ≤ t ≤ 1, whereas to get the

final inequality we use the fact that ν − α− 1 ≤ ν − 2, for each admissible α. Thus,

as (7.14) holds, we deduce that G∗(t, s) ≥ 0 on its domain. In particular, then, G1 is

increasing on its domain, too. Consequently, (3) holds.

Finally, to prove that (2) holds, let us note that for each fixed and admissible s,

we have that G(0, s) = 0. So, as (3) implies that G(t, s) is increasing in t for each s,

we find at once that G(t, s) ≥ 0 at each admissible pair (t, s). Thus, (2) holds, and

the proof is complete.

Theorem 7.3. Let G(t, s) be as given in the statement of Theorem 7.1. Then there

exists a constant γ ∈ (0, 1) such that

min
t∈[ 12 ,1]

G(t, s) ≥ γ max
t∈[0,1]

G(t, s) = γG(1, s). (7.15)
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Proof. Notice that Theorem 7.2 implies that

min
t∈[ 12 ,1]

G(t, s) =


G1

(
1
2
, s
)

, s ∈
(
0, 1

2

]
G2

(
1
2
, s
)

, s ∈
[

1
2
, 1
)

=


( 1
2)
ν−1

(1−s)ν−α−1−( 1
2
−s)

ν−1

Γ(ν)
, s ∈

(
0, 1

2

]
( 1
2)
ν−1

(1−s)ν−α−1

Γ(ν)
, s ∈

[
1
2
, 1
) .

(7.16)

Moreover, observe that

lim
s→0+

(
1
2

)ν−1
(1− s)ν−α−1 −

(
1
2
− s
)ν−1

(1− s)ν−α−1 [1− (1− s)α]

L’H
= lim

s→0+

−(ν − α− 1)
(

1
2

)ν−1
(1− s)ν−α−2 +

(
1
2
− s
)ν−2

(ν − 1)

−(1− s)ν−α−2(ν − α− 1) + (1− s)ν−2(ν − 1)
,

(7.17)

whence lims→0+
( 1
2)
ν−1

(1−s)ν−α−1−( 1
2
−s)

ν−1

(1−s)ν−α−1[1−(1−s)α]
= 1

α

(
1
2

)ν−1
(ν + α − 1) > 0. It is also the

case that for 0 < s ≤ 1
2

(
1
2

)ν−1
(1− s)ν−α−1 −

(
1
2
− s
)ν−1

(1− s)ν−α−1 [1− (1− s)α]
≥
(

1
2

)ν−1 (
1− 1

2

)ν−α−1 −
(

1
2
− 1

2

)ν−1(
1− 1

2

)ν−α−1 [
1−

(
1− 1

2

)α]
=

(
1
2

)ν−α−1

2α − 1
.

(7.18)

Finally, observe that for 1
2
≤ s ≤ 1, we find that

(
1
2

)ν−1

1− (1− s)α
≥
(

1

2

)ν−1

. (7.19)
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Now, define γ̃(s) : [0, 1]→ (0, 1) by

γ̃(s) :=


( 1
2)
ν−1

(1−s)ν−α−1−( 1
2
−s)

ν−1

(1−s)ν−α−1[1−(1−s)α]
, 0 < s ≤ 1

2

( 1
2)
ν−1

1−(1−s)α , 1
2
≤ s ≤ 1

, (7.20)

where γ̃(0) := lims→0+ γ̃(s); note that γ̃(0) > 0 by (7.17). Put

γ := min

{(
1
2

)ν−α−1

2α − 1
,

(
1

2

)ν−1
}
, (7.21)

where, evidently, 0 < γ < 1. Then from (7.16)–(7.21), we find that

min
t∈[ 12 ,1]

G(t, s) = γ̃(s) max
t∈[0,1]

G(t, s) ≥ γ max
t∈[0,1]

G(t, s) = γG(1, s),

as claimed.

Remark 7.4. Note that in great contrast to, say [23], where their γ is a function of s

and satisfies lims→0+ γ(s) = 0, in our Theorem 7.3 above we are able to take our γ to be

a strictly positive constant. We believe this to be a very important difference between

our results and other work (e.g., [23] and [89]) on (continuous) FBVPs. Moreover, as

pointed out in the introduction to this chapter, this improves and builds on certain of

the results given in [93]. Indeed, we have shown here that for the particular problem

considered here, the associated Green’s function does satisfy a typical Harnack-like

inequality, which, as noted earlier, is, in fact, somewhat unusual.

Remark 7.5. Interestingly, it can be shown that for 0 ≤ α < 1 in (7.5), we find that

γ can no longer be taken as a constant and that, moreover, lims→0+ γ(s) = 0 in this

case. We omit the details, however.
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Chapter 8

Systems of Nonlocal BVPs for a

Continuous Fractional Operator

We continue in this chapter our transition from discrete fractional local problems

to continuous integer-order nonlocal problems. Consequently, we consider here

a system of nonlinear differential equations of fractional order having the form


−Dν1

0+y1(t) = λ1a1(t)f (y1(t), y2(t)) ,

−Dν2
0+y2(t) = λ2a2(t)g (y1(t), y2(t)) ,

(8.1)

where t ∈ (0, 1), ν1, ν2 ∈ (n − 1, n], and λ1, λ2 > 0, subject to a couple of different

sets of boundary conditions. In particular, we first consider problem (8.1) subject to

y
(i)
1 (0) = 0 = y

(i)
2 (0), 0 ≤ i ≤ n− 2, (8.2)

[Dα
0+y1(t)]t=1 = 0 = [Dα

0+y2(t)]t=1 , 1 ≤ α ≤ n− 2, (8.3)



118

where y(i) in boundary condition (8.2) represents the i-th (ordinary) derivative of y.

We then consider the case in which the boundary conditions are changed to

y
(i)
1 (0) = 0 = y

(i)
2 (0), 0 ≤ i ≤ n− 2, (8.4)

[Dα
0+y1(t)]t=1 = φ1(y), 1 ≤ α ≤ n− 2, (8.5)

[Dα
0+y2(t)]t=1 = φ2(y), 1 ≤ α ≤ n− 2, (8.6)

where φ1, φ2 : C([0, 1])→ R are continuous functionals, where the notation C([0, 1])

means the set of continuous, real-valued functions on the unit interval [0, 1]; even

though (8.3) and (8.5)–(8.6) lose physical meaning when α /∈ N, they are still mathe-

matically meaningful. We also consider these boundary conditions in the special case

in which λ1 = λ2 = 1. Note that in (8.1), (8.3), (8.5), (8.6), and, in fact throughout

this chapter, Dν
0+y(t) represents the Riemann-Liouville fractional derivative of order ν

of the function y(t). We also assume throughout that n ∈ N subject to the restriction

that n > 3. The main contribution of this chapter is to determine conditions under

which either problem (8.1)–(8.3) or (8.1), (8.4)–(8.6) will exhibit at least one positive

solution. In particular, we shall state conditions on λ1, λ2, which are eigenvalues,

for which problem (8.1)–(8.3) has at least one positive solution; it ought to be noted

that unlike in the integer-order case, the range of admissible eigenvalues

depends on the choices of ν1, ν2, and α. In addition, we state conditions on φ1,

φ2 such that problem (8.1), (8.4)–(8.6) has at least one positive solution.
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8.1 Existence of a Positive Solution: Case - I

In this section we wish to present a general condition under which problem (8.1)–

(8.3) will exhibit at least one positive solution. We first need to fix our framework

for analyzing problem (8.1)–(8.3).

First of all, let B represent the Banach space of C([0, 1]) when equipped with the

usual supremum norm, ‖ · ‖. Then put

X := B × B, (8.7)

where X is equipped with the norm

‖ (y1, y2) ‖ := ‖y1‖+ ‖y2‖, (8.8)

for (y1, y2) ∈ X. Observe that X is also a Banach space – see Dunninger and Wang

[36]. In addition, define the operators T1, T2 : X→ B by

(T1 (y1, y2)) (t) := λ1

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds (8.9)

and

(T2 (y1, y2)) (t) := λ2

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds, (8.10)

where G1(t, s) is the Green’s function of Theorem 7.1 with ν replaced by ν1 and,

likewise, G2(t, s) is the Green’s function of Theorem 7.1 with ν replaced by ν2. Using
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(8.9)–(8.10), define an operator S : X→ X by

(S (y1, y2)) (t) := ((T1 (y1, y2)) (t), (T2 (y1, y2)) (t))

=

(
λ1

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds, λ2

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds

)
.

(8.11)

We claim that whenever (y1, y2) ∈ X is a fixed point of the operator defined in (8.11),

it follows that y1(t) and y2(t) solve problem (8.1)–(8.3). This is the content of Lemma

8.1, whose proof we provide next.

Lemma 8.1. A pair of functions (y1, y2) ∈ X is a solution of problem (8.1)–(8.3) if

and only if (y1, y2) is a fixed point of the operator S defined in (8.11).

Proof. The forward implication is immediate, owing to the result given in Theorem

7.1. Conversely, suppose that (y1, y2) ∈ X is a fixed point of the operator S. Then,

in particular, we find that

y1(t) = λ1

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds. (8.12)

Observe that the right-hand side of (8.12) may be recast as

λ1t
ν1−1 · Γ (ν1 − α)

Γ (ν1)

[
Dα−ν1a1(t)f (y1(t), y2(t))

]
t=1
− λ1D

−ν1 [a1(t)f (y1(t), y2(t))]

(8.13)

so that, in fact,

y1(t) = λ1t
ν1−1 · Γ (ν1 − α)

Γ (ν1)

[
Dα−ν1a1(t)f (y1(t), y2(t))

]
t=1

− λ1D
−ν1 [a1(t)f (y1(t), y2(t))] .

(8.14)



121

We claim that y1(t) satisfies the differential equation (8.1) and the boundary

conditions (8.2)–(8.3). To see that the former holds, apply the differential operator

Dν1 to both sides of (8.14) and recall (cf., [78]) that Dν1 [tν1−j] = 0, for 1 ≤ j ≤ n,

and that Dν1D−ν1 = D0. Then we find that

Dν1y1(t) = λ1D
ν1
[
tν1−1

]
· Γ (ν1 − α)

Γ (ν1)

[
Dα−ν1a1(t)f (y1(t), y2(t))

]
t=1

− λ1D
ν1
[
D−ν1 [a1(t)f (y1(t), y2(t))]

]
= −λ1a1(t)f (y1(t), y2(t)) ,

(8.15)

from which we see that y1(t) satisfies the differential equation in (8.1). On the other

hand, to see that y1(t) satisfies the boundary conditions in (8.2)–(8.3), fix an i satis-

fying 0 ≤ i ≤ n− 2 and note that

y
(i)
1 (t) = λ1 (ν1 − 1) · · · (ν1 − i) tν1−1−i · Γ (ν1 − α)

Γ (ν1)

[
Dα−ν1a1(t)f (y1(t), y2(t))

]
t=1

− λ1D
iD−ν1 [a1(t)f (y1(t), y2(t))] .

(8.16)

Recalling that DiD−ν1 = Di−ν1 (cf., Lemma 2.11) and that ν1 − 1 − i > 0, we find

that

y
(i)
1 (0) = λ1

{
0−Di−ν1 [a1(t)f (y1(t), y2(t))]

}
t=0

= 0, (8.17)

so that y1 satisfies boundary condition (8.2). (Note that we have used the continuity

of a1 and f here so that {Di−ν1 [a1(t)f (y1(t), y2(t))]}t=0 has value 0.) Finally, recall

that (see [78])

Dαtν1−1 =
Γ (ν1)

Γ (ν1 − α)
tν1−α−1. (8.18)
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Then (8.18) together with an application of Lemma 2.11 implies that

Dαy1(t) = λ1t
ν1−α−1

[
Dα−ν1a1(t)f (y1(t), y2(t))

]
t=1

− λ1D
αD−ν1 [a1(t)f (y1(t), y2(t))]

= λ1t
ν1−α−1

[
Dα−ν1a1(t)f (y1(t), y2(t))

]
t=1
− λ1D

α−ν1 [a1(t)f (y1(t), y2(t))]

(8.19)

so that, since ν1 − α− 1 > 0,

[Dαy1(t)]t=1 = λ1

[
Dα−ν1a1(t)f (y1(t), y2(t))

]
t=1
− λ1D

α−ν1 [a1(t)f (y1(t), y2(t))]t=1

= 0,

(8.20)

whence y1 satisfies the boundary condition (8.3).

Now, a completely dual calculation reveals that y2 also satisfies boundary con-

ditions (8.2)–(8.3) and the differential equation −Dν2y2(t) = λ2a2(t)g (y1(t), y2(t)).

Therefore, we conclude that if (y1, y2) ∈ X is a fixed point of the operator S, then

(y1, y2) solves the problem (8.1)–(8.3). And this completes the proof.

As a consequence of Lemma 8.1, we shall look for fixed points of the operator S,

seeing as these fixed points coincide with solutions of problem (8.1)–(8.3). For use in

the sequel, let γ1 and γ2 the constants given by Theorem 7.3 associated, respectively,

to the Green’s functions G1 and G2, and define γ̃ by

γ̃ := min {γ1, γ2} , (8.21)

and notice that γ̃ ∈ (0, 1). Let us next introduce some conditions on the nonlinearities

as well as the eigenvalues. These are very similar to those presented by Henderson,
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et al. [62].

F1: There exist numbers f ∗ and g∗, with f ∗, g∗ ∈ (0,+∞), such that

lim
y1+y2→0+

f (y1, y2)

y1 + y2

= f ∗ and lim
y1+y2→0+

g (y1, y2)

y1 + y2

= g∗.

F2: There exist numbers f ∗∗ and g∗∗, with f ∗∗, g∗∗ ∈ (0,+∞), such that

lim
y1+y2→+∞

f (y1, y2)

y1 + y2

= f ∗∗ and lim
y1+y2→+∞

g (y1, y2)

y1 + y2

= g∗∗.

L1: There are numbers Λ1 and Λ2, where

Λ1 := max

{
1

2

[∫ 1

1
2

γ̃G1 (1, s) a1(s)f ∗∗ ds

]−1

,

1

2

[∫ 1

1
2

γ̃G2 (1, s) a2(s)g∗∗ ds

]−1} (8.22)

and

Λ2 := min

{
1

2

[∫ 1

0

G1(1, s)a1(s)f ∗ ds

]−1

,
1

2

[∫ 1

0

G2(1, s)a2(s)g∗ ds

]−1
}
,

(8.23)

such that Λ1 < λ1, λ2 < Λ2.

Next define the cone K by

K :=

{
(y1, y2) ∈ X : y1, y2 ≥ 0, min

t∈[ 12 ,1]
[y1(t) + y2(t)] ≥ γ̃‖ (y1, y2) ‖

}
. (8.24)

We then deduce the following lemma.

Lemma 8.2. Let S be the operator defined by (8.11). Then S : K → K.
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Proof. Let (y1, y2) ∈ X be given. It is clear from the definition of S together with the

fact that a1, a2, f , and g are nonnegative that T1 (y1, y2) (t) ≥ 0 and T2 (y1, y2) (t) ≥ 0,

for each t ∈ [0, 1]. On the other hand, we observe that

min
t∈[ 12 ,1]

[T1 (y1, y2) (t) + T2 (y1, y2) (t)] ≥ min
t∈[ 12 ,1]

T1 (y1, y2) (t) + min
t∈[ 12 ,1]

T2 (y1, y2) (t)

≥ γ1‖T1 (y1, y2) ‖+ γ2‖T2 (y1, y2) ‖

≥ γ̃ [‖T1 (y1, y2) ‖+ ‖T2 (y1, y2) ‖]

= γ̃‖ (T1 (y1, y2) , T2 (y1, y2)) ‖

= γ̃‖S (y1, y2) ‖.

(8.25)

So, we conclude that S : K → K, as desired. And this completes the proof.

We now state our existence theorem. While this theorem is similar to the existence

theorem provided in [62], it is completely new in the fractional-order case. Moreover,

later in this chapter we shall give results that more substantially generalize even the

integer-order results presented in [62].

Theorem 8.3. Suppose that conditions (F1)–(F2) and (L1) are satisfied. Then prob-

lem (8.1)–(8.3) has at least one positive solution.

Proof. We have already shown in Lemma 8.2 that S : K → K. Furthermore, a

relatively straightforward application of the Arzela-Ascoil theorem, which we omit,

reveals that S is a completely continuous operator.

Now, observe that by condition (L1) that there is ε > 0 sufficiently small such
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that

max

{
1

2

[∫ 1

1
2

γ̃G1 (1, s) a1(s) (f ∗∗ − ε) ds

]−1

,

1

2

[∫ 1

1
2

γ̃G2 (1, s) a2(s) (g∗∗ − ε) ds

]−1}
≤ λ1, λ2

(8.26)

and

λ1, λ2 ≤ min

{
1

2

[∫ 1

0

G1(1, s)a1(s) (f ∗ + ε) ds

]−1

,

1

2

[∫ 1

0

G2(1, s)a2(s) (g∗ + ε) ds

]−1
}
.

(8.27)

Now, given this ε, by condition (F1) it follows that there exists some number r∗1 > 0

such that

f (y1, y2) ≤ (f ∗ + ε) (y1 + y2) , (8.28)

whenever ‖ (y1, y2) ‖ < r∗1. Similarly, by condition (F1), for the same ε, there exists a

number r∗∗1 > 0 such that

g (y1, y2) ≤ (g∗ + ε) (y1 + y2) , (8.29)

whenever ‖ (y1, y2) ‖ < r∗∗1 . In particular, then, by putting r1 := min {r∗1, r∗∗1 }, we

find that both (8.28) and (8.29) hold whenever ‖ (y1, y2) ‖ < r1. So, define Ω1 by

Ω1 := {(y1, y2) ∈ X : ‖ (y1, y2) ‖ < r1} . (8.30)
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Then for (y1, y2) ∈ K ∩ ∂Ω1 we find that

‖T1 (y1, y2) ‖ ≤ λ1

∫ 1

0

G1(1, s)a1(s)f (y1(s), y2(s)) ds

≤ λ1

∫ 1

0

G1(1, s)a1(s) (f ∗ + ε) (y1(s) + y2(s)) ds

≤ λ1

∫ 1

0

G1(1, s)a1(s) (f ∗ + ε) (‖y1‖+ ‖y2‖) ds

= ‖ (y1, y2) ‖ · λ1

∫ 1

0

G1(1, s)a1(s) (f ∗ + ε) ds

≤ 1

2
‖ (y1, y2) ‖.

(8.31)

We may deduce by an entirely dual argument that

‖T2 (y1, y2) ‖ ≤ 1

2
‖ (y1, y2) ‖. (8.32)

Thus, by putting (8.28)–(8.32) together we find that for (y1, y2) ∈ K ∩ ∂Ω1 we have

‖S (y1, y2) ‖ = ‖ (T1 (y1, y2) , T2 (y1, y2)) ‖ = ‖T1 (y1, y2) ‖+ ‖T2 (y1, y2) ‖

≤ 1

2
‖ (y1, y2) ‖+

1

2
‖ (y1, y2) ‖ = ‖ (y1, y2) ‖,

(8.33)

so that S is a cone compression on K ∩ ∂Ω1.

On the other hand, letting ε be the same positive number selected at the beginning

of this proof, note that by virtue of condition (F2) we can find a number r̃2 > 0 such

that

f (y1, y2) ≥ (f ∗∗ − ε) (y1 + y2) (8.34)

and

g (y1, y2) ≥ (g∗∗ − ε) (y1 + y2) , (8.35)
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whenever y1 + y2 ≥ r̃2. Put

r2 := max

{
2r1,

r̃2

γ̃

}
. (8.36)

Moreover, put

Ω2 := {(y1, y2) ∈ X : ‖ (y1, y2) ‖ < r2} . (8.37)

Note that if (y1, y2) ∈ K ∩ ∂Ω2, then it follows that, for any t ∈
[

1
2
, 1
]
,

y1(t) + y2(t) ≥ min
t∈[ 12 ,1]

[y1(t) + y2(t)] ≥ γ̃‖ (y1, y2) ‖ ≥ r̃2. (8.38)

In particular, (8.38) shows that whenever (y1, y2) ∈ K∩∂Ω2, it holds that ‖ (y1, y2) ‖ ≥

r̃2 so that (8.34)–(8.35) hold. Then for each (y1, y2) ∈ K ∩ ∂Ω2 we find that

T1 (y1, y2) (1) = λ1

∫ 1

0

G1 (1, s) a1(s)f (y1(s), y2(s)) ds

≥ λ1

∫ 1

1
2

G1 (1, s) a1(s)f (y1(s), y2(s)) ds

≥ λ1

∫ 1

1
2

G1 (1, s) a1(s) (f ∗∗ − ε) (y1(s) + y2(s)) ds

≥ λ1

∫ 1

1
2

γ̃G1 (1, s) a1(s) (f ∗∗ − ε) ‖ (y1, y2) ‖ ds.

(8.39)

Thus, we conclude from (8.39) that

‖T1 (y1, y2) ‖ ≥ 1

2
‖ (y1, y2) ‖, (8.40)

whenever (y1, y2) ∈ K ∩ ∂Ω2. Similarly, we find that

‖T2 (y1, y2) ‖ ≥ 1

2
‖ (y1, y2) ‖. (8.41)
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Consequently, (8.34)–(8.41) imply that

‖S (y1, y2) ‖ = ‖ (T1 (y1, y2) , T2 (y1, y2)) ‖ = ‖T1 (y1, y2) ‖+ ‖T2 (y1, y2) ‖

≥ 1

2
‖ (y1, y2) ‖+

1

2
‖ (y1, y2) ‖ = ‖ (y1, y2) ‖,

(8.42)

whenever (y1, y2) ∈ K ∩ ∂Ω2. Thus, S is a cone expansion on K ∩ ∂Ω2.

In summary, each of the hypothesis of Lemma 2.13 is satisfied. Consequently, we

conclude that S has a fixed point, say (y0
1, y

0
2) ∈ K. As the pair of functions y0

1(t),

y0
2(t) is a positive solution of (1.1)–(1.3), the theorem is proved.

We conclude this section with a remark about Theorem 8.3.

Remark 8.4. Evidently, by choosing t differently in (8.39), we would obtain a slightly

different form for Λ1. However, the form given in (8.22), which is the one induced by

the choice of t = 1 in (8.39), is the optimal choice as it minimizes the value of Λ1.

8.2 Existence of a Positive Solution: Case - II

We now wish to provide a set of conditions under which problem (8.1), (8.4)–(8.6)

will have at least one positive solution. In particular, we shall consider two such

cases. As remarked in Section 1, we note that although the boundary conditions in

(8.5) and (8.6) do not necessarily possess any physical meaning when α /∈ N, they are

mathematically meaningful. Moreover, in case α is an integer, then these boundary

conditions become physically meaningful.

8.2.1 Problem (8.1), (8.4)–(8.6) in the General Case

In this subsection, we consider the general problem (8.1), (8.4)–(8.6) in the sense that

λ1, λ2 can range over a continuum of values, which we shall specify presently. We
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shall still need conditions (F1)–(F2) in this setting. However, because the boundary

conditions are now given by (8.4)–(8.6), we shall introduce a new condition, labeled

(G1) in the sequel. Condition (G1) provides some control over the nonlocal boundary

terms, φ1 and φ2. We state this condition now and then give a remark explicating

the form and nature of these nonlocal functionals.

G1: The functionals φ1 (y1) and φ2 (y2) are continuous in y1 and y2, nonnegative

for y1, y2 ≥ 0, and satisfy

lim
‖y‖→0+

φ1 (y1)

‖y1‖
= 0 (8.43)

and

lim
‖y‖→0+

φ2 (y2)

‖y2‖
= 0, (8.44)

respectively.

L2: There are numbers Λ3 and Λ4, where

Λ3 := max

{
1

2

[∫ 1

1
2

γ0G1 (1, s) a1(s)f ∗∗ ds

]−1

,

1

2

[∫ 1

1
2

γ0G2 (1, s) a2(s)g∗∗ ds

]−1}
,

(8.45)

Λ4 := min

{
p

[∫ 1

0

G1(1, s)a1(s)f ∗ ds

]−1

, p

[∫ 1

0

G2(1, s)a2(s)g∗ ds

]−1
}
,

(8.46)

and p ∈
(
0, 1

2

)
is given, such that Λ3 < λ1, λ2 < Λ4 and where γ0 is the

constant defined in (8.58) in the sequel.

Remark 8.5. Let us make some additional comments regarding condition (G1) above.
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First of all, we interpret these limits in the sense that (8.43) is true only if for each

η > 0 there is r > 0 such that whenever 0 < ‖y1‖ ≤ r, it follows that 0 ≤ φ1(y1)
‖y1‖ < η.

The same may be said of condition (8.4) involving φ2.

Second of all, let us explicitly point out that this condition is indeed satisfied by

nontrivial functionals φ : C([0, 1])→ R. For instance, consider the functional

φ1(y) := [y (t0)]γ , (8.47)

where φ1 : C([0, 1])→ R and t0 ∈ (0, 1), γ > 1 are given. Let η > 0 be given. Then

for nonnegative y, we find that whenever 0 < ‖y‖ ≤ η
1

γ−1 , it follows that

0 ≤ φ1(y)

‖y‖
≤ ‖y‖

γ

‖y‖
= ‖y‖γ−1 ≤

(
η

1
γ−1

)γ−1

= η,

so that the condition described in the preceding paragraph is satisfied – note that we

chose r := η
1

γ−1 > 0 here.

We present now a trio of preliminary lemmas. These shall also be of use in

Subsection 8.2.2 in the sequel.

Lemma 8.6. A pair of functions (y1, y2) ∈ X× X is a solution of (8.1), (8.4)–(8.6)

if and only if (y1, y2) is a fixed point of the operator U : X→ X defined by

(U (y1, y2)) (t) :=

(
β1(t)φ1 (y1) + λ1

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds,

β2(t)φ2 (y2) + λ2

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds

)
,

(8.48)

where β1, β2 : [0, 1]→ [0, 1] are defined by

β1(t) :=
Γ (ν1 − α)

Γ (ν1)
tν1−1 (8.49)
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and

β2(t) :=
Γ (ν2 − α)

Γ (ν2)
tν2−1. (8.50)

Proof. To prove this lemma, we can essentially repeat the proof of Lemma 8.1 given

earlier together with a minor modification of the proof of Theorem 7.1 presented

earlier. Indeed, define U1, U2 : X→ B by, say,

U1 (y1, y2) (t) := β1(t)φ1 (y1) + λ1

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds (8.51)

and

U2 (y1, y2) (t) := β2(t)φ2 (y2) + λ2

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds. (8.52)

A verification very similar to the proof of Lemma 8.1 reveals that

(
U

(i)
j (y1, y2)

)
(0) = 0, (8.53)

for each 0 ≤ i ≤ n− 2 and each j = 1, 2, and that

Dα
0+ [Uj (y1, y2)]t=1 = φj (yj) , (8.54)

for each j = 1, 2. Moreover, we find that, for each j = 1, 2, the operator Uj (y1, y2) (t)

satisfies the j-th equation in (8.1). Therefore, it follows that if (y1, y2) ∈ X is a fixed

point of the operator U defined in (8.48), then the pair of functions y1(t), y2(t) is

a solution of the boundary value problem (8.1), (8.4)–(8.6). And this completes the

proof.

Lemma 8.7. Let β1(t) and β2(t) be defined as in (8.49) and (8.50) above. Then
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each of β1(t) and β2(t) is strictly increasing in t and satisfy β1(0) = β2(0) = 0 and

β1(1), β2(1) ∈ (0, 1). Moreover, there exist constants Mβ1 and Mβ2 satisfying Mβ1,

Mβ2 ∈ (0, 1) such that mint∈[ 12 ,1]
β1(t) ≥Mβ1‖β1‖ and mint∈[ 12 ,1]

β2(t) ≥Mβ2‖β2‖.

Proof. It is obvious that β1(0) = β2(0) = 0. Moreover, since ν1, ν2 > 1, it is also

obvious that both β1 and β2 are strictly increasing for t ∈ [0, 1]. Moreover, recall that

ν1, ν2 > 3. Then as both ν1 − α ≥ 1 and ν2 − α ≥ 1, it follows 0 < Γ(νi−α)
Γ(νi)

< 1,

for each i = 1, 2. Finally, from the preceding properties, the final statement in the

lemma is obviously true. And this completes the proof.

Remark 8.8. Let us note at this juncture that

Mβ1 := Mβ1 (ν1) =

(
1

2

)ν1−1

(8.55)

and that

Mβ2 := Mβ2 (ν2) =

(
1

2

)ν2−1

, (8.56)

which may be easily verified by simply observing, for instance, that Mβ1 =
β1( 1

2)
β1(1)

.

In light of Lemma 8.7, let us define a new cone K1 by

K1 :=

{
(y1, y2) ∈ X : y1, y2 ≥ 0, min

t∈[ 12 ,1]
[y1(t) + y2(t)] ≥ γ0‖ (y1, y2) ‖

}
, (8.57)

where

γ0 := min {γ̃,Mβ1 ,Mβ2} . (8.58)

It is obvious that γ0 ∈ (0, 1).

Lemma 8.9. Let U be the operator defined in (8.48). Then U : K1 → K1.
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Proof. Let U1 and U2 be defined as in (8.51) and (8.52), respectively, above. Then

whenever (y1, y2) ∈ K1, it is clear that U1 (y1, y2) (t), U2 (y1, y2) (t) ≥ 0, for each

t ∈ [0, 1]. On the other hand, in light of Lemma 8.7 and the definition of γ0 provided

in (8.58), we find that

min
t∈[ 12 ,1]

[U1 (y1, y2) (t) + U2 (y1, y2) (t)]

≥ min
t∈[ 12 ,1]

β1(t)φ1 (y1) + min
t∈[ 12 ,1]

λ1

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds

+ min
t∈[ 12 ,1]

β2(t)φ2 (y2) + min
t∈[ 12 ,1]

λ2

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds

≥Mβ1 max
t∈[0,1]

β1(t)φ1 (y1) + γ1 max
t∈[0,1]

λ1

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds

+Mβ2 max
t∈[0,1]

β2(t)φ2 (y2) + γ2 max
t∈[0,1]

λ2

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds

≥ γ0 max
t∈[0,1]

[
β1(t)φ1 (y1) + λ1

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds

]
+ γ0 max

t∈[0,1]

[
β2(t)φ2 (y2) + λ2

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds

]
= γ0‖U1 (y1, y2) ‖+ γ0‖U2 (y1, y2) ‖

= γ0‖ (U1 (y1, y2) , U2 (y1, y2)) ‖

= γ0‖U (y1, y2) ‖,

(8.59)

whence

min
t∈[ 12 ,1]

[U1 (y1, y2) (t) + U2 (y1, y2) (t)] ≥ γ0‖ (U1 (y1, y2) , U2 (y1, y2)) ‖, (8.60)

as desired. Thus, we conclude that U : K1 → K1, as claimed. And this completes

the proof.
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We are now ready to state and prove our first existence theorem for problem (8.1),

(8.4)–(8.6).

Theorem 8.10. Suppose that conditions (F1)–(F2), (G1), and (L2) hold. Then

problem (8.1), (8.4)–(8.6) has at least one positive solution.

Proof. Lemma 8.9 shows that U : K1 → K1. Moreover, due to the continuity of β1,

β2, φ1, and φ2, it is clear that both U1 and U2 are completely continuous operators

by a standard application of the Arzela-Ascoli theorem, which we omit.

Let p be the given number satisfying 0 < p < 1
2
, as in the statement of condition

(L2) above. Now, just as in the proof of Theorem 8.3, there is by condition (L2) a

number ε > 0 such that

Λ3 := max

{
1

2

[∫ 1

1
2

γ0G1 (1, s) a1(s) (f ∗∗ − ε) ds

]−1

,

1

2

[∫ 1

1
2

γ0G2 (1, s) a2(s) (g∗∗ − ε) ds

]−1}
≤ λ1, λ2

(8.61)

and

λ1, λ2 ≤ min

{
p

[∫ 1

0

G1(1, s)a1(s) (f ∗ + ε) ds

]−1

,

p

[∫ 1

0

G2(1, s)a2(s) (g∗ + ε) ds

]−1
}
.

(8.62)

Given this ε, just as before, conditions (8.28) and (8.29) remain true whenever

‖ (y1, y2) ‖ < r1, exactly as in the proof of Theorem 8.1. In this case, however,

we need to use condition (G1) as well to further refine the choice of r1. In partic-

ular, by condition (G1) it follows that there is a number, say, r∗∗∗1 > 0 such that

φ (y1) ≤ η‖y1‖ whenever 0 < ‖y1‖ ≤ r∗∗∗1 . In particular and without loss of gener-
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ality, let us suppose that 0 < η1 <
1
2
− p. (Note that by the choice of p, we clearly

have that 1
2
− p > 0.) Now, put r̃1 := min {r1, r

∗∗∗
1 }. Then we find for all (y1, y2) ∈ X

satisfying 0 < ‖ (y1, y2) ‖ < r̃1 both that


f (y1, y2) ≤ (f ∗ + ε) (y1 + y2)

g (y1, y2) ≤ (g∗ + ε) (y1 + y2)

(8.63)

and that

φ (y1) ≤
(

1

2
− p
)
‖y1‖. (8.64)

So, define Ω1 by Ω1 := {(y1, y2) ∈ X : ‖ (y1, y2) ‖ < r̃1}. Observe that for any

(y1, y2) ∈ K we have that ‖y1‖, ‖y2‖ ≤ ‖ (y1, y2) ‖. We then find for (y1, y2) ∈ K1∩Ω1

that

‖U1 (y1, y2) ‖

≤ φ1 (y1) + λ1

∫ 1

0

G1(1, s)a1(s)f (y1(s), y2(s)) ds

≤
(

1

2
− p
)
‖y1‖+ λ1

∫ 1

0

G1(1, s)a1(s)f (y1(s), y2(s)) ds

≤
(

1

2
− p
)
‖ (y1, y2) ‖+ λ1

∫ 1

0

G1(1, s)a1(s) (f ∗ + ε) (y1(s) + y2(s)) ds

≤ ‖ (y1, y2) ‖
[(

1

2
− p
)

+ λ1

∫ 1

0

G1(1, s)a1(s) (f ∗ − ε) ds

]
≤ ‖ (y1, y2) ‖

[(
1

2
− p
)

+ p

]
≤ 1

2
‖ (y1, y2) ‖,

(8.65)

whence ‖U1 (y1, y2) ‖ ≤ 1
2
‖ (y1, y2) ‖. A similar analysis shows that ‖U2 (y1, y2) ‖ ≤

1
2
‖ (y1, y2) ‖. Consequently, we conclude that whenever (y1, y2) ∈ K1 ∩ ∂Ω1, it follows
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that

‖U (y1, y2) ‖ ≤ ‖ (y1, y2) ‖ (8.66)

so that U is a cone compression on K1 ∩ ∂Ω1.

Conversely, let ε be the same number selected at the beginning of this proof. As

before, condition (F2) implies the existence of a number r∗2 such that

f (y1, y2) ≥ (f ∗∗ − ε) (y1 + y2) (8.67)

and

g (y1, y2) ≥ (g∗∗ − ε) (y1 + y2) (8.68)

whenever y1 + y2 ≥ r∗2. In addition, recall that by condition (G1) it follows that φ1

and φ2 are assumed to be nonnegative for (y1, y2) ∈ K1. Finally, if we put

r2 := max

{
2r1,

r∗2
γ0

}
, (8.69)

similar to (8.36) earlier, then it follows that a condition like (8.38) holds whenever

(y1, y2) ∈ K1 ∩ ∂Ω2, where we put

Ω2 := {(y1, y2) ∈ X : ‖ (y1, y2) ‖ < r2} . (8.70)

Thus, for each (y1, y2) ∈ K1 ∩ ∂Ω2, it follows that

U1 (y1, y2) (1) ≥ λ1

∫ 1

0

G1(1, s)a1(s)f (y1(s), y2(s)) ds

≥ λ1

∫ 1

1
2

γ0G1(1, s)a1(s) (f ∗∗ − ε) ‖ (y1, y2) ‖ ds

≥ 1

2
‖ (y1, y2) ‖,

(8.71)
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where we have used the nonnegativity of φ1 to get the first inequality in (8.71).

Consequently, (8.71) implies that ‖U1 (y1, y2) ‖ ≥ 1
2
‖ (y1, y2) ‖ whenever (y1, y2) ∈

K1 ∩ ∂Ω2. A similar calculation reveals that ‖U2 (y1, y2) ‖ ≥ 1
2
‖ (y1, y2) ‖ whenever

(y1, y2) ∈ K1 ∩ ∂Ω2. Thus, we conclude that

‖U (y1, y2) ‖ ≥ ‖ (y1, y2) ‖, (8.72)

whenever (y1, y2) ∈ K1 ∩ ∂Ω2.

Finally, combining (8.66) and (8.72) and applying Lemma 2.13, we find that there

exists a fixed point (y0
1, y

0
2) ∈ X of the operator U . As the pair of functions y0

1(t),

y0
2(t) is a solution of problem (8.1), (8.4)–(8.6), the proof is complete.

Remark 8.11. Observe that the eigenvalue problem considered by Theorem 8.10 could

not be handled (even in the integer-order case) by the results of Henderson, et al.

[62]. Thus, Theorem 8.10 is an essential generalization of problem (8.1) not only in

the fractional-order case but also in the integer-order case.

8.2.2 Problem (8.1), (8.4)–(8.6) in Case λ1 = λ2 = 1

In contrast to the previous subsection, we now specialize to the case in which λ1 =

λ2 = 1. In this case, problem (8.1), (8.4)–(8.6) is no longer an eigenvalue problem.

Consequently, we shall no longer have any need to invoke condition (L2). Further-

more, we shall alter conditions (F1)–(F2) since their imposition was a consequence

of condition (L2). In particular, then, we begin by introducing the following new

conditions. Note that we retain condition (G1) as before, and so, we shall not list it

separately below.



138

F3: We find that

lim
y1+y2→0+

f (y1, y2)

y1 + y2

= 0 and lim
y1+y2→0+

g (y1, y2)

y1 + y2

= 0.

F4: We find that

lim
y1+y2→+∞

f (y1, y2)

y1 + y2

= +∞ and lim
y1+y2→+∞

g (y1, y2)

y1 + y2

= +∞.

We present now two preliminary lemmas. First, let us make a remark.

Remark 8.12. In the sequel, we shall represent by U1 the operator U with λ1 = λ2 = 1.

In addition, we shall represent by U1
1 and U1

2 the operators U1 and U2, respectively,

with λ1 = λ2 = 1.

Lemma 8.13. A pair of functions (y1, y2) ∈ X×X is a solution of (8.1), (8.4)–(8.6),

in case λ1 = λ2 = 1, if and only if (y1, y2) is a fixed point of the operator U1 defined

by

(
U1 (y1, y2)

)
(t) :=

(
β1(t)φ1 (y1) +

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds,

β2(t)φ2 (y2) +

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds

)
,

(8.73)

where β1, β2 : [0, 1]→ [0, 1] are defined by (8.49) and (8.50), respectively.

Proof. The proof of this lemma is essentially the same as the proof of Lemma 8.6.

Consequently, we omit it.

Lemma 8.14. Let U1 be the operator defined in (8.73). Then U1 : K1 → K1.
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Proof. Let U1
1 and U2

2 be defined as in Remark 8.12 above. Then whenever (y1, y2) ∈

K1, it is clear that U1
1 (y1, y2) (t), U1

2 (y1, y2) (t) ≥ 0, for each t ∈ [0, 1].

On the other hand, in light of Lemma 8.7 and the definition of γ0 provided in

(8.48), we find that

min
t∈[ 12 ,1]

[
U1

1 (y1, y2) (t) + U1
2 (y1, y2) (t)

]
≥Mβ1 max

t∈[0,1]
β1(t)φ1 (y1) + γ max

t∈[0,1]

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds

+Mβ2 max
t∈[0,1]

β2(t)φ2 (y2) + γ max
t∈[0,1]

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds

≥ γ0 max
t∈[0,1]

[
β1(t)φ1 (y1) +

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds

]
+ γ0 max

t∈[0,1]

[
β2(t)φ2 (y2) +

∫ 1

0

G2(t, s)a2(s)g (y1(s), y2(s)) ds

]
= γ0‖U1 (y1, y2) ‖,

(8.74)

whence

min
t∈[ 12 ,1]

[
U1

1 (y1, y2) (t) + U1
2 (y1, y2) (t)

]
≥ γ0‖

(
U1

1 (y1, y2) , U1
2 (y1, y2)

)
‖, (8.75)

as desired. Thus, we conclude that U1 : K1 → K1, as claimed. And this completes

the proof.

We now present another existence theorem for problem (8.1), (8.4)–(8.6), this one

in the special case when λ1 = λ2 = 1.

Theorem 8.15. Suppose that conditions (F3)–(F4) and (G1) hold. Then problem

(8.1), (8.4)–(8.6), in the case where λ1 = λ2 = 1, has at least one positive solution.

Proof. Lemma 8.14 shows that U1 : K1 → K1. Moreover, due to the continuity of

β1, β2, φ1, and φ2, it is clear that both U1
1 and U1

2 are completely continuous operators
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by a standard application of the Arzela-Ascoli theorem, which we again omit.

On the other hand, choose a number η1 > 0 such that

0 < η1

[
1 +

∫ 1

0

G1(1, s)a1(s) ds

]
<

1

2
. (8.76)

Due condition (F3), note that there is a number r∗1 > 0 such that f (y1, y2) ≤

η1 [y1 + y2] whenever 0 < ‖ (y1, y2) ‖ ≤ r∗1. In addition, letting η1 be the same number,

by condition (G1) it follows that there is a number r∗∗1 > 0 such that φ1 (y1) ≤ η1‖y1‖

whenever 0 < ‖y1‖ ≤ r∗∗1 . Now, take r1 := min {r∗1, r∗∗1 }. Observe that whenever

0 < ‖ (y1, y2) ‖ < r1, it follows that ‖y1‖ < r1 ≤ r∗∗1 . In particular, then, for all

(y1, y2) ∈ X satisfying 0 < ‖ (y1, y2) ‖ < r1, we find both that

f (y1, y2) ≤ η1 [y1 + y2] (8.77)

and that

φ1 (y1) ≤ η1‖y1‖ ≤ η1‖ (y1, y2) ‖. (8.78)

So, put Ω1 := {(y1, y2) ∈ X : ‖ (y1, y2) ‖ < r1}. Then from (8.76)–(8.78), we find

whenever (y1, y2) ∈ K1 ∩ ∂Ω1 that

‖U1
1 (y1, y2) ‖ ≤ ‖β1‖φ1 (y1) + max

t∈[0,1]

∫ 1

0

G1(t, s)a1(s)f (y1(s), y2(s)) ds

≤ η1‖y1‖+

∫ 1

0

G1(1, s)a1(s)η1 [y1(s) + y2(s)] ds

≤ η1‖ (y1, y2) ‖+ ‖ (y1, y2) ‖
∫ 1

0

η1G1(1, s)a1(s) ds

≤ ‖ (y1, y2) ‖ · η1

[
1 +

∫ 1

0

G1(1, s)a1(s) ds

]
≤ 1

2
‖ (y1, y2) ‖,

(8.79)
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whence ‖U1
1 (y1, y2) ‖ ≤ 1

2
‖ (y1, y2) ‖. Similarly, it can be shown that

‖U1
2 (y1, y2) ‖ ≤ 1

2
‖ (y1, y2) ‖, (8.80)

whenever (y1, y2) ∈ K1 ∩ ∂Ω1. Therefore, from (8.79)–(8.80) we conclude that when-

ever (y1, y2) ∈ K1 ∩ ∂Ω1, it follows that

‖U1 (y1, y2) ‖ ≤ ‖ (y1, y2) ‖. (8.81)

Conversely, recall that by assumption (G1), we have that φ1 (y1), φ2 (y2) ≥ 0, for

each (y1, y2) ∈ K1 (because y1, y2 ≥ 0 whenever (y1, y2) ∈ K1). In addition, choose a

number η2 > 0 such that

η2

∫ 1

1
2

γ0G1

(
3

4
, s

)
a1(s) ds ≥ 1

2
. (8.82)

Then condition (F4) implies the existence of a number r∗2 > 0 such that whenever

‖ (y1, y2) ‖ ≥ r∗2, we find that

f (y1, y2) ≥ η2 [y1 + y2] . (8.83)

Now, put

r2 := max

{
2r1,

r∗2
γ0

}
, (8.84)

and define the set Ω2 by Ω2 := {(y1, y2) ∈ X : ‖ (y1, y2) ‖ < r2}. Then from (8.82)–
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(8.84), it follows that

U1
1 (y1, y2)

(
3

4

)
≥
∫ 1

0

G1

(
3

4
, s

)
a1(s)f (y1(s), y2(s)) ds

≥
∫ 1

1
2

G1

(
3

4
, s

)
a1(s)f (y1(s), y2(s)) ds

≥
∫ 1

1
2

G1

(
3

4
, s

)
a1(s)η2 [y1(s) + y2(s)] ds

≥ ‖ (y1, y2) ‖ · η2

∫ 1

1
2

γ0G1

(
3

4
, s

)
a1(s) ds

≥ 1

2
‖ (y1, y2) ‖,

(8.85)

whenever (y1, y2) ∈ K1 ∩ ∂Ω2. Thus, we conclude that for any (y1, y2) ∈ K1 ∩ ∂Ω1

‖U2
1 (y1, y2) ‖ ≥ 1

2
‖ (y1, y2) ‖. (8.86)

A completely similar calculation shows that

‖U1
2 (y1, y2) ‖ ≥ 1

2
‖ (y1, y2) ‖, (8.87)

whenever (y1, y2) ∈ K1 ∩ ∂Ω2. Thus, combining (8.86)–(8.87) implies that

‖U1 (y1, y2) ‖ ≥ ‖ (y1, y2) ‖, (8.88)

whenever (y1, y2) ∈ K1 ∩ ∂Ω2.

Finally, combining (8.81) and (8.88) and applying Lemma 2.13, we find that there

exists a fixed point (y0
1, y

0
2) ∈ X of the operator U1. As the pair of functions y0

1(t),

y0
2(t) is a solution of problem (8.1), (8.4)–(8.6), the proof is complete.

Let us conclude this section with a final remark.
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Remark 8.16. To the best of the author’s knowledge, Theorems 8.10 and 8.15 provides

new results not only for the fractional-order problem (8.1), (8.4)–(8.6), but also for

the corresponding integer-order problem – i.e., in case ν1 = ν2 with ν1, ν2 ∈ N.

8.3 Numerical Examples

We now present two numerical examples illustrating, respectively, Theorem 8.3 and

Theorem 8.15.

Example 8.17. Consider the problem, for t ∈ (0, 1),


−D5.2

0+ y1(t) = 12.5e−2t (y1(t) + y2(t))
(

20000− 19990
(y1(t))2+(y2(t))2+1

)
−D5.95

0+ y2(t) = 5.75e−3t (y1(t) + y2(t))
(

30000− 29995
(y1(t))2+(y2(t))2+1

) , (8.89)

subject to the boundary conditions

y
(i)
1 (0) = 0 = y

(i)
2 (0), 0 ≤ i ≤ 4 (8.90)

and

D1.5
0+ [y1(t)]t=1 = 0 = D1.5

0+ [y2(t)]t=1 . (8.91)

Obviously, problem (8.89)–(8.91) fits the framework of problem (8.1)–(8.3) with ν1 :=

5.2, ν2 := 5.95, α = 1.5, λ1 = 12.5, and λ2 = 5.75. (Note that n = 6, therefore, in

this case.) In addition, we have set

f (y1, y2) := (y1 + y2)

(
20000− 19990

y2
1 + y2

2 + 1

)
, (8.92)

g (y1, y2) := (y1 + y2)

(
30000− 29995

y2
1 + y2

2 + 1

)
, (8.93)
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a1(t) := e−2t (8.94)

and

a2(t) := e−3t. (8.95)

Note that f , g : [0,+∞) × [0,+∞) → [0,+∞) and are continuous. The functions

a1(t) and a2(t) are obviously nonnegative.

We now check that each of the conditions of Theorem 8.3 holds. In particular,

observe that

lim
y1+y2→0+

f (y1, y2)

y1 + y2

= lim
y1+y2→0+

(
20000− 19990

(y1(t))2 + (y2(t))2 + 1

)
= 10 (8.96)

and that

lim
y1+y2→0+

g (y1, y2)

y1 + y2

= lim
y1+y2→0+

(
30000− 29995

(y1(t))2 + (y2(t))2 + 1

)
= 5. (8.97)

Thus, put

f ∗ := 10 (8.98)

and

g∗ := 5. (8.99)

On the other hand, observe that

lim
y1+y2→+∞

f (y1, y2)

y1 + y2

= lim
y1+y2→+∞

(
20000− 19990

(y1(t))2 + (y2(t))2 + 1

)
= 20000 (8.100)

and that

lim
y1+y2→+∞

g (y1, y2)

y1 + y2

= lim
y1+y2→+∞

(
30000− 29995

(y1(t))2 + (y2(t))2 + 1

)
= 30000. (8.101)
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Thus, put

f ∗∗ := 20000 (8.102)

and

g∗∗ := 30000. (8.103)

In summary, (8.96)–(8.103) show that conditions (F1) and (F2) hold, as desired.

On the other hand, to calculate the admissible range of the eigenvalues λ1, λ2, as

given by condition (L1), observe by numerical approximation we find that

Λ1 ≈ 5.451 (8.104)

and that

Λ2 ≈ 38.717. (8.105)

Thus, for any λ1, λ2 satisfying

5.451 < λ1, λ2 < 38.717 (8.106)

condition (L1) will be satisfied. Since it is clear from (8.89) that

λ1, λ2 ∈ [5.451, 38.717] , (8.107)

we find that condition (L1) is satisfied.

Thus, we see that each of conditions (F1)–(F2) and (L1) is satisfied. Consequently,

(8.92)–(8.107) imply by Theorem 8.3 that problem (8.89)–(8.91) has at least one

positive solution.
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Example 8.18. Consider the problem, for t ∈ (0, 1),


−D7.52

0+ y1(t) = e−2t [y2
1 + y2

2]

−D7.31
0+ y2(t) = e−3t [y3

1 + y2
2]

, (8.108)

subject to the boundary conditions

y
(i)
1 (0) = 0 = y

(i)
2 (0), 0 ≤ i ≤ 6 (8.109)

and 
D2.25

0+ [y1(t)]t=1 =
[
y1

(
1
2

)]6
D2.25

0+ [y2(t)]t=1 =
[
y2

(
3
4

)] 3
2

. (8.110)

Obviously, problem (8.108)–(8.110) fits the framework of boundary value problem

(8.1), (8.4)–(8.6). In particular, boundary condition (5.22) represents a nonlocal

condition. Note that in this case we have selected ν1 := 7.52, ν2 := 7.31, and

α = 2.25; it is also the case that n = 8 here. Furthermore, we have that

f (y1, y2) := y2
1 + y2

2, (8.111)

g (y1, y2) := y3
1 + y2

2, (8.112)

a1(t) := e−2t, (8.113)

a2(t) := e−3t, (8.114)

φ1 (y1) :=

[
y1

(
1

2

)]6

(8.115)
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and

φ2 (y2) :=

[
y2

(
3

4

)] 3
2

. (8.116)

We check that conditions (F3)–(F4) and (G1) hold. In particular, observe that

lim
y1+y2→0+

y2
1 + y2

2

y1 + y2

= 0, (8.117)

lim
y1+y2→0+

y3
1 + y2

2

y1 + y2

= 0, (8.118)

lim
y1+y2→+∞

y2
1 + y2

2

y1 + y2

= +∞, (8.119)

lim
y1+y2→+∞

y3
1 + y2

2

y1 + y2

= +∞, (8.120)

so that conditions (F3)–(F4) are seen to hold. On the other hand, note that

0 ≤ lim
‖y1‖→0+

φ1 (y1)

‖y1‖
= lim
‖y1‖→0+

[
y1

(
1
2

)]6
‖y1‖

≤ lim
‖y1‖→0+

‖y1‖6

‖y1‖
= lim
‖y1‖→0+

‖y1‖5 = 0 (8.121)

and, similarly, that

0 ≤ lim
‖y2‖→0+

φ2 (y2)

‖y2‖
= lim
‖y2‖→0+

[
y2

(
3
4

)] 3
2

‖y2‖
≤ lim
‖y2‖→0+

‖y2‖
3
2

‖y2‖
= lim
‖y2‖→0+

‖y2‖
1
2 = 0,

(8.122)

whence by (8.121) and (8.122), respectively, we find that condition (G1) holds, too.

Thus, conditions (F3)–(F4) and (G1) hold. Therefore, by (8.121)–(8.122) together

with Theorem 8.15 we conclude that problem (8.108)–(8.110) has at least one positive

solution, as desired.

Remark 8.19. As implied elsewhere, to the best of the author’s knowledge, the prob-

lems in Examples 8.17 and 8.18 cannot be handled by other results presently in the

literature. In particular, these examples show how our results here extend those
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presented in [23, 62, 80, 93], for example.

Remark 8.20. Observe that the orders of the fractional derivatives, namely ν1, ν2,

and α, affect the admissible range of eigenvalues both in (8.22)–(8.23) and in (8.45)–

(8.46). Thus, in the problems considered here, we really have three extra

parameters affecting the problem than in the corresponding integer-order

problem.

Remark 8.21. It should be noted that in approximating the admissible range of eigen-

values in (8.107), we used the fact, which was established in Chapter 7, that

γ := min

{(
1
2

)ν−α−1

2α − 1
,

(
1

2

)ν−1
}
.

We conclude with two remarks regarding classes of functions satisfying conditions

(F1)–(F2).

Remark 8.22. One fairly broad class of (nontrivial) functions satisfying conditions

(F1)–(F2) are given by

f(x) := C1e
−g(x)∇ ·H(x),

where g : Rn
+ → [0,+∞), f : Rn

+ → [0,+∞), C1 > 0 is a constant, H : Rn
+ → Rn

+

is the vector field defined by

H(x) :=
n∑
i=1

1

2
x2
i ei,

where ei is the i-th standard basis vector in Rn, and by Rn
+ we mean the closure of

the interior of the positive cone in Rn. Obviously the class of functions L (y1, y2) =

ay1 + ay2 trivially satisfies (F1)–(F2), for a > 0.

Remark 8.23. Another class of (nontrivial) functions satisfying conditions (F1)–(F2)
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is

f(x, y) := (x+ y)

(
A+

B

x2 + y2 + C

)
, (8.123)

for appropriately chosen constants A, C ∈ [0,+∞) and B ∈ R subject to the stipu-

lation that f : [0,+∞)× [0,+∞)→ [0,+∞) is continuous. Obviously the choice of

function in Example 8.17 fits the framework of (8.123).
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Chapter 9

A Scalar ODE with Nonlocal and

Nonlinear Boundary Conditions

In this and the concluding two chapters, we now arrive at the end of the arc described

in Chapter 1. Recall that in the preceding chapters of this work, we first considered

discrete fractional problems, which are de facto nonlocal, and then continuous frac-

tional problems with both de facto and explicit nonlocalities, namely Chapters 7 and

8, respectively. We now conclude this arc by deducing some results in the case of

integer-order differential equations with explicit nonlocal boundary terms.

We consider first and in this chapter the problem

y′′ = −λf(t, y(t)), t ∈ (0, 1)

y(0) = H (φ(y) + ε0y (ξ0))

y(1) = 0,

(9.1)

where ξ0 ∈ R satisfies 0 < ξ0 < 1 and is fixed and ε0 > 0 is a constant to be specified

later; it is worth noting that in one of our results in the sequel, we shall allow ε0 = 0.
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We also assume here that f : [0, 1] × R → [0,+∞) is a continuous function. We

endeavor to show that problem (9.1) has at least one positive solution under relatively

mild hypotheses, which we shall introduce at the beginning of subsubsection 9.2.1.1

in the sequel. Let us point out that in the context of problem (9.1) and, in fact,

throughout this work, the functional φ represents a linear functional, which has the

very general form

φ(y) :=

∫
[0,1]

y(t) dα(t),

where the integral is interpreted in the Lebesgue-Stieltjes sense, and α is a function of

bounded variation on [0, 1]. In this way, there exists a unique Borel measure, say µα,

with the property that µα((−∞, t]) = α(t), for each t ∈ R; we assume here, without

loss of generality, that α ∈ NBV (R). As will be explained later in this section, an

important assumption in this work is that µα may be a signed measure. Consequently,

φ(y) may be negative for some nonnegative y ∈ C([0, 1]).

The novelty of our approach here is twofold. Firstly, we introduce a perturbation

term – namely ε0y (ξ0) – in the boundary condition at t = 0 appearing in (1.1) above.

The effect of this perturbation is that for y satisfying the condition mint∈E y(t) ≥

γ0‖y‖, for some E b (0, 1) and γ0 ∈ (0, 1), we find that

ε0y (ξ0) ≥ ε0γ0‖y‖, (9.2)

provided that ξ0 ∈ E. In particular, since in the sequel we shall be able to assume

that φ(y) ≥ 0 (cf., Section 9.2), we see that (9.2) implies that the magnitude of the

argument of H can be bounded below explicitly in terms of ‖y‖. This is an essential

idea in the sequel, and one that does not seem to have ever been attempted previously

for this sort of problem.

Secondly, the substantial upshot of this preceding observation is that inasmuch as



152

H is concerned, other than continuity, we need only require that

lim
z→∞
|H(z)− z| = 0 (9.3)

holds, or, much more generally that

lim
z→∞

|H(z)− κ0z|
|z|

= 0 (9.4)

holds for some κ0 ≥ 0. (Note that (9.3) implies (9.4) but not conversely.) Observe

that such a condition is meaningful only because (9.2) gives us explicit control over

the magnitude of the argument of H in terms of ‖y‖, which we can control by means

of a cone theoretic argument.

In any case, heuristically, certain of our principal result asserts that if H(z) is

asymptotically linear, that is, satisfies limit condition (9.4), and certain other mild

hypotheses are satisfied by f and φ, then problem (9.1) has at least one positive

solution. As will be elucidated in the sequel, this shall provide several substantial

generalizations and improvements over existing works on problems of this sort.

Indeed, these two simple yet mathematically significant modifications allow us

to assume that µα is signed and that H need not satisfy uniform linear growth –

results which do not seem to have previously appeared in the literature for both

problem (9.1) as well as many broadly related problems. Moreover, as will also be

clarified momentarily, this also provides a clear, straightforward, and computationally

feasible connection between the linear and nonlinear boundary condition theory. As

an additional and complementary result, we also show that the imposition of the dual

conditions

lim
z→0+

H(z)

z
= 0 and lim

z→∞

H(z)

z
= +∞ (9.5)
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is also sufficient, when coupled with additional mild conditions on f and φ, to get

the existence of at least one positive solution. This likewise provides generalizations

and improvements over existing works for this type of problem. In fact, we also show

that we can further weaken (9.5) to the condition

lim sup
z→0+

H(z)

z
< ρ, (9.6)

for some ρ ∈
[
0, 1

ε1

)
for some constant ε1 ∈ (0, 1) to be specified later; importantly,

we show that this is sufficient even in the case where ε0 = 0 in (9.1) – i.e., the

perturbation free problem. We shall expand on these alternative conditions further

in the sequel.

In [53] we have attempted to provide, in various contexts, explicit connections

to the linear boundary condition theory as well as removing certain of the limiting

assumptions imposed in [64, 65, 66, 67, 68, 90, 91]. Here we continue this task, and

we achieve the following improvements over [64, 65, 66, 67, 68, 90, 91] and others.

1. Firstly, many previous works on nonlinear boundary conditions either use upper

and lower solution techniques or assume that the equivalent of our function H

is monotone – see, for example, [37, 62, 73, 81]. In our work we do not make

any such assumptions. Moreover, since the use of upper and lower solution

techniques do not necessarily yield the existence of a positive solution, this is

an added contribution of our work as well. In fact, since we also allow H to be

potentially only eventually positive and µα to be a signed measure, we allow for

considerable flexibility and generality not found in the previous works.

Furthermore, while it should be pointed out that many other works deal with

slightly different boundary conditions, we believe that our methods extend nat-



154

urally to these other settings. Thus, we feel it to be no great loss that we have

elected to study this problem with the simpler, Dirichlet-type boundary condi-

tions given in (9.1) above. And we believe that it should be possible in future

works to extend our techniques to the other settings previously studied.

2. Secondly, we should remark on the connection between the results herein and

the results that we have given recently in [53]. In fact, it must be noted that the

results given in this paper neither subsume those in [53] nor vice versa. Indeed,

in [53], we focused on the multipoint case with H only eventually positive. Due

to this specialization, we were able to obtain somewhat more general results

in that particular special setting than we do here. Indeed, due to the presence

of the perturbation term, ε0y (ξ0), which appears in (9.1), in certain cases our

results here are not quite as general as those presented in [53]. On the other

hand, in cases where a fixed boundary condition can subsume the extra term

ε0y (ξ0), then our results here are considerably stronger and more general than

those appearing in either [53] or any other works known to the author, and

this is due to the asymptotic conditions (9.3) and (9.4), which have apparently

never appeared before for this type of problem. The examples at the end of this

chapter will illustrate these facts.

3. Thirdly, in nearly all works on this type of problem (cf., [64, 65, 66, 67, 68]), it

seems to be assumed that H satisfies a linear bound of the sort αz ≤ H(z) ≤ βz

for 0 ≤ α ≤ β, for all z ≥ 0. We show that this condition is essentially

unnecessary. In fact, for example, our theory allows for functions of the form

H(z) =
√
z, for z ≥ 0, which cannot possibly be treated by the methods in, say,

[64, 65, 66, 67, 68]. We consider this insight to be an important contribution of

this work. Furthermore, as already pointed out, while Yang [90, 91] introduced
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a similar condition, we achieve here some substantial generalizations since the

techniques there fail if the Stieltjes measured is signed.

4. Fourthly, we even show that if H satisfies instead superlinear growth at both

z = 0 and z = +∞, then it is unnecessary to assume any growth condition at

all on g(y) at +∞. This, too, provides significant improvement over existing

works. Moreover, evidently, such functions cannot be incorporated into the

theory developed in previous papers, for such H will not satisfy the condition

H(z) ≤ βz for some β > 0 and for all z ≥ 0 (or even all z ≥ 0 sufficiently

large). Similar to the preceding point, we also consider this observation to be

an interesting insight, which apparently does not appear in most of the existing

and recent literature on this type of problem.

5. Fifthly, and perhaps most importantly, we allow for the Borel measure, µα,

associated to the integrator α to be signed. In this way, we make an explicit,

very generally applicable connection between the nonlinear boundary condition

setting and the linear theory developed by Infante, Webb, and others. In fact,

as alluded to earlier, one of our principal contributions is to show that if H(z)

is essentially asymptotically linear, then this is sufficient, when combined with

our other, relatively mild hypotheses, to deduce the existence of at least one

positive solution to problem (9.1). The examples, which end this chapter, will

clarify this connection further, but for simple illustration, if H(z) := z (1 + e−z),

then it is trivial to argue that condition (9.3) is satisfied by this function H.

Thus, if the boundary condition at t = 0 appearing in (9.1) is

y(0) = (φ(y) + ε0y (ξ0))
(
1 + e−φ(y)−ε0y(ξ0)

)
(9.7)
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and if f , H, and φ satisfy the other conditions we shall introduce, then it will

follow that problem (9.1) has at least one positive solution. Moreover, if φ(y)

happens to decompose to the form φ(y) = ψ(y) − ε0y (ξ0), where ψ can be

realized as another Lebesgue-Stieltjes integral, then (9.7) can be recast in the

form

y(0) = ψ(y)
(
1 + e−ψ(y)

)
, (9.8)

which indicates explicitly the asymptotic linearity to which we have referred.

9.1 Preliminaries

We begin this section by observing that the operator T : C([0, 1])→ C([0, 1]) defined

by

(Ty)(t) := (1− t)H (φ(y) + ε0y (ξ0)) + λ

∫ 1

0

G(t, s)f(s, y(s)) ds (9.9)

may be studied as a means of deducing the existence of positive solutions to (9.1).

Indeed, it is the case that a fixed point of T is simultaneously a solution to (9.1). Note

that the function G : [0, 1] × [0, 1] → R appearing in (9.9) is the Green’s function

associated to the two-point conjugate problem – that is,

G(t, s) :=


t(1− s), 0 ≤ t ≤ s ≤ 1

s(1− t), 0 ≤ s ≤ t ≤ 1

, (9.10)

as is well known – see, for example, [71]. Let E b (0, 1) be measurable and arbitrary

but fixed. Typically, E will have the form E := [a, b] for 0 < a < b < 1. In fact, we

make the following remark.

Remark 9.1. In the sequel, we shall assume that E is fixed but otherwise arbitrary,
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provided that it has the form E := [a, b], for 0 < a < b < 1, so that, trivially,

E b (0, 1).

With this it is then well-known that there is a constant γ := γ(E) such that

min
t∈E

G(t, s) ≥ γ max
t∈[0,1]

G(t, s) = γG(s, s), (9.11)

for each s ∈ [0, 1]. Note that γ ∈ (0, 1). Inequality (9.11) will be important in the

sequel.

9.2 Main Results and Numerical Examples

9.2.1 Existence Theorems for H(z) Nonnegative

9.2.1.1 Asymptotically Sublinear Growth

Let us begin by stating the hypotheses which we shall impose on problem (9.1).

H1: Let H : R → R be a real-valued, continuous function. Moreover, H :

[0,+∞)→ [0,+∞) – i.e., H is nonnegative when restricted to [0,+∞).

H2: The functional φ(y) appearing in (9.1) is linear and, in particular, has the form

φ(y) :=

∫
[0,1]

y(t) dα(t), (9.12)

where α : [0, 1]→ R satisfies α ∈ BV ([0, 1]).

H3: There is a constant ε1 ≥ 0 such that the functional φ in (9.12) satisfies the

inequality

|φ(y)| ≤ ε1‖y‖ (9.13)
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for all y ∈ C([0, 1]).

H4: There is κ0 ≥ 0 such that

lim
z→+∞

|H(z)− κ0z|
|z|

= 0 (9.14)

holds.

H5: Assume that the nonlinearity f(t, y) splits in the sense that f(t, y) = a(t)g(y),

for continuous functions a : [0, 1] → [0,+∞) and g : R → [0,+∞) such

that a is not identically zero on any subinterval [0, 1].

H6: We find that limy→+∞ g(y) = +∞.

H7: We find that limy→+∞
g(y)
y

= 0.

H8: The constants ε0, ε1, and κ0 satisfy

0 ≤ ε0 + ε1 < 1 and 0 ≤ κ0 (ε0 + ε1) < 1. (9.15)

H9: Both ∫
[0,1]

(1− t) dα(t) ≥ 0 (9.16)

and ∫
[0,1]

G(t, s) dα(t) ≥ 0 (9.17)

hold, where the latter holds for each s ∈ [0, 1].

Let us make some brief remarks regarding certain of the preceding conditions.

Remark 9.2. Regarding conditions (H2)–(H3), we point out that a wide variety of

functions satisfy these conditions. Indeed, consider the following collection of func-
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tionals.

φ1(y) :=

∫
F

y(t) dt

φ2(y) :=
n∑
i=1

aiy (ξi)

φ3(y) :=

∫
[0,1]

y(t) dα(t)

(9.18)

Since each of (9.18)1–(9.18)3 is linear, each satisfies (H2). On the other hand, so long

as m(F ) ≤ ε1, where m is the Lebesgue measure, then (9.18)1 satisfies (H3). Provided

that
∑n

i=1 |ai| ≤ ε1, then (9.18)2 satisfies (H3). Finally, provided that V[0,1](α), which

is the total variation of α over [0, 1], satisfies V[0,1](α) ≤ ε1, then functional (9.18)3

satisfies condition (H3).

Remark 9.3. Regarding condition (H4), this is the asymptotic condition, which is key

to our arguments in the sequel. Note that if it holds that

lim
z→+∞

|H(z)− κ0z| = 0, (9.19)

then condition (H4) holds, too. On the other hand, there are cases where (9.19) may

fail but condition (H4) nonetheless holds. In any case, some examples of functions

which satisfy condition (H4) include the following.

H(z) := ln |z + 1|+ z

H(z) := zq +
(
1− e−z

)
z, 0 ≤ q < 1

H(z) := 3
√
z cos

(
1

z + 1

) (9.20)

Indeed, it is straightforward to verify that each of (9.20)1–(9.20)2 satisfies condition

(9.14) in case κ0 = 1. On the other hand, the function (9.20)3 satisfies condition
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(9.14) in case κ0 = 0. Incidentally, note that (9.20)3 fails condition (9.19) but it does

satisfy condition (H4). Finally, note that, depending upon the values of ε0, ε1, κ0,

and κ1, the condition that 0 ≤ κ0 (ε0 + ε1) < 1 holds in (9.15) may be superfluous.

Remark 9.4. Observe that we do not require any growth conditions on H except

asymptotically as given in (9.14) above. This is in contrast to, say, Infante [64] as

well as Infante and Pietramala [65, 66, 67], wherein it is assumed that there are

constants, say α, β ∈ [0,+∞) with α < β, such that αz ≤ H(z) ≤ βz, for all z ≥ 0.

The paper by Kang and Wei [68] also contains such a condition locally, though they

compensate for this by assuming very strong and complicated growth conditions on

the equivalent of the nonlinearity f(y). We are able to remove this condition since

we are only concerned in the behavior of H at +∞. For instance, in Example 9.24

in the sequel we give an example of a function H(z) that violates the preceding

condition, and so, does not fit into the theory given in those papers. However, it

can be handled by our results. So, one consequence of our results here is that it is

unnecessary to assume that H is sublinear at z = 0 as others do. Rather, we only

really need sublinearity at +∞, and we consider this observation to be an important

contribution of this work.

Remark 9.5. Regarding condition (H5), we note that we make this assumption only

for simplicity in the sequel. It is clear from other works in the literature how this

condition may be successfully removed.

Let B represent the Banach space C([0, 1]) when equipped with the usual supre-

mum norm, ‖ · ‖ := ‖ · ‖∞. Let γ0 be the constant defined by

γ0 := min

{
γ,min

t∈E
(1− t)

}
, (9.21)
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where γ0 ∈ (0, 1) and γ is the constant from (9.11) above. Then the cone, K, we shall

use in the sequel is then defined by

K :=

{
y ∈ B : y ≥ 0, min

t∈E
y(t) ≥ γ0‖y‖, φ(y) ≥ 0

}
, (9.22)

which was first introduced by Infante and Webb [84]. Incidentally, note that K is not

the trivial subspace of B, for if we put α(t) := 1 − t, then we observe that α ∈ K.

Finally, we shall always assume in the sequel that ξ0 ∈ E with E fixed as in Remark

9.1. With these observations hand, we now state and prove two straightforward

preliminary lemmas.

Lemma 9.6. For each y ∈ K, we find that

φ(y) + ε0y (ξ0) ≥ ε0γ0‖y‖. (9.23)

holds.

Proof. Since y ∈ K, it follows both that φ(y) ≥ 0 and that y ≥ 0. Moreover, by

assumption, we have that ξ0 ∈ E, with E fixed as above. Therefore, from these facts

we deduce that

φ(y) + ε0y (ξ0) ≥ ε0y (ξ0) ≥ ε0 min
t∈E

y(t) ≥ ε0γ0‖y‖, (9.24)

as claimed.

Lemma 9.7. Let T be the operator defined in (9.9). Then it follows that T : K → K.

Proof. First of all, since H(z) ≥ 0 for all z ≥ 0, it is obvious that for each y ∈ K we
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find that (Ty) (t) ≥ 0, for t ∈ [0, 1]. In addition, for each y ∈ K, we observe that

min
t∈E

(Ty) (t) ≥ min
t∈E

(1− t)H (φ(y) + ε0y (ξ0))

+ min
t∈E

λ

∫ 1

0

G(t, s)a(s)g(y(s)) ds

≥ γ0H (φ(y) + ε0y (ξ0)) + γ0 max
t∈[0,1]

λ

∫ 1

0

G(t, s)a(s)g(y(s)) ds

≥ γ0‖Ty‖,

(9.25)

where γ0 is defined as above. Finally, observe that

φ (Ty)

=

∫
[0,1]

(1− t)H (φ(y) + ε0y (ξ0)) dα(t)

+ λ

∫
[0,1]

∫ 1

0

G(t, s)a(s)g(y(s)) ds dα(t)

= H (φ(y) + ε0y (ξ0))

∫
[0,1]

(1− t) dα(t)

+ λ

∫
[0,1]

∫ 1

0

G(t, s)a(s)g(y(s)) ds dα(t)

= H (φ(y) + ε0y (ξ0))

∫
[0,1]

(1− t) dα(t)

+ λ

∫ 1

0

[∫
[0,1]

G(t, s) dα(t)

]
a(s)g(y(s)) ds ≥ 0,

(9.26)

where the inequality follows from assumption (H9). Consequently, from (9.26) we

deduce that φ (Ty) ≥ 0, whenever y ∈ K. Thus, T (K) ⊆ K, and the proof is

complete.

Using Lemmas 9.6 and 9.7 in tandem, we get our first existence result, which

shows that for all λ > 0 sufficiently large problem (1.1) has at least one positive

solution subject to the previously discussed hypotheses.
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Theorem 9.8. Let conditions (H1)–(H9) hold. Then problem (1.1) has at least one

positive solution for all λ > 0 sufficiently large.

Proof. We have already argued in Lemma 9.7 that T : K → K. Furthermore, recall-

ing that H is continuous, it is standard to prove that T is a completely continuous

operator; so, we omit the proof of this fact.

Now, letting t0 ∈
◦
E be fixed but arbitrary, from condition (H6) we have that

g(y) ≥
[∫

E

G (t0, s) a(s) ds

]−1

(9.27)

whenever y ≥ r1. Let Ω r1
γ0

⊆ B denote the open, bounded, convex set Ω r1
γ0

:={
y ∈ B : ‖y‖ < r1

γ0

}
. Note that for y ∈ K ∩ ∂Ω r1

γ0

min
t∈E

y(t) ≥ γ0‖y‖ = r1. (9.28)

Then as H is nonnegative, we deduce for each y ∈ K ∩ ∂Ω r1
γ0

that

(Ty) (t0) ≥ λ

∫
E

G (t0, s) a(s)g (y(s)) ds ≥ λ (9.29)

so that

‖Ty‖ ≥ λ. (9.30)

Hence by selecting λ := λ (r1, E) sufficiently large, we get that T is a cone expansion

on K ∩ ∂Ω r1
γ0

.

On the other hand, since κ0 (ε0 + ε1) < 1, we may select ε2 > 0 sufficiently small

so that κ0 (ε0 + ε1) + ε2 < 1. Then condition (H7) implies that there is η1 > 0 such
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that g(y) ≤ η1y, where η1 satisfies

η1

∫ 1

0

G(s, s)a(s) ds ≤ ε2

λ
, (9.31)

whenever y ≥ r2, with r2 := r2 (λ, r1, ε2, κ0, E).

Moreover, now select another number, say ε3 > 0, such that κ0 (ε0 + ε1)+ε2+ε3 <

1, which is possible since κ0 (ε0 + ε1) + ε2 < 1. Then by condition (H4) we find that

there is r∗2 := r∗2 (ε3) such that

|H (φ (y) + ε0y (ξ0))− κ0 (φ (y) + ε0y (ξ0))| < ε3‖y‖, (9.32)

whenever

φ (y) + ε0y (ξ0) ≥ r∗2. (9.33)

Note that to get (9.32) we have used the fact that

|φ (y) + ε0y (ξ0)| = φ (y) + ε0y (ξ0)

≤ ε1‖y‖+ ε0‖y‖ = (ε0 + ε1) ‖y‖ ≤ ‖y‖.
(9.34)

By Lemma 9.6 we have that

φ (y) + ε0y (ξ0) ≥ ε0γ0‖y‖. (9.35)

Consequently, we deduce that whenever

‖y‖ ≥ r∗2
ε0γ0

(9.36)

holds, it follows that (9.32) holds.
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Now, because g(y) is unbounded at +∞, it is straightforward to argue that there

must be a number r∗∗2 > 0 such that g(y) ≤ g (r∗∗2 ), for each y ∈ [0, r∗∗2 ]. Moreover,

we may assume without loss of generality, that r∗∗2 satisfies

r∗∗2 > max

{
2r1

γ0

, r2,
r∗2
ε0γ0

}
, (9.37)

where

r∗∗2 = r∗∗2 (r1, r2, r
∗
2, ε0, ε1, ε2, ε3, γ0, κ0, λ, E) . (9.38)

Then letting y ∈ K ∩ ∂Ωr∗∗2
, we thus estimate

‖Ty‖ ≤ H (φ (y) + ε0y (ξ0)) + λ

∫ 1

0

G(s, s)a(s)g (y(s)) ds

≤ |H (φ (y) + ε0y (ξ0))− κ0 (φ (y) + ε0y (ξ0))|

+ κ0 (φ (y) + ε0y (ξ0)) + λ

∫ 1

0

G(s, s)a(s)g (y(s)) ds

≤ ε3‖y‖+ κ0 [φ (y) + ε0y (ξ0)] + λ

∫ 1

0

G(s, s)a(s)g (y(s)) ds

≤ ε3‖y‖+ κ0 [φ (y) + ε0y (ξ0)] + λ

∫ 1

0

G(s, s)a(s)g (r∗∗2 ) ds

≤ ε3‖y‖+ κ0 [ε1‖y‖+ ε0‖y‖] + λ

∫ 1

0

G(s, s)a(s)η1r
∗∗
2 ds

≤ ε3‖y‖+ κ0 (ε0 + ε1) ‖y‖+ ε2‖y‖

≤ (κ0 (ε0 + ε1) + ε2 + ε3) ‖y‖,

(9.39)

Observe that since we have assumed that

0 ≤ κ0 (ε0 + ε1) + ε2 + ε3 < 1, (9.40)
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it follows from (9.39) that

‖Ty‖ ≤ ‖y‖, (9.41)

for each y ∈ K ∩ ∂Ωr∗∗2
, whence T is a cone compression on K ∩ ∂Ωr∗∗2

.

Finally, we may invoke Lemma 2.13 to deduce the existence of a function y0

satisfying

y0 ∈ K ∩
(

Ωr∗∗2
\ Ω r1

γ0

)
(9.42)

such that Ty0 = y0. In fact, it holds that

0 <
r1

γ0

≤ ‖y0‖ ≤ r∗∗2 < +∞.

Consequently, the function y0 is a positive solution of problem (9.1), and so, the proof

is complete.

Remark 9.9. Although not explicitly mentioned in the preceding proof, the range of

admissible eigenvalues is, in fact, explicitly computable. Indeed, if we set

λ0 :=

1

γ0

inf

{
x ∈ [0,+∞) : g(y) ≥

[∫
E

G (t0, s) a(s) ds

]−1

for all y ∈ [x,+∞)

}
,

(9.43)

then the interval [λ0,+∞) is the range of admissible eigenvalues for problem (9.1).

Note that (9.43) is computable since each of a, g, G, and γ0 is known a priori.

Now, since we are assuming in the preceding work that H(z) ≥ 0 for all z ≥ 0, we

can modify conditions (H6)–(H7) rather easily. Indeed, if we are willing to assume

that g is sublinear at 0, then we may remove the assumption that g is unbounded at

+∞. In fact, in this setting we may also assume that λ = 1. In this way, then, we
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show that problem (9.1) with λ = 1 and a standard assumption of the sublinearity of

g at both 0 and +∞ also suffices to deduce the existence of a positive solution. Since

the proof of this result proceeds essentially the same as the preceding result, we only

outline the differences.

Theorem 9.10. Assume that conditions (H1)–(H5) and (H7)–(H9) hold. In addi-

tion, assume that

lim
y→0+

g(y)

y
= +∞ (9.44)

holds. Then in case λ = 1 problem (9.1) has at least one positive solution.

Proof. As before, we have that T : K → K. Moreover, T is a completely continuous

operator. Now, select the number η1 > 0 such that

η1

∫
E

γ0G (t0, s) a(s) ds ≥ 1, (9.45)

where t0 is any point satisfying t0 ∈
◦
E. Then owing to the sublinearity condition given

in (9.44), we find that there exists a number r1 > 0 such that whenever 0 < y < r1,

it follows that g (y) ≥ η1y. Let y ∈ K ∩ ∂Ωr1 . Then we find that

(Ty) (t0) ≥
∫ 1

0

G (t0, s) a(s)g (y(s)) ds

≥ η1

∫
E

G (t0, s) a(s)γ0‖y‖ ds

≥ ‖y‖,

(9.46)

whence ‖Ty‖ ≥ ‖y‖, for each y ∈ K ∩ ∂Ωr1 .

On the other hand, given condition (H7) there exist two possibilities: either g is

bounded at +∞ or it is not. Let us assume first that the former case holds. Then

we may find a number r2 > 0 sufficiently large such that g(y) ≤ r2, for all y ≥ 0. In
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fact, without loss of generality, we may assume that r2 is chosen such that

g(y) ≤ r2∫ 1

0
G(s, s)a(s) ds

(9.47)

holds. Next, and as in the proof of Theorem 9.8, we may choose numbers ε2, ε3 > 0

such that κ0 (ε0 + ε1) + ε2 + ε3 < 1 holds. Then condition (H4) implies that there is

r∗2 > 0 such that

|H (φ (y) + ε0y (ξ0))− κ0 (φ (y) + ε0y (ξ0))| < ε3‖y‖, (9.48)

holds provided that

φ (y) + ε0y (ξ0) dt ≥ r∗2. (9.49)

But just as in the proof of Theorem 9.8, by selecting

‖y‖ ≥ r∗2
ε0γ0

, (9.50)

we find that (9.48) holds. So, put

r∗∗2 := max

{
2r1,

r∗2
ε0γ0

,
r2

ε2

}
. (9.51)

Observe that r∗∗2 := r∗∗2 (r1, r2, r
∗
2, ε0, ε1, ε2, ε3, γ0, κ0, E). Consequently, for each y ∈
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K ∩ ∂Ωr∗∗2
, it follows that

‖Ty‖ ≤ H (φ (y) + ε0y (ξ0)) +

∫ 1

0

G(s, s)a(s)g (y(s)) ds

≤ |H (φ (y) + ε0y (ξ0))− κ0 (φ (y) + ε0y (ξ0))|

+ κ0 (φ (y) + ε0y (ξ0)) + r2

≤ (κ0 (ε0 + ε1) + ε2 + ε3) ‖y‖,

(9.52)

where, as in the proof of Theorem 9.8, we assume, without loss of generality, that

r∗∗2 ≥ 1. We have also used the fact in (9.52) that r2 < ε2r
∗∗
2 = ε2‖y‖. Consequently,

from (9.52), we deduce that ‖Ty‖ ≤ ‖y‖, whenever yj ∈ K ∩ ∂Ωr∗∗2
. On the other

hand, if g is unbounded at +∞, then we may give a proof identical to that given in

the proof of Theorem 9.8. So, in either case, we conclude that T is a cone compression

on K ∩ ∂Ωr∗∗2
.

We now invoke Theorem 2.13 as in the previous proof. Consequently, problem

(9.1) has at least one positive solution, and the proof is complete.

Finally, we evidently get the following corollary, which is perhaps of some inde-

pendent interest and is, to the best of the author’s knowledge, a new result. Note

that in the statement of Corollary 9.11 below, we use the standard notation

−
∫
G

f(t) dt :=
1

m(G)

∫
G

f(t) dt, (9.53)

where G is measurable and m is the usual Lebesgue measure.

Corollary 9.11. Let F ⊆ [0, 1] be a measurable set with F not m-null. Suppose that

either conditions (H1)–(H9) hold or conditions (H1)–(H5), (H7)–(H9), and (9.44)
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hold. Then the boundary value problem

y′′ = −λf(t, y(t)), t ∈ (0, 1)

y(0) = H

(
φ(y) + ε0−

∫
F

y(s) ds

)
y(1) = 0

(9.54)

has at least one positive solution for all λ > 0 sufficiently large under the former set

of assumptions and for λ = 1 under the latter set of assumptions.

Proof. Pick F0 measurable such that E ⊇ F0 with F ⊇ F0 and F0 not m-null. Then

since, in addition, y ∈ K, it holds that

ε0−
∫
F

y(s) ds ≥ ε0−
∫
F0

y(s) ds ≥ ε0−
∫
F0

γ0‖y‖ ds = ε0γ0‖y‖. (9.55)

But from (9.55) it is evident that we may use in an obvious way the proof techniques

previously introduced. Therefore, we omit the remainder of the proof of this result.

Incidentally, since, assuming that F0 is not a null set,

ε0

∫
F0

y(s) ds ≥ m (F0) ε0γ0‖y‖ > 0,

we may replace in (9.54) the term ε0−
∫
F
y(s) ds with the term ε0

∫
F
y(s) ds.

9.2.1.2 Asymptotically Superlinear Growth

In this subsection, we show that provided we are willing to slightly modify certain of

the growth assumptions on the nonlinearity g, then, in fact, it is not even necessary
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to assume that H is asymptotically sublinear at ∞. In particular, we introduce the

following new conditions.

H10: It holds that

lim
z→+∞

H(z)

z
= +∞. (9.56)

Furthermore, it holds that

lim
z→0+

H(z)

z
= 0. (9.57)

H11: We find that

lim
y→0+

g(y)

y
= 0. (9.58)

We first state two remarks. We then state and prove our next existence theorem.

Remark 9.12. Observe that condition (H10) allows for a substantial range of nonlin-

earities not previously allowed in any existing work on problem (9.1) or even many

related problems with signed measures, at least to the best of the author’s knowledge.

For example, the function

H(z) := z2 (9.59)

satisfies (9.56)–(9.57). Similarly, for q > 1, the function

H(z) := zq cos

(
1

z + 1

)
(9.60)

satisfies (9.56)–(9.57). Finally, and more generally, for r > 1 and any function ζ :

R→ [0,+∞) satisfying supz∈[0,+∞) ζ(z) < +∞, the function

H(z) := zrζ(z) (9.61)

satisfies (9.56)–(9.57).
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Now, none of these functions can be incorporated into the results presented in sub-

subsection 9.2.1.1. Furthermore, none of these can be incorporated into any previous

results such as [64, 65, 66, 67, 68] due to the fact that each of these functions grows

superlinearly (or even superquadratically, etc.) at +∞, and so, there is no β > 0 such

that H(z) ≤ βz, for all z ≥ 0 or even merely for all z ≥ 0 sufficiently large. These

cannot be incorporated into even the results of [90, 91] since the results therein do

not apply to problem (9.1). Thus, our results in this subsection together with those

in the preceding subsection definitively show that by requiring asymptotic conditions,

we discover that many previous restrictions on the nonlinear boundary terms inas-

much as their uniform linear growth and which appear in almost every recent work

on nonlocal BVPs with nonlinear BCs are concerned are completely unnecessary. As

previously mentioned, we consider this to be an interesting insight.

Remark 9.13. Let P (z) : R→ R be any polynomial satisfying deg(P ) ≥ 2. Assume

that P has positive leading coefficient and that, in addition, if ζ0 is a real zero of P ,

then ζ0 ≤ 0 – i.e., all real zeros of P lie in the left half-plane. Then it follows easily

that

lim
z→+∞

P (z)

z
= +∞ (9.62)

so that condition (9.56)–(9.57) is satisfied. In particular, our theory here allows for

all manner of polynomials which are superlinear at +∞.

Theorem 9.14. Assume that conditions (H1)–(H3), (H5), and (H9)–(H11) hold. In

addition, suppose that 0 ≤ ε0 + ε1 < 1. Then in case λ = 1, problem (9.1) has at

least one positive solution.

Proof. As before the operator T is completely continuous and satisfies T (K) ⊆ K.

Moreover, a fixed point of T is a positive solution of problem (9.1).
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Now, by condition (H11) we have that there is r1 > 0 such that whenever 0 < y <

r1 it follows that

g(y) ≤ η1y, (9.63)

where the number η1 is chosen so that

η1

∫ 1

0

G(s, s)a(s) ds =
1

2
(9.64)

holds. In addition, since by condition (H10) we have that limz→0+
H(z)
z

= 0, we

estimate

H (φ (y) + ε0y (ξ0)) <
1

2
(φ (y) + ε0y (ξ0)) (9.65)

whenever

φ (y) + ε0y (ξ0) < ε2, (9.66)

for ε2 > 0 chosen sufficiently small. Since we estimate

φ (y) + ε0y (ξ0) ≤ ε1‖y‖+ ε0‖y‖ = (ε0 + ε1) ‖y‖, (9.67)

we deduce that (9.63) and (9.65) simultaneously hold provided that we require

0 < ‖y‖ < min

{
ε2

ε0 + ε1

, r1

}
. (9.68)

Moreover, the estimate in (9.67) reveals that, in fact,

H (φ (y) + ε0y (ξ0)) <
1

2
(φ (y) + ε0y (ξ0)) <

ε0 + ε1

2
‖y‖ ≤ 1

2
‖y‖, (9.69)
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provided that ‖y‖ < ε2
ε0+ε1

. Put r∗1 := 1
2

min
{

ε2
ε0+ε1

, r1

}
and define

Ωr∗1
:= {y ∈ B : ‖y‖ < r∗1} .

Then for y ∈ K ∩ ∂Ωr∗1
, we estimate

‖Ty‖ ≤ H (φ (y) + ε0y (ξ0)) +

∫ 1

0

G(s, s)a(s)g (y(s)) ds

≤ H (φ (y) + ε0y (ξ0)) + η1

∫ 1

0

G(s, s)a(s)y(s) ds

≤ H (φ (y) + ε0y (ξ0)) +
1

2
‖y‖

≤ 1

2
‖y‖+

1

2
‖y‖

= ‖y‖.

(9.70)

Consequently, (9.70) proves that the operator T is a cone compression on K ∩ ∂Ωr∗1
.

On the other hand, let t0 ∈
◦
E be any fixed but arbitrary point. Then condition

(H10) implies that

H (φ (y) + ε0y (ξ0)) ≥ η3 (φ (y) + ε0y (ξ0)) , (9.71)

where we put

η3 :=
1

1− t0
(ε0γ0)−1 . (9.72)

provided that

φ (y) + ε0y (ξ0) ≥ r∗2, (9.73)

for some number r∗2 > 0 sufficiently large. From previous estimates (cf., Lemma 9.6)

we find that

φ (y) + ε0y (ξ0) ≥ ε0γ0‖y‖ (9.74)
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so that, much as before, inequality (9.71) holds provided that

‖y‖ ≥ r∗2
ε0γ0

. (9.75)

Now, put

r∗∗2 := max

{
2r∗1,

r∗2
ε0γ0

}
. (9.76)

Then for y ∈ K ∩ ∂Ωr∗∗2
we find that

(Ty) (t0) ≥ (1− t0)H (φ (y) + ε0y (ξ0))

≥ (1− t0) η3 (φ (y) + ε0y (ξ0))

≥ (1− t0) η3 (ε0γ0‖y‖)

= ‖y‖,

(9.77)

Furthermore, we note that in (9.77) we have used the fact that

∫ 1

0

G (t0, s) a(s)g (y(s)) ds ≥ 0. (9.78)

In any case, (9.77) implies that for each y ∈ K ∩ ∂Ωr∗∗2

‖Ty‖ ≥ ‖y‖, (9.79)

whence T is a cone expansion on K ∩ ∂Ωr∗∗2
.

Consequently, we may now invoke Theorem 2.13 to deduce the existence of a fixed

point of T , which is simultaneously a positive solution of problem (9.1). And this

completes the proof of the theorem.

Remark 9.15. Observe that in Theorem 9.14 we do not require any particular growth
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assumption on g(y) at +∞. While (9.58) implies that g is superlinear at y = 0, it

may be that g is either sublinear or superlinear at +∞. This is a consequence of the

superlinearity of the nonlinear boundary function, H(z), at +∞, and we believe this

to be another interesting insight that our results here yield.

Remark 9.16. We believe it possible to prove an analogue of Theorem 9.14 in the

case where we assume only condition (9.57) but impose the condition g(y)
y
→ +∞ as

y → +∞ in addition to (9.58). We do not explicitly write down this result, however.

Let us conclude this subsection by showing that, in fact, the weaker condition,

which we label as condition (H10a) below, can be used, provided that we also assume

the superlinearity of g at +∞, which we label as condition (H11a) below.

H10a: There exists a constant ρ ≥ 0 satisfying

0 ≤ ρ <
1

ε1

(9.80)

such that

lim sup
z→0+

H(z)

z
≤ ρ (9.81)

holds. Here the number ε1 is from condition (H3).

H11a: It holds that

lim
y→+∞

g(y)

y
= +∞. (9.82)

In fact, we shall show that if we impose condition (H10a) instead, then we may take

ε0 = 0; that is, no perturbation term is required in (9.1). Of course, in addition,

condition (H10a) is weaker since once may consider, for instance, the continuous
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function H : [0,+∞)→ [0,+∞) defined by

H(z) :=


z cos2

(
1
z

)
, z > 0

0, z = 0

. (9.83)

Indeed, it is easy to see that

lim sup
z→0+

H(z)

z
= 1, (9.84)

whereas limz→0+
H(z)
z

does not exist. Moreover, with regard to condition (H10a), we do

not require any additional hypotheses on H(z)
z

at z = +∞. Finally, condition (H10a)

makes a clearer connection with the results produced by Yang – especially, [90]. While,

as previously indicated, the results in [90] regard a somewhat different problem than

problem (9.1), Yang’s works seem to be the only other ones which employ asymptotic

conditions that are related to the ones we employ herein. Therefore, we feel it to be

of interest to demonstrate as clear a connection as possible with the results presented

therein.

Theorem 9.17. Assume that (H1)–(H5), (H9), (H10a), (H11), and (H11a) hold. In

addition, suppose that ε0 = 0. Then in case λ = 1, problem (9.1) has at least one

positive solution.

Proof. Let ρ < 1
ε1

be given. Then we may select k ∈ N sufficiently large such that

0 ≤ ρ <
2k − 1

2kε1

<
1

ε1

(9.85)

holds. Select the number η1 > 0 such that

η1

∫ 1

0

G(s, s)a(s) ≤ 1

2k
(9.86)
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holds. Then condition (H11) implies the existence of a number r1 > 0 such that

g(y) ≤ η1y (9.87)

provided that 0 ≤ y < r1. Furthermore, due to condition (H10a), we may select ε > 0

such that

H(y) < (ρ− ε)y, (9.88)

holds for all y ∈ [0, r∗1], with ε chosen in such a way that

0 < ρ− ε < 2k − 1

2kε1

(9.89)

holds. Importantly, note that since, by assumption, we have that

ρ <
2k − 1

2kε1

, (9.90)

it follows that any ε satisfying

0 < ε ≤ ρ (9.91)

is admissible; in particular, ε may be chosen to be arbitrarily close to 0. By condition

(H3), it thus follows that

φ(y) ≤ ε1‖y‖. (9.92)

In particular, then, for each y ∈ K satisfying

0 ≤ ‖y‖ < min {r1, r
∗
1} , (9.93)

it follows that

φ(y) ≤ ε1‖y‖ < ε1 min {r1, r
∗
1} ≤ ε1r

∗
1 < r∗1. (9.94)



179

Thus, combining (9.85)–(9.94), we conclude that if we put r∗∗1 := 1
2

min {r1, r
∗
1} and

put

Ωr∗∗1
:= {y ∈ K : ‖y‖ < r∗∗1 } , (9.95)

then it follows that

H(φ(y)) < (ρ− ε)φ(y), (9.96)

for each y ∈ K ∩ ∂Ωr∗∗1
. Putting each of the preceding estimates together, we deduce

that

‖Ty‖ ≤ H(φ(y)) +

∫ 1

0

G(s, s)a(s)g(y(s)) ds

≤ (ρ− ε)φ(y) + η1

∫ 1

0

G(s, s)a(s)y(s) ds

≤ (ρ− ε)ε1‖y‖+
1

2k
‖y‖

≤ 2k − 1

2kε1

· ε1‖y‖+
1

2k
‖y‖

≤ 2k − 1

2k
‖y‖+

1

2k
‖y‖

= ‖y‖,

(9.97)

whence ‖Ty‖ ≤ ‖y‖, for each y ∈ K ∩ ∂Ωr∗∗1
.

On the other hand, by condition (H11a) we may find a number r2 > 0 such that

g(y) ≥ η2y, (9.98)

whenever y ≥ r2 and where η2 satisfies

η2

∫
E

γ2
0G(s, s)a(s) ds ≥ 1. (9.99)

Clearly, since y ∈ K, we find that H(φ(y)) ≥ 0, for each y ∈ K. Therefore, upon
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setting

r∗2 := max

{
2r∗∗1 ,

r2

γ0

}
(9.100)

and observing that for y ∈ K ∩ ∂Ωr∗2
it holds that

min
t∈E

y(t) ≥ γ0‖y‖ ≥ r2, (9.101)

we deduce that

min
t∈E

(Ty)(t) ≥ η2‖y‖
∫
E

γ2
0G(s, s)a(s) ds ≥ ‖y‖, (9.102)

for each y ∈ K ∩ ∂Ωr∗2
, whence ‖Ty‖ ≥ ‖y‖.

Consequently, we may now invoke Lemma 2.13 to deduce that there is y0 ∈ K and

satisfying

0 < r∗∗1 ≤ ‖y0‖ ≤ r∗2 (9.103)

such that Ty0 = y0. Thus, problem (9.1) has at least one positive solution, as

claimed.

Remark 9.18. To summarize, the result of Theorem 9.17 shows that if we impose the

condition

0 ≤ lim sup
z→0+

H(z)

z
≤ ρ, (9.104)

for some finite constant ρ ≥ 0 satisfying ρ ∈
[
0, 1

ε1

)
together with the superlinearity

of g at 0 and at +∞, then the unperturbed problem

y′′ = −f(t, y(t)), t ∈ (0, 1)

y(0) = H(φ(y))

y(1) = 0

(9.105)
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has at least one positive solution.

Remark 9.19. It is worth noting that this condition – namely, (H10a) – is, at least

ostensibly, slightly less general than the related condition given by Yang [90]. Indeed,

the analogue of certain of Yang’s results in [90], it would seem at least, would be to

require ρ to satisfy the inequality

0 ≤ ρ ≤ 1∫
[0,1]

(1− t) dα(t)
. (9.106)

Noting that ∫
[0,1]

(1− t) dα(t) = φ(1− t) ≤ ε1‖1− t‖ = ε1, (9.107)

we see that (9.106) would imply that ρ satisfy

ρ ∈ [0, ρ0] , (9.108)

with

ρ0 ≥
1

ε1

. (9.109)

Remark 9.20. We perhaps ought to remark that we were not able to produce a result

analogous to Theorem 9.17 in the case of sublinear growth at +∞ – i.e., a condition

such as

lim sup
z→+∞

H(z)

z
= 0. (9.110)

Indeed, it seems that imposing (9.110) and then attempting an argument analogous

to those given in Yang [90, 91] runs into considerable trouble due to the fact that

µα may be a signed measure in our setting. In particular, the trouble thus encoun-

tered seems to be a consequence of the fact that if µα is a signed measure, then

the order relationship 0 ≤ f ≤ g does not necessarily imply the order relationship
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∫
[0,1]

f dα(t) ≤
∫

[0,1]
g dα(t) even if it is known a priori that each of these integrals is

nonnegative. This is why we used condition (H4) in the preceding subsection rather

than a condition such as (9.110) even though this necessitates the inclusion of the

perturbation term ε0y (ξ0) in the argument of H in problem (9.1). In any case, this

would be an interesting avenue for future investigation.

9.2.2 Existence Theorem for H(z) Eventually Positive

In the previous subsection we assumed that the function H(z), which captures the

nonlinearity of the boundary condition at t = 0, is nonnegative for all z ≥ 0. It is

possible to relax this condition somewhat if we utilize a slightly different approach

in our proofs. In this subsection we indicate briefly in what way this may be accom-

plished. In particular, we shall no longer assume that H is nonnegative for all z ≥ 0

but rather that H is only eventually positive in the following sense, which we label

as condition (H12).

H12: Let H : R→ R be a real-valued, continuous function. Moreover, there exists

a real number ζ0 ≥ 0 such that H(z) ≥ 0 for all z > ζ0.

Now, in this setting we will again require the parameter λ, which is not necessarily

unity. Indeed, the essential idea in the following, which, incidentally, we also utilized

in [53], is to choose a number ρ > 0 in such a way that the set K \ Ωρ contains y

with the property that mint∈E y(t) is sufficiently large so as to guarantee that H is

nonnegative on K\Ωρ. In fact, we can only achieve this because the result of Lemma

9.6 gives control of the argument of H in terms of ‖y‖. We begin with the following

result.

Lemma 9.21. Assume that conditions (H1)–(H5) and (H12) hold. Then it follows
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that T : K \ Ω ζ0
ε0γ0

→ K.

Proof. Let y ∈ K \ Ω ζ0
ε0γ0

. Since y ∈ K, we estimate

min
t∈E

y(t) ≥ γ0‖y‖ ≥ γ0 ·
ζ0

ε0γ0

=
ζ0

ε0

. (9.111)

Recall that ξ0 ∈ E. Consequently, we estimate

φ(y) + ε0y (ξ0) ≥ ε0y (ξ0) ≥ ε0 ·
ζ0

ε0

= ζ0. (9.112)

Thus, we conclude that for y ∈ K \ Ω ζ0
ε0γ0

, we have

H (φ(y) + ε0y (ξ0)) ≥ 0. (9.113)

From (9.113), therefore, it follows that (Ty) (t) ≥ 0 whenever y ∈ K ∩ Ω ζ0
ε0γ0

and

t ∈ [0, 1]. Moreover, observe that

min
t∈E

(Ty) (t) ≥ min
t∈E

(1− t)H (φ(y) + ε0y (ξ0)) + γ0

∫ 1

0

G(s, s)a(s)g(y(s)) ds

≥ γ0‖Ty‖,
(9.114)

just as in the proof of Lemma 9.7. Finally, we note that

φ (Ty) = H (φ(y) + ε0y (ξ0))

∫
[0,1]

(1− t) dα(t)

+

∫
[0,1]

∫ 1

0

G(t, s)a(s)g(y(s)) ds dα(t)

= H (φ(y) + ε0y (ξ0))

∫
[0,1]

(1− t) dα(t)

+

∫ 1

0

[∫
[0,1]

G(t, s) dα(t)

]
a(s)g(y(s)) ds ≥ 0,

(9.115)
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holds, for each y ∈ K \ Ω ζ0
ε0γ0

. Therefore, we conclude that T (K) ⊆ K, as desired.

And this completes the proof.

We argue next that problem (9.1) has at least one positive solution under these

new hypotheses.

Theorem 9.22. Assume that conditions (H1)–(H9) and (H12) hold. Then for all

λ > 0 sufficiently large, problem (9.1) has at least one positive solution.

Proof. We have already argued that T : K \ Ω ζ0
ε0γ0

→ K. Moreover, as before, we

have that T is a completely continuous operator.

So, we first observe that from condition (H6), there is r1 > 0 and η1 > 0 such that

g(y) ≥ η1 for all y ≥ r1 where η1 satisfies

η1

∫
E

G (t0, s) a(s) ds = 1, (9.116)

where t0 is some (arbitrary but fixed) point in
◦
E. Put

r∗1 := max

{
r1,

ζ0

ε0γ0

}
. (9.117)

Observe that for y ∈ K \ Ωr∗1
, it follows that

min
t∈E

y(t) ≥ γ0‖y‖ ≥
ζ0

ε0

. (9.118)

Accordingly, for such y, we have that

H (φ (y) + ε0y (ξ0)) ≥ 0. (9.119)
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Consequently, we estimate

(Ty) (t0) ≥ λ

∫
E

G (t0, s) a(s)g(y(s)) ds ≥ λ. (9.120)

for each y ∈ K \ Ωr∗1
. Clearly, then, by selecting λ > 0 sufficiently large, we get that

‖Ty‖ ≥ ‖y‖, (9.121)

for each y ∈ K \ Ωr∗1
.

On the other hand, let η2 > 0 be a number such that

η2

∫ 1

0

G(s, s)a(s) ds ≤ ε2

λ
, (9.122)

where ε2 > 0 is, as before, selected appropriately so that κ0 (ε0 + ε1) + ε2 < 1. Then

from condition (H7), we find that there is a number r2 > 0 such that g(y) ≤ η2y

whenever y ≥ r2. Now, as in the proof of Theorem 9.8, we may eventually select a

number r∗∗2 satisfying

r∗∗2 > max

{
2r∗1, r2,

r∗2
ε0γ0

}
. (9.123)

Then, once again as in the proof of Theorem 9.8, we conclude that for y ∈ K∩ ∂Ωr∗∗2
,

we have that

‖Ty‖ ≤ ‖y‖. (9.124)

Consequently, we may invoke Lemma 2.13 to deduce the existence of a function

y0 ∈ K ∩
(
Ωr∗∗2
\ Ωr∗1

)
(9.125)

such that Ty0 = y0. Since this function is a positive solution of problem (9.1), the
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proof is complete.

As before, we may give the following corollary, whose proof we omit. Note that,

as before, it is also possible to replace −
∫
F
y(s) ds with

∫
F
y(s) ds.

Corollary 9.23. Let F ⊆ [0, 1] be measurable. Suppose that conditions (H1)–(H9)

and (H12) hold. Then the boundary value problem

y′′ = −λf(t, y(t)), t ∈ (0, 1)

y(0) = H

(
φ(y) +−

∫
F

y(s) ds

)
y(1) = 0

(9.126)

has at least one positive solution for all λ > 0 sufficiently large.

Proof. Omitted.

9.2.3 Numerical Examples

We conclude this section and this chapter by providing three numerical examples,

which shall explicate our results. In particular, these results show explicitly how our

results here greatly extend and generalize existing results on nonlocal boundary value

problems. Moreover, we indicate in what ways all known results are not applicable

to the following problems, as least to the best of the author’s knowledge.

Example 9.24. Consider the boundary value problem

y′′(t) = −λ(2t+ 1) ln (y(t) + 1)

y(0) =

[
φ(y) +

1

15
y

(
9

20

)]q
+
(

1− e−φ(y)− 1
15
y( 9

20)
)[

φ(y) +
1

15
y

(
9

20

)]
y(1) = 0,

(9.127)
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where 0 ≤ q < 1 is fixed and φ(y) is the linear functional defined by

φ(y) :=
1

6
y

(
2

5

)
− 1

15
y

(
9

20

)
− 1

20
y

(
1

2

)
+

∫
[ 1120 ,

7
10 ]
y(s) ds. (9.128)

Observe that if we define the integrator α : R→ R by

α :=



0, t < 2
5

1
6
, 2

5
≤ t < 9

20

1
10

, 9
20
≤ t < 1

2

1
20

, 1
2
≤ t < 11

20

t− 1
2
, 11

20
≤ t < 7

10

1
5
, t ≥ 7

10

, (9.129)

then α ∈ NBV (R) and, in particular, we can write

φ(y) =

∫
[0,1]

y(s) dα(s), (9.130)

where

µα((−∞, t]) :=
1

6
δ 2

5
((−∞, t])− 1

15
δ 9

20
((−∞, t])− 1

20
δ 1

2
((−∞, t])

+m

(
(−∞, t] ∩

(
11

20
,

7

10

)) (9.131)

is the signed Borel measure associated to the integrator α(t). Furthermore, by com-

paring (9.127) to (9.1), we see that here we have put

ξ0 :=
9

20
(9.132)
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and

ε0 :=
1

15
. (9.133)

Finally, let us set E :=
[

1
4
, 3

4

]
b (0, 1) here, which, it is seen, is a valid choice in this

setting.

Now, let us first observe that

H(z) := zq +
(
1− e−z

)
z (9.134)

satisfies condition (H4) with κ0 = 1. Indeed, we estimate

lim
z→∞

|(zq + (1− e−z) z)− z|
z

= lim
z→∞

|zq − ze−z|
z

= lim
z→∞

∣∣zq−1 − e−z
∣∣ = 0. (9.135)

On the other hand, routine numerical calculations reveal both that

∫
[0,1]

1− t dα(t) ≈ 0.0946 > 0 (9.136)

and that ∫
[0,1]

G(t, s) dα(t) ≥ 0 (9.137)

hold, where the latter holds for each s ∈ [0, 1], whence condition (H9) holds. Condi-

tion (H1) is obviously satisfied. Finally, condition (H3) is satisfied, for

∣∣∣∣∣16y
(

2

5

)
− 1

15
y

(
9

20

)
− 1

20
y

(
1

2

)
+

∫
[ 1120 ,

7
10 ]
y(s) ds

∣∣∣∣∣
≤ 1

6
‖y‖+

1

15
‖y‖+

1

20
‖y‖+

3

20
‖y‖ =

1

3
‖y‖.

(9.138)

So, in particular, we can take

ε1 :=
1

3
. (9.139)
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Thus, we evidently have ε0 + ε1 ∈ [0, 1) here. Since κ0 = 1, condition (H8) holds.

Since it is easy to see that conditions (H5)–(H7) are satisfied, we conclude that

each of conditions (H1)–(H9) is satisfied. Therefore, we may apply the result of

Theorem 9.8 to deduce that problem (9.127) has at least one positive solution for all

λ > 0 sufficiently large. In fact, by (9.43), we compute

λ0 =
1
1
4

inf

{
x ∈ [0,+∞) : ln (y + 1) ≥

[∫ 3
4

1
4

G

(
1

2
, s

)
(2s+ 1) ds

]−1

,

for all y ∈ [x,+∞)

}
≈ 824.509

(9.140)

so that, more precisely, for each λ satisfying

824.509 < λ < +∞, (9.141)

we find that problem (9.127) has at least one positive solution. Finally, if we put

ψ(y) :=
1

6
y

(
2

5

)
− 1

20
y

(
1

2

)
+

∫
[ 1120 ,

7
10 ]
y(s) ds, (9.142)

then let us point out that we can recast (9.127) in the form

y′′(t) = −λ(2t+ 1) ln (y(t) + 1)

y(0) = [ψ(y)]q +
(
1− e−ψ(y)

)
ψ(y)

y(1) = 0,

(9.143)

by using the definition of φ given in (9.128). Thus, problem (9.143) has at least one

positive solution, too.
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Example 9.25. Consider the boundary value problem

y′′(t) = −(cos t) 3
√
y(t)

y(0) =

(
φ(y) +

1

30
y

(
1

3

))
cos

(
1

φ(y) + 1
30
y
(

1
3

)
+ 1

)

y(1) = 0,

(9.144)

where φ(y) is the linear functional defined by

φ(y) := − 1

30
y

(
1

3

)
+

1

10
y

(
7

20

)
− 1

25
y

(
3

5

)
+

∫
[ 7
10
, 3
4 ]
y(s) ds. (9.145)

Here we may define the integrator α : R→ R by

α(t) :=



0, t < 1
3

− 1
30

, 1
3
≤ t < 7

20

1
15

, 7
20
≤ t < 3

5

2
75

, 3
5
≤ t < 7

10

t− 101
150

, 7
10
≤ t < 3

4

23
300

, t ≥ 3
4

. (9.146)

Then α ∈ NBV (R),

φ(y) =

∫
[0,1]

y(s) dα(s), (9.147)

and

µα((−∞, t]) := − 1

30
δ 1

3
((−∞, t]) +

1

10
δ 7

20
((−∞, t])− 1

25
δ 3

5
((−∞, t])

+m

(
(−∞, t] ∩

(
7

10
,
3

4

)) (9.148)
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is the signed Borel measure associated to the integrator α. Finally, note that here we

have selected

ξ0 :=
1

3
(9.149)

and

ε0 :=
1

30
. (9.150)

Finally, as in Example 9.24, it is permissible here to select E :=
[

1
4
, 3

4

]
b (0, 1).

Now, in this example we have

H(z) := z cos

(
1

z + 1

)
. (9.151)

The function H satisfies condition (H4) with κ0 = 1, for we estimate

lim
z→∞

∣∣z cos
(

1
z+1

)
− z
∣∣

z
= lim

z→∞

∣∣∣∣cos

(
1

z + 1

)
− 1

∣∣∣∣ = 0. (9.152)

On the other hand, it is easy to argue that

∫
[0,1]

1− t dα(t) ≈ 0.041 > 0, (9.153)

whereas ∫
[0,1]

G(t, s) dα(t) ≥ 0, (9.154)

for each s ∈ [0, 1]. Thus condition (H9) is satisfied. Furthermore, we estimate

∣∣∣∣∣− 1

30
y

(
1

3

)
+

1

10
y

(
7

20

)
− 1

25
y

(
3

5

)
+

∫
[ 7
10
, 3
4 ]
y(s) ds

∣∣∣∣∣
≤ 1

30
‖y‖+

1

10
‖y‖+

1

25
‖y‖+

1

20
‖y‖ =

67

300
‖y‖,

(9.155)
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so that condition (H3) is satisfied with

ε1 :=
67

300
. (9.156)

Therefore, combining (9.149) and (9.156), we see that ε0 + ε1 ∈ [0, 1). Furthermore,

since κ0 = 1 here, it also follows that κ0 (ε0 + ε1) < 1 holds, too. Finally, it is easy

to show that g(y) := 3
√
y satisfies conditions (H7) and (9.44).

In summary, then, each of the hypotheses of Theorem 9.10 holds. Therefore,

we conclude that problem (9.144) has at least one positive solution. Finally, as in

Example 9.24, by putting

ψ(y) :=
1

10
y

(
7

20

)
− 1

25
y

(
3

5

)
+

∫
[ 7
10
, 3
4 ]
y(s) ds, (9.157)

we may conclude that, in fact, the problem

y′′(t) = − cos t 3
√
y(t)

y(0) = ψ(y) cos

(
1

ψ(y) + 1

)
=

[
1

10
y

(
7

20

)
− 1

25
y

(
3

5

)
+

∫
[ 7
10
, 3
4 ]
y(s) ds

]

× cos

 1[
1
10
y
(

7
20

)
− 1

25
y
(

3
5

)
+
∫
[ 7
10
, 3
4 ] y(s) ds

]
+ 1


y(1) = 0

(9.158)

has at least one positive solution.
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Example 9.26. Consider the boundary value problem

y′′(t) = −t2[y(t)]3 sin y(t)

y(0) =

[
φ(y) +

1

15
y

(
9

20

)]5

+

[
φ(y) +

1

15
y

(
9

20

)]3

+ 3

[
φ(y) +

1

15
y

(
9

20

)]2

y(1) = 0.

(9.159)

Here, in (9.159), the linear functional φ(y) is defined by

φ(y) :=
1

6
y

(
2

5

)
− 1

15
y

(
9

20

)
− 1

20
y

(
1

2

)
+

∫
[ 1120 ,

7
10 ]
y(s) ds (9.160)

and, evidently, we have here that

H(z) := z5 + z3 + 3z2. (9.161)

Note, that for simplicity, we have selected φ(y) here to be the same functional as in

Example 9.24. Obviously, if we put

ψ(y) :=
1

6
y

(
2

5

)
− 1

20
y

(
1

2

)
+

∫
[ 1120 ,

7
10 ]
y(s) ds, (9.162)

then we may recast the boundary value problem (9.159) as

y′′(t) = −t2[y(t)]3 sin y(t)

y(0) = [ψ(y)]5 + [ψ(y)]3 + 3[ψ(y)]2

y(1) = 0,

(9.163)
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where

y(0) =

[
1

6
y

(
2

5

)
− 1

20
y

(
1

2

)
+

∫
[ 1120 ,

7
10 ]
y(s) ds

]5

+

[
1

6
y

(
2

5

)
− 1

20
y

(
1

2

)
+

∫
[ 1120 ,

7
10 ]
y(s) ds

]3

+ 3

[
1

6
y

(
2

5

)
− 1

20
y

(
1

2

)
+

∫
[ 1120 ,

7
10 ]
y(s) ds

]2

.

(9.164)

Now, since the functional φ here is the same as in Example 9.24, we need not

recheck that conditions (H2)–(H4) and (H9) hold. Moreover, since ε0 and ε1 are the

same here as in Example 9.24, condition (H8) obviously holds, too. So, we check

instead that conditions (H10) and (H11) hold. That these do hold follows from the

following simple observations.

lim
z→0+

z5 + z3 + 3z2

z
= 0

lim
z→+∞

z5 + z3 + 3z2

z
= +∞

lim
z→0+

y3 sin y

y
= 0

(9.165)

Therefore, from (9.165) we deduce that conditions (H10)–(H11) hold.

In summary, then, each of the hypotheses of Theorem 9.14 hold. Consequently,

we deduce that problem (9.159) or, equivalently, problem (9.163) has at least one

positive solution. And this completes the example.

Let us conclude with some remarks.

Remark 9.27. Note that, to the best of the author’s knowledge, none of these examples

can be treated by any of the results in the existing literature. Indeed, regarding

Examples 9.24 and 9.25, none of the results in [37, 62, 64, 65, 73, 81] can be easily
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modified to apply to either of these examples. Specifically, the results of [64, 65,

66, 67, 68, 90] cannot be easily modified since the measure µα is signed in each

example; the results of [65, 66, 68] cannot be easily modified since the function H in

Example 9.24 does not satisfy linear growth at z = 0; the results of [66, 68] cannot

be easily modified since in Example 9.24 we are only assuming a growth condition on

the nonlinearity g(y) at +∞. Finally, while Yang [90, 91] employs some asymptotic

conditions, the results there do not apply to our problem, not least of which because

of the fact that µα is signed here.

Similarly, regarding Example 9.26, none of the results in [37, 62, 64, 65, 73, 81,

90, 91] can be applied to this problem. In this case, the fact that H(z) is superlinear

at +∞ prevents any straightforward modification of the results in [64, 65, 66, 67, 68]

because there is no number β > 0 such that H(z) ≤ βz, for all z ≥ 0 or, even less

strictly, eventually. Moreover, we require no growth condition on g at +∞ whatsoever.

This also completely eliminates the same works from straightforward modifications.

Of course, that µα is signed removes other works from consideration, too.

Succinctly, we believe that these three examples illustrate that our techniques

here recover considerably more generality and flexibility than currently exists. Fur-

thermore, they provide useful insight into certain of the growth conditions required

for existence and the superfluousness of certain of these in previous works in the

literature.

Remark 9.28. Notice that for the function H given in Example 9.24 we compute

H ′(z) = qzq−1 + 1− e−z + ze−z. (9.166)
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Since q − 1 < 0, it follows that

lim
z→0+

H(z) = +∞. (9.167)

Consequently, this type of function cannot be incorporated into the theories discussed

in the papers by Infante [64] or by Infante and Pietramala [65, 66, 67]. Indeed, their

theory requires the existence of a β > 0 such that H(z) ≤ βz, for all z ≥ 0. But

clearly no such β exists since (9.167) holds. Nonetheless, our results here are able

to handle this case. We consider this to be an important observation regarding the

generality of our results as compared to others.

Remark 9.29. As intimated in Section 1, our results here leave some room for future

work and improvement due to the presence of the term ε0y (ξ0) in (9.1). While the

preceding examples have demonstrated that, in general, this is no great loss, it would

be better to recover, if possible, the case where ε0 may be set equal to zero. This

would yield a more general result for BVPs with nonlinear boundary conditions with

asymptotic growth conditions. In the case of Theorems 9.17, we were able to recover

this more general setting by modifying some techniques due to Yang [90, 91]. However,

as mentioned earlier (cf., Remark 9.20), in the sublinear growth setting it does not

seem that the techniques of [90, 91] can be easily modified. And this leaves some

possibility for additional investigation.

Another possible improvement concerns the nonlinear function H(z) itself. In

particular, by the way we have set up problem (9.1), all of the nonlocality φ(y) must

necessarily occur at each occurrence in the boundary condition at t = 0 – that is, we

have the composition H ◦ φ as the boundary condition at t = 0. It would be more

general if only some of the terms in φ need appear in any particular part of H, as this

would allow for an even more general and flexible boundary condition at t = 0 – for



197

instance, if in (9.160) the four addends, which comprise φ(y), were allowed to occur

in the boundary condition at t = 0 in (9.159) in mixed combinations rather than all

together. In any case, we leave these questions for possible future work on these sorts

of problems.
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Chapter 10

A System of BVPs with Nonlocal,

Nonlinear Boundary Conditions

with Superlinear Growth

In the preceding chapter we considered some results for scalar valued nonlocal, non-

linear boundary value problems. Now, we wish to consider, in this the penultimate

chapter as well as in the final chapter of this work, the vectorial setting. That is to

say, we shall now focus on the setting of a system of ordinary differential equations

together with a specified collection of nonlocal, nonlinear boundary conditions. In

particular, as in the preceding chapter, this shall yield some relatively substantial gen-

eralizations over the existing literature by, also as in the preceding chapter, making

some relatively simple mathematical modifications to the techniques used to deduce

existence of solution.

Specifically, here we consider as our model problem the nonlinear system of bound-
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ary value problems

x′′(t) = −a1(t)g1(x(t), y(t)), t ∈ (0, 1)

y′′(t) = −a2(t)g2(x(t), y(t)), t ∈ (0, 1)

x(0) = 0 = y(0)

x(1) = H1

(
φ1(x) + ε1

0x
(
ξ1

0

)
, φ2(y) + ε2

0y
(
ξ1

0

))
y(1) = H2

(
φ1(x) + ε1

0x
(
ξ2

0

)
, φ2(y) + ε2

0y
(
ξ2

0

))
(10.1)

where ε1
0, ε2

0 > 0 are constants, which shall be specified later, ξ1
0 , ξ

2
0 ∈ (0, 1) are fixed,

φ1, φ2 : C([0, 1]) → R are linear functionals, which capture the nonlocal nature of

the boundary conditions, and H1, H2 : R2 → R are continuous functions, which

capture the nonlinear nature of the boundary conditions. We also assume that the

nonlinearities g1, g2 : [0,+∞) × [0,+∞) → [0,+∞) are continuous functions. The

nonlocal terms here are quite general since they are realized as Lebesgue-Stieltjes

integrals – that is,

φ1(x) :=

∫
[0,1]

x(t) dα1(t) and φ2(y) :=

∫
[0,1]

y(t) dα2(t), (10.2)

with α1, α2 ∈ BV ([0, 1]). Since it may be assumed without loss that, in fact, α1,

α2 ∈ NBV ([0, 1]), we get that associated to each of α1, α2 there exists a unique Borel

measure, say µα1 and µα2 , respectively. In our context, importantly, these measures

may be signed.

Here we study the existence of at least one positive solution to problem (10.1).

To accomplish this task, we use the perturbation terms in (10.1) – namely, ε1
0x (ξ1

0),

ε2
0y (ξ1

0), ε1
0x (ξ2

0), and ε2
0y (ξ2

0) – as well as a new condition on the nonlinear functions

H1 and H2. These novelties reveal, in a way that shall be delineated momentarily,
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that many of the restrictions previous authors have imposed on the various terms

appearing in other problems similar to (10.1) are, in fact, unnecessary in our setting.

Our principal condition on these functions is to require that, for each i = 1, 2,

lim
z1+z2→+∞

Hi (z1, z2)

z
p∞i
1 + z

q∞i
2

= +∞ (10.3)

holds for some p∞i , q∞i ∈ (0, 1] with at least one of p∞i and q∞i , for each i = 1, 2, able

to be taken equal to unity. In particular (cf., Remark 10.2), condition (10.3) implies

that each of H1 and H2 may enjoy asymptotically superlinear growth in at least one

of the two coordinate directions (cf., Remark 10.3). We will even give an existence

result associated to the somewhat more relaxed condition

lim sup
z1+z2→0+

Hi (z1, z2)

z1 + z2

< ρi, (10.4)

for each i = 1, 2, with ρi a positive constant to be selected later; importantly, the

result associated to condition (10.4) will even be applicable in the unperturbed case

– i.e., ε1
0 = ε2

0 = 0. It should be pointed out that, in fact, Yang [90, 91] introduced an

asymptotic condition similar to (10.4), though in the context of a slightly different

problem. Regardless, Yang imposes a number of other hypotheses – such as com-

plicated conditions on the equivalent of our nonlinearities g1 and g2 as well as the

assumption that the equivalent of µα1 and µα2 be positive – with which we completely

dispense here.

To summarize, we provide here the following generalizations over preceding works.

1. We allow for each of µα1 and µα2 to be signed measures rather than merely

positive. This is an improvement over the preceding works, as intimated above.

2. We do not assume a uniform linear growth condition on either H1 or H2. We
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instead assume either the asymptotic condition given in (10.3) together with an

assumption that these functions possess superlinear growth as z1 + z2 → 0 or

condition (10.4). In particular, this shows that superlinear growth at (+∞,+∞)

is allowable. More generally, one need not assume a uniform linear growth

condition as seems to appear in nearly all works on this sorts of problems –

cf., [64, 65, 66, 67] – since in our setting there may be no β > 0 such that

Hi (z1, z2) ≤ β (z1 + z2), for all z1, z2 ≥ 0.

3. Specifically regarding Yang’s works [90, 91], we point out that our results here

even provide some interesting generalizations of the methods contained therein.

In particular, while the results of [90, 91] concern different problems than (10.1),

those works do appear to be among the only ones to consider an asymptotic

condition with respect to the nonlinear boundary functions, at least to the

best of the author’s knowledge. A close examination of the proofs in those

works, however, reveals that they use in a very explicit way the positivity of the

respective Stieljtes measures. Lacking this positivity, as we do here, we must

search for alternative approaches. Consequently, we feel that our results here

represent an interesting advancement over those presented in [90, 91].

4. We believe that our techniques even allow H to be only eventually positive,

though we do not prove such a theorem here – see [53] for an exemplar of this

extension in a context somewhat different from this one.

5. We show that the assumption of asymptotic superlinearity of the functions H1

and H2 allows for neither g1 nor g2 to have any particular type of growth (e.g.,

sub- or superlinearity) as ‖(x, y)‖ → +∞. In particular, this means that g1 and

g2 can have completely different limiting behavior. For example, g1 could be

sublinear as ‖(x, y)‖ → +∞, whilst g2 is superlinear as ‖(x, y)‖ → +∞. While



202

Yang also allowed for mixed asymptotic behavior of the nonlinearities in [90],

a cursory examination of that paper indicates that a number of complicated

conditions are required to deduce that result. By contrast, our conditions are

quite simple and relatively easy to check computationally.

10.1 Main Result and Numerical Example

We begin by listing the various structural conditions we impose on the constituent

parts of problem (10.1). These conditions are the following.

H1: For each i, let Hi : R2 → [0,+∞) be a real-valued, continuous function.

Moreover, Hi : [0,+∞)× [0,+∞)→ [0,+∞) – i.e., Hi is nonnegative when

restricted to [0,+∞)× [0,+∞).

H2: For each i, the functional φi(y) appearing in (10.1) is linear and, in particular,

has the realization

φi(y) :=

∫
[0,1]

y(t) dαi(t), (10.5)

where αi : [0, 1]→ R satisfies αi ∈ BV ([0, 1]).

H3: For each i, there is a constant εi1 ∈
[
0, 1

2

)
such that the functional φi in (10.1)

satisfies the inequality

|φi(y)| ≤ εi1‖y‖ (10.6)

for all y ∈ C([0, 1]).

H4: For each i, there are p∞i ∈ (0, 1] and q∞i ∈ (0, 1], where for each i at least one

of p∞i and q∞i is equal to unity, such that

lim
z1+z2→+∞

Hi (z1, z2)

z
p∞i
1 + z

q∞i
2

= +∞ (10.7)
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holds. Furthermore, for each i it holds that

lim
z1+z2→0+

Hi (z1, z2)

z1 + z2

= 0. (10.8)

H5: We find that

lim
z1+z2→0+

g1(x, y)

x+ y
= 0 and lim

z1+z2→0+

g2(x, y)

x+ y
= 0. (10.9)

H6: The constants ε1
0, ε2

0, ε1
1, and ε2

1 satisfy

0 ≤ ε1
0 + ε2

0 + ε2
1 + ε2

1 <
1

2
. (10.10)

H7: For each i, each of ∫
[0,1]

t dαi(t) ≥ 0 (10.11)

and ∫
[0,1]

G(t, s) dαi(t) ≥ 0 (10.12)

holds, where the latter holds for each s ∈ [0, 1].

Let us make some brief remarks regarding certain of the preceding conditions.

Remark 10.1. As in Chapter 9, regarding conditions (H2)–(H3), we point out that a

wide variety of functions satisfy these conditions, such as the following.

φi1(y) :=

∫
F

y(t) dt

φi2(y) :=
n∑
k=1

aky (ξk)
(10.13)
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Remark 10.2. Regarding condition (H4) and specifically (10.7) therein, this is the

asymptotic superlinear condition which, in part, distinguishes our methods here from

others. On the other hand, (10.7) appearing in condition (H4) implies that H is also

superlinear as (x, y)→ (0+, 0+). Some functions, H : [0,+∞)× [0,+∞)→ [0,+∞),

satisfying condition (H4), then, are the following. (In each case, p∞i = q∞i = 1, for

each i.)

H (z1, z2) := zr11 + zr22 , r1, r2 > 1

H (z1, z2) := (z1 + z2)r cos

(
1

z1 + z2 + 1

)
, r > 1

H (z1, z2) :=


(z1 + z2)2 , 0 ≤ z1 + z2 ≤ 1

ez1+z2−1, z1 + z2 > 1

(10.14)

It is easy to check that each of (10.14)1–(10.14)3 satisfies each part of condition (H4).

Furthermore, we should mention that each of the functions above cannot be in-

corporated into the theory of either [65] or [68] due to the superlinear growth at

(+∞,+∞). In fact, such nonlinear boundary functions could not be incorporated

into any of the results given in [64, 66, 67, 68] for that matter. So, condition (H4)

allows for a vastly different variety of nonlinear boundary functions than other recent

works on these sorts of problems. Moreover, as shall be explicated in the proof of

Theorem 10.5, which is our first existence result, this asymptotic superlinear growth

condition also allows for the mixed growth of the nonlinearities g1 and g2, as men-

tioned in earlier.

Remark 10.3. Also regarding condition (H4), we point out that this condition allows

for Hi to have different types of growth in the different coordinate directions. For

example, consider the continuous function H : [0,+∞)× [0,+∞)→ [0,+∞) defined
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by

H (z1, z2) :=


(z1 + z2)2 (z2

1 +
√
z2

)
, 0 ≤ z1 + z2 ≤ 1

z2
1 +
√
z2, z1 + z2 ≥ 1

. (10.15)

In the z1-coordinate direction, we find that H grows superlinearly as z1 + z2 → +∞.

On the other hand, in the z2-coordinate direction, we find that H grows sublinearly

as z1 + z2 → +∞. Finally, it holds that

lim
z1+z2→0+

H (z1, z2)

z1 + z2

= 0 and lim
z1+z2→+∞

H (z1, z2)

z1 + z0.3
2

= +∞. (10.16)

Remark 10.4. As remarked in earlier, we believe that the conditions imposed on Hi

by condition (H4) may be changed in a manner similar to the argument presented in

[53]. But we leave such investigations for future work.

Now, let γ0 be the constant defined by

γ0 := min

{
γ,min

t∈E
t

}
, (10.17)

where γ0 ∈ (0, 1). Then the cone, K, we shall use in the sequel is then defined by

K :=

{
(x, y) ∈ X : x, y ≥ 0, min

t∈E
[x(t) + y(t)] ≥ γ0‖(x, y)‖, φ1(x), φ2(y) ≥ 0

}
,

(10.18)

which is a simple modification of a cone first introduced by Infante and Webb [84].

Let us point out at this juncture that K does not contain only the neutral element of

X. Indeed, if we put, say, β1(t) := (t, 0), β2(t) := (0, t), and β3(t) := (β1 + β2) (t) =

(t, t), then it is easy to see that β1, β2, β3 ∈ K so that K contains infinitely many

nontrivial elements of X.
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In any case, with these preliminary observations, we now state and prove our

main result. We note, however, that in the statement of this theorem we assume that

p∞1 = p∞2 = 1. In other words, it is the numbers q∞1 , q∞2 that can be potentially less

than unity. We do this only for definiteness and ease of exposition in the sequel.

Theorem 10.5. Assume that ξ1
0, ξ2

0 ∈ E, where E is a fixed set satisfying E b (0, 1)

as in Section 2. Then there exists a number δ ∈ (0, 1) such that if both q∞1 , q∞2 ∈

(1− δ, 1] and (H1)–(H7) hold, then problem (1.1) has at least one positive solution.

Proof. To begin, we consider the operator S : X→ X defined by

S (x, y) (t) := (T1 (x, y) , T2 (x, y)) (10.19)

where, for each i = 1, 2, we have that Ti : X→ B is defined by

Ti (x, y) := tHi

(
φ1 (x) + ε1

0x
(
ξi0
)
, φ2 (y) + ε2

0y
(
ξi0
))

+

∫ 1

0

G(t, s)ai(s)gi (x(s), y(s)) ds.
(10.20)

We shall first argue that S : K → K. To this end, it is obvious that for (x, y) ∈ K,

it follows that Ti(x, y)(t) ≥ 0, for each t ∈ [0, 1] and i = 1, 2. We also note from the

definition of γ0 in (10.17) that

min
t∈E

Ti (x, y) ≥ γ0Hi

(
φ1 (x) + ε1

0x
(
ξi0
)
, φ2 (y) + ε2

0y
(
ξi0
))

+ γ max
t∈[0,1]

∫ 1

0

G(t, s)ai(s)gi (x(s), y(s)) ds

≥ γ0‖Ti (x, y) ‖.

(10.21)
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We conclude that

min
t∈E

[(T1 (x, y)) (t) + (T2 (x, y)) (t)] ≥ γ0‖S (x, y) ‖. (10.22)

Finally, we observe that

φ1 (T1 (x, y)) = H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
, φ2 (y) + ε2

0y
(
ξ1

0

)) ∫
[0,1]

t dα1(t)

+

∫
[0,1]

∫ 1

0

G(t, s)a1(s)g1 (x(s), y(s)) ds dα1(t)

= H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
, φ2 (y) + ε2

0y
(
ξ1

0

)) ∫
[0,1]

t dα1(t)

+

∫ 1

0

[∫
[0,1]

G(t, s) dα1(t)

]
a1(s)g1 (x(s), y(s)) ds

≥ 0,

(10.23)

where the final inequality follows from assumption (H7). In a similar way, it follows

that φ2 (T2(x, y)) ≥ 0. Thus, S : K → K, as claimed. Let us also point out at this

juncture that, by a standard argument involving the Arzela-Ascoli theorem (recall

here that Hi is assumed to be continuous, for each i = 1, 2), we find that the operator

S is completely continuous; we omit the details of this argument, however.

Now, by condition (H5) we find that there is a number r1 > 0 such that

g1(x, y) ≤ η1(x+ y) (10.24)

whenever ‖(x, y)‖ ≤ r1 and where η1 > 0 satisfies

η1 max

{∫ 1

0

G(s, s)a1(s) ds,

∫ 1

0

G(s, s)a2(s) ds

}
≤ 1

4
. (10.25)

In addition, condition (H4) – i.e., equation (10.8) – implies the existence of a number
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r∗1 > 0 such that, for each i = 1, 2,

Hi

(
φ1 (x) + ε1

0x
(
ξi0
)
, φ2 (y) + ε2

0y
(
ξi0
))
< η2

(
φ1 (x) + ε1

0x
(
ξi0
)

+ φ2 (y) + ε2
0y
(
ξi0
))

(10.26)

whenever

φ1(x) + ε1
0x
(
ξi0
)

+ φ2(y) + ε2
0y
(
ξi0
)
< r∗1, (10.27)

and where η2 > 0 is defined by

η2 :=
1

8 max {ε1
0, ε

2
0, ε

2
1, ε

2
1}
. (10.28)

Notice that

φ1 (x) + ε1
0x
(
ξi0
)

+ φ2 (y) + ε2
0y
(
ξi0
)
≤ ε1

1‖x‖+ ε2
1‖y‖+ ε1

0‖x‖+ ε2
0‖y‖

≤
[
max

{
ε1

1, ε
2
1

}
+ max

{
ε1

0, ε
2
0

}]
‖(x, y)‖

≤ 2 max
{
ε1

0, ε
2
0, ε

2
1, ε

2
1

}
‖(x, y)‖.

(10.29)

So, in particular, if (x, y) ∈ K satisfies

‖(x, y)‖ < r∗1
2 max {ε1

0, ε
2
0, ε

2
1, ε

2
1}
, (10.30)

then it follows that (10.28) holds.

So, set

r∗∗1 := min

{
r1,

r∗1
2 max {ε1

0, ε
2
0, ε

2
1, ε

2
1}

}
. (10.31)

Put

Ωr∗∗1
:= {(x, y) ∈ X : ‖(x, y)‖ < r∗∗1 } . (10.32)
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Then for each (x, y) ∈ K ∩ ∂Ωr∗∗1
, we have that

‖T1(x, y)‖

≤ H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
, φ2 (y) + ε2

0y
(
ξ1

0

))
+

∫ 1

0

G(s, s)a1(s)g1(x(s), y(s)) ds

≤ η2

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ φ2 (y) + ε2

0y
(
ξ1

0

))
+ η1

∫ 1

0

G(s, s)a1(s)(x(s) + y(s)) ds

≤ η2

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ φ2 (y) + ε2

0y
(
ξ1

0

))
+

1

4
‖(x, y)‖

≤ 1

4
‖(x, y)‖+

1

4
‖(x, y)‖

=
1

2
‖(x, y)‖.

(10.33)

Thus, we conclude that

‖T1(x, y)‖ ≤ 1

2
‖(x, y)‖, (10.34)

for each (x, y) ∈ K ∩ ∂Ωr∗∗1
. A similar argument holds for the operator T2. Conse-

quently, we deduce that

‖S(x, y)‖ ≤ ‖(x, y)‖, (10.35)

for each (x, y) ∈ K ∩ ∂Ωr∗∗1
.

On the other hand, let us assume without loss of generality that p∞i = 1 for each

i so that q∞i ∈ (0, 1], for each i. Then condition (H4) – i.e., equation (10.7) – implies

the existence of a number r∗2 := r∗2 (η3) > 0 such that

H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
, φ2 (y) + ε2

0y
(
ξ1

0

))
≥ η3

([
φ1(x) + ε1

0x
(
ξ1

0

)]
+
[
φ2(y) + ε2

0y
(
ξ1

0

)]q∞1 ) (10.36)

whenever

φ1 (x) + ε1
0x
(
ξ1

0

)
+ φ2 (y) + ε2

0y
(
ξ1

0

)
≥ r∗2 (10.37)
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for some number r∗2. Note that by picking r∗2 sufficiently large, the same type of

estimate likewise holds for H2; we assume henceforth that this is so. Here, in (10.36),

we choose η3 to be the number

η3 :=
1

t0γ0 min {ε1
0, ε

2
0, ε

2
0}
, (10.38)

where t0 ∈
◦
E is fixed but arbitrary; since E b (0, 1), it holds that t0 6= 0, and so,

η3 > 0. Importantly, η3 depends neither on q∞1 nor on q∞2 . Now, notice that for

(x, y) ∈ K since φ1(x), φ2(y) ≥ 0 and ξ1
0 ∈ E, we may estimate

φ1 (x) + ε1
0x
(
ξ1

0

)
+ φ2 (y) + ε2

0y
(
ξ1

0

)
≥ min

{
ε1

0, ε
2
0

} [
x
(
ξ1

0

)
+ y

(
ξ1

0

)]
≥ min

{
ε1

0, ε
2
0

}
min
t∈E

[x(t) + y(t)]

≥ γ0 min
{
ε1

0, ε
2
0

}
‖(x, y)‖.

(10.39)

Consequently, if (x, y) satisfies

‖(x, y)‖ ≥ r∗2
γ0 min {ε1

0, ε
2
0}
, (10.40)

then (10.36) holds.

We next interrupt to prove an easy lemma. Suppose that x, y ≥ 0 with x, y ≤M

for some M ≥ 1 and finite. Let q satisfy 0 < q ≤ 1. Choose the constant c such that

c := min
{

1,M q−1
}

; (10.41)

note that −1 < q − 1 ≤ 0. Obviously, c ∈ (0, 1] since M ≥ 1 and q − 1 ≤ 0. Then it

follows that

x+ yq ≥ c(x+ y), (10.42)
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for all (x, y) ∈ [0,M ] × [0,M ]. Indeed, we merely notice that, for (x, y) ∈ [0,M ] ×

[0,M ]

cx ≤ x (10.43)

and

cy ≤ yq, (10.44)

since y 7→ yq−1 is decreasing for y > 0, whereupon adding (10.43)–(10.44) we estimate

cx+ cy ≤ x+ yq, (10.45)

which evidently proves inequality (10.42).

Now continuing with the proof, let us put

r∗∗2 := max

{
1, 2r∗∗1 ,

r∗2
γ0 min {ε1

0, ε
2
0}

}
, (10.46)

which is independent of each of q∞1 and q∞2 . Define Ωr∗∗2
by

Ωr∗∗2
:= {(x, y) ∈ X : ‖(x, y)‖ < r∗∗2 } . (10.47)

Using estimate (10.42), then, and the fact that

∫ 1

0

G (t0, s) a1(s)g1(x(s), y(s)) ds ≥ 0, (10.48)
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we deduce that for each (x, y) ∈ K ∩ ∂Ωr∗∗2

(T1(x, y)) (t0) = t0H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
, φ2 (y) + ε2

0y
(
ξ1

0

))
+

∫ 1

0

G (t0, s) a1(s)g1(x(s), y(s)) ds

≥ t0H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
, φ2 (y) + ε2

0y
(
ξ1

0

))
≥ t0η3

([
φ1(x) + ε1

0x
(
ξ1

0

)]
+
[
φ2(y) + ε2

0y
(
ξ1

0

)]q∞1 )
≥ t0η3

[
ε1

0x
(
ξ1

0

)
+
(
ε2

0

)q∞1 [y (ξ1
0

)]q∞1 ]
≥ t0η3

[
ε1

0x
(
ξ1

0

)
+ ε2

0

[
y
(
ξ1

0

)]q∞1 ]
≥ t0η3 min

{
ε1

0, ε
2
0

} [[
x
(
ξ1

0

)]
+
[
y
(
ξ1

0

)]q∞1 ]
≥ t0η3 min

{
ε1

0, ε
2
0

}
c1

[
x
(
ξ1

0

)
+ y

(
ξ1

0

)]
≥ t0η3 min

{
ε1

0, ε
2
0

}
γ0c1‖(x, y)‖

≥ c1‖(x, y)‖,

(10.49)

where we have used the lemma of the previous paragraph to get the third-to-last

inequality, and so, here c1 := min
{

1, (r∗∗2 )q
∞
1 −1

}
. We have also used both the fact

that ε2
0 ∈

[
0, 1

2

)
and that q∞1 ∈ (0, 1] so that (ε2

0)
q∞1 ≥ ε2

0. In summary, it follows that

‖T1(x, y)‖ ≥ c1‖(x, y)‖. (10.50)

Likewise, for each (x, y) ∈ K ∩ ∂Ωr∗∗2
we deduce that for c2 := min

{
1, (r∗∗2 )q

∞
2 −1

}

‖T2(x, y)‖ ≥ c2‖(x, y)‖. (10.51)

We now conclude the argument by considering cases. If q∞1 = q∞2 = 1, then from

(10.41), it is obvious that c1 = c2 = 1. In this case we deduce from (10.50)–(10.51)
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that

‖S(x, y)‖ ≥ 2‖(x, y)‖ > ‖(x, y)‖, (10.52)

for each (x, y) ∈ K ∩ ∂Ωr∗∗2
. On the other hand, in case 0 < max {q∞1 , q∞2 } < 1, then

c1 := (r∗∗2 )q
∞
1 −1 and c2 := (r∗∗2 )q

∞
2 −1 . (10.53)

In order that c1 + c2 ≥ 1 be satisfied, at a minimum we must have that

min
{

2
1

1−q∞1 , 2
1

1−q∞2

}
≥ r∗∗2 . (10.54)

Evidently, since r∗∗2 is finite and (1− q∞i )−1 → +∞ as q∞i → 1−, there exists a δ > 0

sufficiently small such that for each q∞1 , q∞2 ∈ (1 − δ, 1] we have that (10.54) holds.

In this case, we again deduce that (10.52) holds with, say, the factor 2 replaced by 1.

Importantly, we point out that r∗∗2 does not depend on q∞i for either i. Consequently,

we may, in inequality (10.54) above, freely increase q∞i , for each i, without changing

the previously selected and fixed value of r∗∗2 .

Finally, putting the preceding paragraphs together, we make two conclusions.

Firstly, if q∞1 = q∞2 = 1, then by Lemma 2.13 and inequality (10.52) we deduce the

existence of a function (x0, y0) ∈ K such that S (x0, y0) = (x0, y0), where x0(t), y0(t)

forms a positive solution of problem (10.1). Secondly, if q∞1 , q∞2 ≤ 1, then there exists

a δ > 0 sufficiently small such that if q∞1 , q∞2 ∈ (1 − δ, 1], then problem (10.1) still

has at least one positive solution. And as these cases are exhaustive this completes

the proof.

We now prove a second result that demonstrates an alternative approach to prob-

lem (10.1). In particular, we begin by introducing the following condition.
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H8: For each i = 1, 2, there is a constant ρi > 0 such that

lim sup
(z1,z2)→(0+,0+)

Hi (z1, z2)

z1 + z2

< ρi (10.55)

holds, where ρi ∈
[
0, 1

2 max{ε11,ε21}

)
.

On the one hand, condition (H8) is certainly more general than condition (H4). For

instance, the continuous function H : [0,+∞)× [0,+∞)→ [0,+∞) defined by

H (z1, z2) :=


(z1 + z2) cos

(
1

z1+z2

)
, z1 + z2 6= 0

0, z1 = z2 = 0

(10.56)

satisfies

lim sup
(z1,z2)→(0+,0+)

H (z1, z2)

z1 + z2

= 1 (10.57)

but lim(z1,z2)→(0+,0+)
H(z1,z2)
z1+z2

does not exist. On the other hand, in order to prove the

next result, we shall have to impose growth conditions on the nonlinearities g1 and

g2 at infinity. Thus, we introduce condition (H9) below.

H9: We find that

lim
(x,y)→(+∞,+∞)

g1(x, y)

x+ y
= +∞ and lim

(x,y)→(+∞,+∞)

g2(x, y)

x+ y
= +∞. (10.58)

With condition (H8) and (H9) in hand we state and prove the following theorem.

We first give two preliminary remarks.

Remark 10.6. We note that condition (H8) is more closely related to certain of the

conditions given by Yang [90, 91], to which was alluded earlier. In particular, how-

ever, we note that unlike the results Yang gives, which admittedly were for a slightly
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different problem than (10.1), we do not require complicated conditions on the non-

linearities g1 and g2. Indeed, conditions (H5) and (H9) are quite straightforward and

standard. Moreover, the measures here are signed. So, we consider these observations

to be both interesting and noteworthy.

Remark 10.7. We also note, as will become clear in the statement and proof of The-

orem 10.8 in the sequel, that with this particular assumption – namely (H8) – we

may dispense with the perturbation terms appearing in (10.1). In particular and

importantly, then, we may set ε1
0 = ε2

0 = 0.

Theorem 10.8. Suppose that conditions (H1)–(H3) and (H5)–(H9) hold. In addi-

tion, suppose that ε1
0 = ε2

0 = 0. Then the unperturbed problem (10.1) has at least one

positive solution.

Proof. Due to the assumptions given in the statement of this theorem, it is still the

case that T : K → K and that T is a completely continuous operator. So, we

proceed directly to the cone theoretic part of the argument.

To this end, let ρi <
1

2 max{ε11,ε21}
be given, for each i = 1, 2. Evidently, we may

select k ∈ N sufficiently large such that

0 ≤ ρi <
2k − 1

2k+1 max {ε1
1, ε

2
1}

<
1

2 max {ε1
1, ε

2
1}

(10.59)

holds for each i. Moreover, for each i, select the number ηi > 0 such that

ηi

∫ 1

0

G(s, s)ai(s) ds ≤
1

2k+1
(10.60)

holds. Condition (H5) implies the existence of a number r1 > 0 such that gi(x, y) ≤

ηi(x + y) for all 0 ≤ x + y < r1 and for each i. On the other hand, from condition
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(H8), we may select a number 0 < ε < min {ρ1, ρ2} sufficient small such that

Hi (z1, z2) < (ρi − ε) (z1 + z2) (10.61)

holds whenever 0 ≤ z1 + z2 < r∗1 for some number r∗1 > 0, for each i = 1, 2. In

addition, since (10.59) holds, for each i, it evidently holds that

0 < ρi − ε <
2k − 1

2k+1 max {ε1
1, ε

2
1}
. (10.62)

Now, condition (H3) implies that

φ1(x) ≤ ε1
1‖x‖ and that φ2(y) ≤ ε2

1‖y‖. (10.63)

Consequently, for each (x, y) ∈ K satisfying

0 ≤ ‖(x, y)‖ < min {r1, r
∗
1} , (10.64)

it follows that

φ1(x) ≤ ε1
1‖x‖ ≤ ε1

1‖(x, y)‖ < 1

2
r∗1 and that φ2(y) ≤ ε2

1‖y‖ ≤ ε2
1‖(x, y)‖ < 1

2
r∗1.

(10.65)

Now, select r∗∗1 > 0 such that

r∗∗1 < min {r1, r
∗
1} (10.66)

and put Ωr∗∗1
:= {(x, y) ∈ K : ‖(x, y)‖ < r∗∗1 }. Upon combining (10.63)–(10.66), we
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may then estimate

Hi (φ1(x), φ2(y)) < (ρi − ε) (φ1(x) + φ2(y)) , (10.67)

for each (x, y) ∈ K ∩ ∂Ωr∗∗1
and i = 1, 2. So, combining all of these estimates, we

deduce that

‖T1(x, y)‖ ≤ H1 (φ1(x), φ2(y)) +

∫ 1

0

G(s, s)a1(s)g1(x(s), y(s)) ds

≤ (ρ1 − ε) (φ1(x) + φ2(y)) +
1

2k+1
‖(x, y)‖

≤ 2k − 1

2k+1 max {ε1
1, ε

2
1}
(
ε1

1‖x‖+ ε2
1‖y‖

)
+

1

2k+1
‖(x, y)‖

≤ 2k − 1

2k+1 max {ε1
1, ε

2
1}

max
{
ε1

1, ε
2
1

}
(‖x‖+ ‖y‖) +

1

2k+1
‖(x, y)‖

=
2k − 1

2k+1 max {ε1
1, ε

2
1}

max
{
ε1

1, ε
2
1

}
‖(x, y)‖+

1

2k+1
‖(x, y)‖

=
1

2
‖(x, y)‖.

(10.68)

Similarly, we deduce that

‖T2(x, y)‖ ≤ 1

2
‖(x, y)‖ (10.69)

whence

‖S(x, y)‖ ≤ ‖(x, y)‖, (10.70)

for each (x, y) ∈ K ∩ ∂Ωr∗∗1
.

On the other hand, select the number η3 > 0 to satisfy

η3 max

{∫
E

γ2
0G(s, s)a1(s) ds,

∫
E

γ2
0G(s, s)a2(s) ds

}
≥ 1

2
. (10.71)
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Then by condition (H9), we have that

gi(x, y) ≥ η3(x+ y), (10.72)

for all x+ y ≥ r2 and for each i = 1, 2. Put

r∗2 := max

{
r2

γ0

, 2r∗∗1

}
. (10.73)

Then since H1 (z1, z2) ≥ 0, for all (z1, z2) ∈ [0,+∞)× [0,+∞), we deduce that

min
t∈E

(T1(x, y)) (t) ≥ η3

∫
E

γ0G(s, s)a1(s)[x(s) + y(s)] ds

≥ ‖(x, y)‖η3

∫
E

γ2
0G(s, s)a1(s) ds

≥ 1

2
‖(x, y)‖,

(10.74)

whence

‖T1(x, y)‖ ≥ 1

2
‖(x, y)‖, (10.75)

for each (x, y) ∈ K ∩ ∂Ωr∗2
. Similarly,

‖T2(x, y)‖ ≥ 1

2
‖(x, y)‖, (10.76)

so that ‖S(x, y)‖ ≥ ‖(x, y)‖, for (x, y) ∈ K ∩ ∂Ωr∗2
. Consequently, we may invoke

Lemma 2.13 to deduce the existence of at least one positive solution to problem

(10.1).

We conclude with an explicit numerical example together with some final remarks.
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Example 10.9. Consider the boundary value problem

−x′′(t) = (2t+ 1)g1(x(t), y(t))

−y′′(t) = e−3t+1g2(x(t), y(t))

x(0) = H1

(
φ1(x) +

1

40
x

(
1

2

)
, φ2(y) +

1

300
y

(
2

5

))
y(0) = H2

(
φ1(x) +

1

40
x

(
1

2

)
, φ2(y) +

1

300
y

(
2

5

))
x(1) = 0 = y(1),

(10.77)

where we make the following declarations.

H1 (z1, z2) := (z1 + z2)3

H2 (z1, z2) := (z1 + z2)2 cos

(
1

z1 + z2 + 1

)
φ1(x) :=

1

8
x

(
1

3

)
− 1

40
x

(
1

2

)
− 1

12
x

(
3

5

)
+

1

2

∫
[ 1320 ,

3
4 ]
x(s) ds

φ2(y) := − 1

300
y

(
2

5

)
+

1

15
y

(
9

20

)
− 1

100
y

(
11

20

)
+

1

10

∫
[ 35 ,

7
10 ]
y(s) ds

g1(x, y) :=


(x+ y)2, x+ y ≤ 1

√
x+ y, x+ y ≥ 1

g2(x, y) := (x+ y)3

(10.78)

Interestingly, note that g1 is sublinear as (x, y)→ (+∞,+∞), whereas g2 is superlin-

ear. Furthermore, let us observe at this juncture that on account of the definitions of

φ1 and φ2 given in (10.78), we may recast the boundary conditions at t = 0 in (10.77)
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in the somewhat simpler form

x(0) = H1 (ψ1(x), ψ2(y)) = [ψ1(x) + ψ2(y)]3

y(0) = H2 (ψ1(x), ψ2(y)) = [ψ1(x) + ψ2(y)]2 cos

(
1

ψ1(x) + ψ2(y) + 1

)
,

(10.79)

where we have put ψ1(x) := φ1(x) + 1
40
x
(

1
2

)
and ψ2(y) := φ2(y) + 1

300
y
(

2
5

)
. Inciden-

tally, though we do not show this explicitly, let us also remark that it is easy to show

that the Stieltjes measures µα1 and µα2 are signed for this problem.

It is now easy to check that each of conditions (H1)–(H7) is satisfied. In particular,

note that we may select ε1
1 := 17

60
, ε2

1 := 9
100

, ε1
0 := 1

40
, and ε2

0 := 1
300

. Moreover, we

note that
∫

[0,1]
t dα1(t) = 17

1200
≥ 0 and that

∫
[0,1]

t dα2(t) = 89
3000
≥ 0. In any case,

we conclude that we may invoke Theorem 10.5 to deduce that problem (10.77) has

at least one positive solution. Likewise, problem (10.79) has at least one positive

solution, too.

Remark 10.10. We note that problem (10.77) could not be addressed by any existing

results. This is true for a variety of reasons, among which are the following: problem

(10.77) involves a system of equations; it imposes no growth conditions on g1 and g2

for (x, y) large in norm; it allows for each of H1 and H2 to have superlinear growth as

(x, y)→ (+∞,+∞); and it allows for each of φ1 and φ2 to be have associated signed

Borel measures. In short, we are not aware that any results in the existing literature

can be applied to problem (10.77). And this is the advantage of the asymptotic

conditions (H4) and (H8), which we have introduced in this work.

Remark 10.11. We have elected not to give an example of Theorem 10.8 since its

application would proceed in a very similar manner to Example 10.9. Nonetheless,

we emphasize that in the case of Theorem 10.8, we may take the perturbation terms

in (10.1) equal to zero and, hence, in this case we are recovering solutions to the
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unperturbed (i.e., ε1
0 = ε2

0 = 0) problem (10.1).
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Chapter 11

A System of BVPs with Nonlocal,

Nonlinear Boundary Conditions

with Sublinear Growth

In this concluding chapter we wish to illustrate how techniques similar (though not

identical) to the preceding chapter may still be used in the vectorial setting with an

assumption of sublinear growth in the nonlinear boundary terms. As shall be seen in

the sequel, the assumption of asymptotic sublinearity requires some modifications of

the techniques used to deduce the existence of at least one positive solution.

In particular, in this chapter our model problem is

x′′(t) = −λ1a1(t)g1(x(t), y(t)), t ∈ (0, 1)

y′′(t) = −λ2a2(t)g2(x(t), y(t)), t ∈ (0, 1)

x(0) = H1

(
φ1(x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

))
y(0) = H2

(
φ2(y) + ε1

0x
(
ξ2

0

)
+ ε2

0y
(
ξ2

0

))
x(1) = 0 = y(1),

(11.1)
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where λ1, λ2 > 0 are eigenvalues, ε1
0, ε2

0 > 0 are constants, which shall be specified

later, ξ1
0 , ξ

2
0 ∈ (0, 1) are fixed, φ1, φ2 : C([0, 1]) → R are functionals, which are

realizations of the nonlocal nature of the boundary conditions, H1, H2 : R→ R are

continuous functions, which are realizations of the nonlinear nature of the boundary

conditions, and g1, g2 : [0,+∞)× [0,+∞)→ [0,+∞) are continuous. The nonlocal

terms here are, once again as in Chapters 9 and 10, very general, being as they are

realized by Lebesgue-Stieltjes integrals – that is,

φ1(x) :=

∫
[0,1]

x(t) dα1(t) and φ2(y) :=

∫
[0,1]

y(t) dα2(t), (11.2)

with α1, α2 ∈ BV ([0, 1]). It may be assumed without loss that, in fact, α1, α2 ∈

NBV ([0, 1]). Consequently, we observe that to each of α1, α2, there exists a unique

Borel measure, say µα1 and µα2 , respectively. In our context, these measures may be

signed, which is one of the key contributions of this work.

Our novel approach to problem (11.1) is twofold. We first introduce the per-

turbation terms ε1
0x (ξ1

0), ε2
0y (ξ1

0), ε1
0x (ξ2

0), and ε2
0y (ξ2

0) appearing in (11.1). These

perturbation terms allows us in turn to introduce a second novelty – namely, to utilize

much less restrictive growth conditions on each of H1 and H2 appearing in (11.1).

Indeed, we require that, for each i = 1, 2,

lim
z→∞

|Hi(z)− κi0z|
|z|

= 0, (11.3)

for some κi0 ∈ [0,+∞). Note that condition (11.3) implies that Hi may grow either

sub- or superlinearly at z = 0 – e.g., each of H(z) = 3
√
z and H(z) = z2 is an

admissible function for small z. These two relatively simple modifications allow for

considerably weaker conditions on problem (11.1), for we may now assume that each
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of the measures µα1 and µα2 is signed and that neither H1 nor H2 is sublinear at z = 0,

assumptions that seem to be made in most problems related to (11.1) as we indicate

in the sequel. Furthermore, it turns out that we do not even require the perturbation

terms provided that we assume that each of H1(z) and H2(z) is monotone increasing

for z ≥ 0.

Closely related to these observations, we should point out at this juncture that

Yang [90, 91] actually introduced asymptotic conditions in those works not entirely

dissimilar to (11.3) above. In particular, in [90] a system of equations, which are very

similar to (11.1), was studied. Among a variety of other conditions, Yang was able

to employ an asymptotic condition of the general form

lim sup
z→∞

H(z)

z
<

1

ϕ
, (11.4)

for some positive, finite constant ϕ. Certainly, (11.4) is more general than our con-

dition (11.3). However, a careful examination of the proof in [90] reveals that the

positivity of the measures µα1 and µα2 is essential. Consequently, it does not seem

possible at present to give a simple modification of Yang’s techniques in the case

where the measures may be signed (i.e., our situation here).

Thus, we employ two different strategies to overcome these difficulties. Our first

strategy is via condition (11.3) and the perturbation terms in (11.1), whereas our

second strategy is via a monotonicity assumption on each of H1 and H2. In any case,

we should also point out that although Yang [90] achieves a more general condition

in (11.4), in [90] much more complicated structural conditions are instead assumed

on the nonlinearities g1, g2 than we assume here, and the eigenvalue problem is not

studied in [90] either.

Prior to enumerating specifically the contributions of this paper, let us briefly
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review the relevant existing literature on problems similar to (11.1). Recently, Infante

and Webb [84] provided an elegant theory for nonlocal BVPs in the case where the

boundary conditions are linear ; furthermore, one may consult the introduction of

[84] for a thorough review of the recent literature on multipoint BVPs prior to the

contribution of Infante and Webb. Related extensions may be found in recent papers

by Webb [85, 86, 87] as well as by Graef and Webb [60].

On the other hand, recently there has been some attempts by Infante [64], Infante

and Pietramala [65, 66, 67], Kang and Wei [68], and Yang [90, 91] to consider in

fairly general contexts BVPs with nonlinear BCs. However, insofar as these papers

are concerned, while they do make a connection to the linear boundary condition

theory, they do so under some limiting assumptions, namely that H, which is the

function capturing the nonlinearity of the BCs, is strictly positive, that the Borel

measure associated to the Lebesgue-Stieltjes integral φ(y) =
∫
E
y(t) dα(t) is positive,

and, in nearly all cases ([90, 91] being partial exceptions), that H satisfies a uniform

growth condition of the form ζ1z ≤ H(z) ≤ ζ2z, for 0 ≤ ζ1 ≤ ζ2 < +∞, for all z ≥ 0.

In particular, our work here directly generalizes and improves [65, 90] since those

works are very closely related to our work here. Indeed, Infante and Pietramala

[65] and Yang [90] each considered a system almost identical to (11.1) but with the

nonlocal condition at t = 1 rather than at t = 0, which is a trivial difference. Here

we achieve in the particular case of problem (11.1) the following generalizations over

various aspects of the results presented in [65, 90] and, more tangentially, in [64, 66,

67, 68, 91]. We enumerate these generalizations and improvements as follows.

1. For the first of our two existence results, we do not assume that either H1 or H2

is monotone, unlike some works in the literature involving nonlinear boundary

conditions. Where we do assume monotonicity, this assumption, as noted above,
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allows us to dispense with the perturbation terms appearing in (11.1) above.

2. We allow for each of µα1 and µα2 to be signed measures rather than merely pos-

itive. This is a notable generalization over preceding works on related problems

– specifically, [64, 65, 66, 67, 90, 91].

3. We do not assume a uniform linear growth condition on either H1 or H2. While

condition (11.3) does imply linear growth of the Hi’s at +∞, this is only an

asymptotic condition, which is much weaker than the uniform condition pro-

posed in other works on related problems – specifically, [64, 65, 66, 67].

4. We believe that our techniques here allow for H to be only eventually positive,

though we do not prove such a theorem here – see [53] for an exemplar of this

extension.

5. While we present our results in the somewhat simpler setting of Dirichlet-type

boundary conditions, we believe that our techniques can be extended to include

some of the other types of boundary conditions considered by other authors.

6. Finally, we exhibit an explicit and direct connection to the linear BC theory

developed originally in [84]. Indeed, condition (11.3) essentially shows that if

the boundary conditions merely possess asymptotically sublinear growth at +∞

(i.e., are asymptotically similar to the sorts of conditions considered in [84]),

then this is sufficient, together with some other relatively standard assumptions,

to deduce that problem (11.1) has at least one positive solution. Heuristically,

then, if φ(y) is a linear functional to which the theory of [84] applies and if

Hi(φ(y)) ≈ φ(y) for φ(y) � 1, for each i, then we recover the existence of at

least one positive solution to problem (11.1). We feel that this is both a novel

and interesting observation.
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11.1 Main Results and Numerical Example

Before stating and proving our two main results, which are Theorem 11.6 and The-

orem 11.8, we introduce some structural conditions on the various functions and

functionals in (11.1). They are as follows.

H1: For each i, let Hi : R→ R be a real-valued, continuous function. Moreover,

Hi : [0,+∞)→ [0,+∞) – i.e., Hi is nonnegative when restricted to [0,+∞).

H2: For each i, the functional φi(y) appearing in (11.1) is linear and, in particular,

has the form

φi(y) :=

∫
[0,1]

y(t) dαi(t), (11.5)

where αi : [0, 1]→ R satisfies αi ∈ BV ([0, 1]).

H3: For each i, there is a constant εi1 such that the functional φi in (11.1) satisfies

the inequality

|φi(y)| ≤ εi1‖y‖ (11.6)

for all y ∈ C([0, 1]).

H4: For each i, there is κi0 ≥ 0 such that

lim
z→+∞

|Hi(z)− κi0z|
|z|

= 0 (11.7)

holds.

H5: We find that

lim
x+y→+∞

g1(x, y) = +∞ and lim
x+y→+∞

g2(x, y) = +∞. (11.8)
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H6: We find that

lim
x+y→+∞

g1(x, y)

x+ y
= 0 and lim

x+y→+∞

g2(x, y)

x+ y
= 0. (11.9)

H7: Each of the following holds.

0 ≤ ε1
0 + ε2

0 + ε2
1 + ε2

1 <
1

2

0 ≤ κ1
0

(
ε1

0 + ε2
0 + ε1

1

)
<

1

2

0 ≤ κ2
0

(
ε1

0 + ε2
0 + ε2

1

)
<

1

2

(11.10)

H8: For each i, each of ∫
[0,1]

(1− t) dαi(t) ≥ 0 (11.11)

and ∫
[0,1]

G(t, s) dαi(t) ≥ 0 (11.12)

holds, where the latter holds for each s ∈ [0, 1].

H9: The nonlinearities g1 and g2 satisfy either the relationship g1(x, y) ≤ g2(x, y)

or the relationship g2(x, y) ≤ g1(x, y), for all x, y ≥ 0.

Let us make some brief remarks regarding certain of the preceding conditions.

Remark 11.1. Regarding conditions (H2)–(H3), the same sorts of functionals that

have been admissible in Chapter 9 and 10 remain admissible here.

Remark 11.2. Regarding condition (H4), this is the asymptotic condition, which is

key to our arguments in the sequel. Note that if the condition

lim
z→+∞

|H(z)− z| = 0, (11.13)
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which implies that H(z) converges to z at +∞, holds, then it follows that condition

(H4) holds, too. It should also be noted that there are many nontrivial functions

which do not satisfy condition (11.4) but do satisfy condition (H4) for some κi0. For

instance, consider the function H1 : [0,+∞)→ [0,+∞) defined by

H1(z) := 2
√
z cos

(
1

1 + z

)
(11.14)

Then it is clear that H1 satisfies (11.7) in case κ1
0 = 0 but fails to satisfy the condition

(11.13).

Remark 11.3. Note that in (11.10) above, depending upon the values of the various

constants, it may be that each of conditions (11.10)2 and (11.10)3 is superfluous.

Remark 11.4. Observe that we do not require any growth conditions on Hi except

asymptotically as given in (11.7) above. This is in contrast to nearly all other recent

papers on BVPs with nonlinear, nonlocal boundary conditions – see, for instance,

[64, 65, 66, 67, 68]. Indeed, as mentioned in Section 1, it seems to be assumed

frequently that the function capturing the nonlinear aspect of the boundary conditions

satisfy a condition of the sort αz ≤ Hi(z) ≤ βz, for 0 ≤ α ≤ β and all z ≥ 0. Here

we remove such restrictions entirely. Indeed, we only really need sublinearity at +∞,

and we consider this observation to be an interesting contribution of this work.

Remark 11.5. Observe that no growth conditions are required of either H1 or H2 at

0. In particular, H1(z) could be sublinear at z = 0, whilst H2(z) is superlinear at

z = 0. In particular, the nonlinearities H1, H2 may exhibit mixed behavior at z = 0.

The same comment may be given for the nonlinearities g1 and g2.
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Now, let γ0 be the constant defined by

γ0 := min

{
γ,min

t∈E
(1− t)

}
, (11.15)

where γ0 ∈ (0, 1) and γ is the constant from Chapter 9. Then the cone, K, we shall

use in the sequel is defined by

K :=

{
(x, y) ∈ X : x, y ≥ 0, min

t∈E
[x(t) + y(t)] ≥ γ0‖(x, y)‖,

φ1(x), φ2(y) ≥ 0

}
,

(11.16)

which is a simple modification of a cone first introduced by Infante and Webb [84].

Let us point out at this juncture that K is not just the trivial subspace of X. Indeed,

it is easy to verify that if we put β(t) := (1 − t, 1 − t), then β ∈ K. In fact, it is

also true, of course, that if we put β1(t) := (1− t, 0) and β2(t) := (0, 1− t), then β1,

β2 ∈ K. With this in hand, we now state and prove our main result.

Theorem 11.6. Let conditions (H1)–(H9) hold. Assume that ξ1
0, ξ2

0 ∈ E, where the

set E is fixed as in Section 2. Then for all λ1, λ2 > 0 sufficiently large problem (11.1)

has at least one positive solution.

Proof. We consider the problem

x′′(t) = −λ1a1(t)g1 (x(t), y(t)) , t ∈ (0, 1)

y′′(t) = −λ2a2(t)g2 (x(t), y(t)) , t ∈ (0, 1)

x(0) = H1

(
φ1 (xj) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

))
y(0) = H2

(
φ2 (yj) + ε1

0x
(
ξ2

0

)
+ ε2

0y
(
ξ2

0

))
x(1) = 0 = y(1).

(11.17)
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We first show that S(K) ⊆ K. To this end, let (x, y) ∈ K. Then it is obvious that

Ti (x, y) (t) ≥ 0, for each t ∈ [0, 1] and for each i = 1, 2. On the other hand, note that

min
t∈E

T1 (x, y) (t) ≥ γ0H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

))
+ λ1γ max

t∈[0,1]

∫ 1

0

G(t, s)a1(s)g1 (x(s), y(s)) ds

≥ γ0‖T1 (x, y) ‖.

(11.18)

It similarly holds that mint∈E T2 (x, y) (t) ≥ γ0‖T2 (x, y) ‖. We thus conclude that

min
t∈E

[(T1 (x, y)) (t) + (T2 (x, y)) (t)] ≥ γ0‖S (x, y) ‖. (11.19)

Finally, note that

φ1 (T1 (x, y)) = H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

)) ∫
[0,1]

(1− t) dα1(t)

+ λ1

∫
[0,1]

∫ 1

0

G(t, s)a1(s)g1 (x(s), y(s)) ds dα1(t)

= H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

)) ∫
[0,1]

(1− t) dα1(t)

+ λ1

∫ 1

0

[∫
[0,1]

G(t, s) dα1(t)

]
a1(s)g1 (x(s), y(s)) ds

≥ 0,

(11.20)

where the final inequality from assumption (H8). Similarly, φ2 (T2 (x, y)) ≥ 0. Thus,

S : K → K, as claimed. Furthermore, since it is standard to show that S is a

completely continuous operator, we omit the proof of this claim.

We next make a simple observation. For each (x, y) ∈ K, we have that

min
t∈E

[x(t) + y(t)] ≥ γ0‖(x, y)‖, (11.21)



232

and, thus, since φ1(x) ≥ 0 it follows that

φ1(x) + ε1
0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

)
≥ ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

)
≥ min

{
ε1

0, ε
2
0

}
min
t∈E

[x(t) + y(t)]

≥ min
{
ε1

0, ε
2
0

}
γ0‖(x, y)‖.

(11.22)

Of course, the same inequality holds if we replace φ1(x) with φ2(y), x (ξ1
0) with x (ξ2

0),

and y (ξ1
0) with y (ξ2

0). In any case, observation (11.22) will be very important in the

sequel.

Now, we note that by condition (H5), there is r1 > 0 sufficiently large such that

whenever x+ y ≥ r1, we find that

g1(x, y) ≥ 1∫
E
G (t0, s) a1(s) ds

, (11.23)

where t0 ∈
◦
E is any fixed but otherwise arbitrary point; note that since E b (0, 1), it

follows that 0 < t0 < 1. Similarly, there is r∗1 > 0 such that for x+ y ≥ r∗1, it follows

that

g2(x, y) ≥ 1∫
E
G (t0, s) a2(s) ds

. (11.24)

Define the number r∗∗1 > 0 by

r∗∗1 := max

{
r1

γ0

,
r∗1
γ0

}
(11.25)

and the set Ωr∗∗1
⊂ X by

Ωr∗∗1
:= {(x, y) ∈ X : ‖(x, y)‖ < r∗∗1 } . (11.26)
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Observe that for (x, y) ∈ K ∩ ∂Ωr∗∗1
it follows that

min
t∈E

[x(t) + y(t)] ≥ γ0‖ (x, y) ‖ = γ0r
∗∗
1 = max {r1, r

∗
1} . (11.27)

In particular, both (11.23) and (11.24) hold. Therefore, it follows that for each

(x, y) ∈ K ∩ ∂Ωr∗∗1
we have

T1 (x, y) (t0) ≥ λ1

∫ 1

0

G (t0, s) a1(s)g1 (x(s), y(s)) ds

≥ λ1

∫
E

G (t0, s) a1(s)g1 (x(s), y(s)) ds

≥ λ1,

(11.28)

where we have used the fact that H(z) ≥ 0, for each z ≥ 0. By now making λ1

sufficiently large, we get

‖T1 (x, y) ‖ ≥ 1

2
‖ (x, y) ‖. (11.29)

Similarly, by making λ2 sufficiently large we deduce that

‖T2 (x, y) ‖ ≥ 1

2
‖ (x, y) ‖. (11.30)

So, from (11.29)–(11.30) we conclude that

‖S (x, y) ‖ ≥ ‖ (x, y) ‖, (11.31)

for each (x, y) ∈ K ∩ ∂Ωr∗∗1
.

On the other hand, select numbers ε1
2, ε2

2 > 0 sufficiently small such that each of
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the following inequalities holds.

κ1
0

(
ε1

0 + ε2
0 + ε1

1

)
+ ε1

2 <
1

2

κ1
0

(
ε1

0 + ε2
0 + ε2

1

)
+ ε2

2 <
1

2

(11.32)

Evidently, these inequalities may be satisfied because condition (H7) holds. Then

condition (H6) implies that there is r2 > 0 sufficiently large such that for each i = 1, 2

it holds that

gi(x, y) ≤ η1(x+ y), (11.33)

whenever x+ y ≥ r2, where η1 satisfies both

η1

∫ 1

0

G(s, s)a1(s) ds ≤ ε1
2

2λ1

and η1

∫ 1

0

G(s, s)a2(s) ds ≤ ε2
2

2λ2

. (11.34)

Additionally, for a given number ε1
3 > 0 condition (H4) implies the existence of a

number r∗2 := r∗2 (ε1
3) > 0 such that

∣∣H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε20y

(
ξ1

0

))
− κ1

0

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

))∣∣
< ε1

3‖ (x, y) ‖
(11.35)

whenever

φ1 (x) + ε1
0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

)
≥ r∗2. (11.36)

Note that to get (11.35) we have used the fact that

0 ≤ φ1 (x) + ε1
0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

)
≤ ε1

1‖x‖+ ε1
0‖x‖+ ε2

0‖y‖ ≤ max
{
ε1

0, ε
2
0, ε

1
1

}
‖ (x, y) ‖ < ‖ (x, y) ‖.

(11.37)

Furthermore, in the same manner as in the preceding paragraph, we may select ε1
3 in
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such a way so that

κ1
0

(
ε1

0 + ε2
0 + ε1

1

)
+ ε1

2 + ε1
3 <

1

2
(11.38)

holds. In any case, recalling (11.22) and the fact that φ1 (x) ≥ 0 since (x, y) ∈ K, we

have that (11.35) is satisfied provided that

‖ (x, y) ‖ ≥ r∗2
γ0 min {ε1

0, ε
2
0}

(11.39)

holds. A dual argument reveals that (11.35) also holds for the function H2 whenever

(11.39) holds replacing r∗2 with some (possibly larger) constant r∗∗2 , by making the

obvious changes in the various subscripts appearing in (11.35)–(11.36), and changing

ε1
3 to some ε2

3 – i.e., provided that

‖ (x, y) ‖ ≥ r∗∗2
γ0 min {ε1

0, ε
2
0}

(11.40)

holds. Here, of course, analogous to (11.38) we choose ε2
3 so that

κ1
0

(
ε1

0 + ε2
0 + ε2

1

)
+ ε2

2 + ε2
3 <

1

2
(11.41)

is satisfied. So, both conditions hold provided that

‖ (x, y) ‖ ≥ max

{
r∗2

γ0 min {ε1
0, ε

2
0}
,

r∗∗2
γ0 min {ε1

0, ε
2
0}

}
. (11.42)

Now, assume by condition (H9) and without loss of generality that g2(x, y) ≤

g1(x, y), for all x, y ≥ 0. Then because g1 is unbounded at infinity in the sense of

condition (H5), we may select a number R1 > 0, where R1 satisfies

R1 > max

{
2r∗∗1 , r2,

r∗2
γ0 min {ε1

0, ε
2
0}
,

r∗∗2
γ0 min {ε1

0, ε
2
0}

}
=: ϑ, (11.43)
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such that

g1(x, y) ≤ g1 (ρ1, ρ2) , (11.44)

for all (x, y) ∈ [0, R1]× [0, R1], where either ρ1 = R1 and 0 ≤ ρ2 ≤ R1 or 0 ≤ ρ1 ≤ R1

and ρ2 = R1. To prove this claim, pick a number θ∗ > 0 such that

θ∗ > ϑ. (11.45)

By the extreme value theorem, the function g1 attains its maximum on the square

[0, θ∗]× [0, θ∗], say

max
(x,y)∈[0,θ∗]×[0,θ∗]

g1(x, y) = g1 (x0, y0) . (11.46)

Now, if

(x0, y0) ∈ [0, θ∗]2 \ [0, ϑ]2 (11.47)

holds, then we may put R1 := max {x0, y0}; for instance, if x0 > y0, then ρ1 = x0 = R1

and ρ2 = y0 ≤ R1. On the other hand, if (11.46) is not true, then because of condition

(H5), there must be a number h > 0 sufficiently large and a point (x1, y1) satisfying

(x1, y1) ∈ [0, θ∗ + h]2 \ [0, ϑ]2 (11.48)

such that g1 (x1, y1) ≥ g1 (x0, y0). In this case, put R1 := max {x1, y1}, with ϑ <

R1 ≤ θ∗ + h. We then have that, say, ρ1 := max {x1, y1} and ρ2 := min {x1, y1}. We

conclude, therefore, that we can always construct a square [0, R1] × [0, R1] with R1

chosen sufficiently large such that either

g1(x, y) ≤ g1 (R1, ρ2) (11.49)
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holds for some 0 ≤ ρ2 ≤ R1 or

g1(x, y) ≤ g1 (ρ1, R1) (11.50)

holds for some 0 ≤ ρ1 ≤ R1, and such that R1 satisfies the inequality

R1 > ϑ. (11.51)

Notice, then, for x, y ≤ R1, it follows that if in (11.44) we have that ρ1 = R1 and

0 ≤ ρ2 ≤ R1, then for all (x, y) ∈ [0, R1]× [0, R1] it holds that

g1(x, y) ≤ g1 (ρ1, ρ2) = g1 (R1, ρ2) ≤ η1 (R1 + ρ2) ≤ 2η1R1, (11.52)

where the second-to-last inequality follows from invoking (3.30), which is valid since

R1 > ϑ, whence R1 + ρ2 ≥ r2. On the other hand, if 0 ≤ ρ1 ≤ R1 and ρ2 = R1 in

(11.33), then inequality (11.52) still holds. Inequality (11.52) is the key observation,

for we observe that if ‖(x, y)‖ = R1, then

g1(x(t), y(t)) ≤ 2η1R1 (11.53)

holds for t ∈ [0, 1]. Since, by assumption, g2(x, y) ≤ g1(x, y) for each x, y ≥ 0, it also

follows that for ‖(x, y)‖ = R1 the inequality

g2(x(t), y(t)) ≤ 2η1R1 (11.54)

holds.

So, let R1 be the number constructed in the previous paragraph. Define the set
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ΩR1 by

ΩR1 := {(x, y) ∈ X : ‖(x, y)‖ < R1} . (11.55)

Then for each (x, y) ∈ K ∩ ∂ΩR1 we find that

‖T1 (x, y) ‖

≤ H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

))
+ λ1

∫ 1

0

G(s, s)a1(s)g1 (x(s), y(s)) ds

≤
∣∣∣H1

(
φ1 (x) + ε1

0x
(
ξ1

0

)
ds+ ε2

0y
(
ξ1

0

))
− κ1

0

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

)) ∣∣∣+ κ1
0

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

))
+ λ1

∫ 1

0

G(s, s)a1(s)g1 (x(s), y(s)) ds

≤ ε1
3‖ (x, y) ‖+ κ1

0

(
φ1 (x) + ε1

0x
(
ξ1

0

)
+ ε2

0y
(
ξ1

0

))
+ λ1

∫ 1

0

G(s, s)a1(s)2η1R1 ds

≤ ε1
3‖ (x, y) ‖+ κ1

0

(
ε1

1‖x‖+ ε1
0‖x‖+ ε2

0‖y‖
)

+ 2η1R1λ1

∫ 1

0

G(s, s)a1(s) ds

≤ ε1
3‖ (x, y) ‖+ κ1

0

(
ε1

0 + ε2
0 + ε1

1

)
‖ (x, y) ‖+ ε1

2R1

=
(
ε1

3 + κ1
0

(
ε1

0 + ε2
0 + ε1

1

)
+ ε1

2

)
‖ (x, y) ‖

<
1

2
‖ (x, y) ‖,

(11.56)

where we have used the fact that

0 ≤ ε1
3 + κ1

0

(
ε1

0 + ε2
0 + ε1

1

)
+ ε1

2 <
1

2
(11.57)

by construction. Similarly, we estimate

‖T2 (x, y) ‖ ≤ 1

2
‖ (x, y) ‖, (11.58)
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for each (x, y) ∈ K∩ ∂ΩR1 . Consequently, from (11.56) and (11.58) we conclude that

‖S (x, y) ‖ ≤ ‖ (x, y) ‖, (11.59)

for each (x, y) ∈ K ∩ ∂ΩR1 .

Putting the preceding part of the proof together, we see that may thus invoke

Lemma 2.13 to deduce the existence of a function

(x0, y0) ∈ K ∩
(
ΩR1 \ Ωr∗∗1

)
(11.60)

such that S (x0, y0) = (x0, y0). The functions x0(t) and y0(t) from (11.60) represent

a positive solution to problem (1.1); in fact, it satisfies the a priori bounds

0 < r∗∗1 ≤ ‖ (x0, y0) ‖ ≤ R1 < +∞. (11.61)

Thus, in particular, we have shown that problem (11.1) has at least one positive

solution. And this completes the proof.

Remark 11.7. Although not explicitly stated in either the statement or the proof of

Theorem 11.6, it is possible to write an explicit formula for the admissible range of

the eigenvalues, λ1 and λ2. In particular, put

α1 :=
1

γ0

inf

{
y ∈ [0,+∞) : g1 (z1, z2) ≥

[∫
E

G (t0, s) a1(s) ds

]−1

,

for all z1 + z2 ∈ [y,+∞)

} (11.62)
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and

α2 :=
1

γ0

inf

{
y ∈ [0,+∞) : g2 (z1, z2) ≥

[∫
E

G (t0, s) a2(s) ds

]−1

,

for all z1 + z2 ∈ [y,+∞)

}
.

(11.63)

Now, define α0 by

α0 :=
1

2γ0

max {α1, α2} . (11.64)

Then it follows that whenever

λ1, λ2 ∈ [α0,+∞) (11.65)

we have that the pair λ1, λ2 is a pair of admissible eigenvalues for problem (11.1). In

particular, (11.62)–(11.63) demonstrate that the range of admissible eigenvalues for

problem (11.1) is explicitly computable.

We next state our second existence theorem, which provides an alternative ap-

proach to problem (11.1). Indeed, as intimated in the introduction to this chapter,

here we give up the assumption that H need not be monotone increasing. In return,

however, we are able to recover an existence theorem for the unperturbed problem

(11.1) – i.e., the case in which ε1
0 = ε2

0 = 0. Moreover, we may still retain the other

upshots of Theorem 11.6 such as the fact that the measures µα1 and µα2 are possibly

signed and that H need only be asymptotically sublinear.

Theorem 11.8. Suppose that conditions (H1)–(H9) hold but with κi0 = 0 for each i

in condition (H4). In addition, assume that each of H1(z) and H2(z) is a monotone

increasing function for all z ≥ 0. Let ε1
0 = ε2

0 = 0. Then problem (11.1) has at least

one positive solution.
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Proof. As in the proof of Theorem 11.6, the operator S is completely continuous and

satisfies S(K) ⊆ K. So, since these facts still hold, we need only show that S has at

least one nontrivial fixed point in K.

To this end, observe that the first part of the proof of Theorem 11.6 may be

repeated verbatim in spite of the fact that ε1
0 = ε2

0 = 0 here. Indeed, this is because

estimate (11.22) was not used in the first part of the proof of Theorem 11.6 but

rather only in the second part. In any case, in the same exact way as in the proof of

Theorem 11.6, we arrive at a number r∗∗1 such that inequality (11.31) holds for each

(x, y) ∈ K∩∂Ωr∗∗1
, provided that the numbers λ1, λ2 are chosen sufficiently large, say

according to (11.65).

We next diverge somewhat with respect to the proof of Theorem 11.6. Indeed,

because each of H1 and H2 is monotone increasing by assumption, by means of as-

sumption (H3) we may estimate both

H1 (φ1(x)) ≤ H1

(
ε1

1‖x‖
)
≤ H1

(
ε1

1‖(x, y)‖
)

(11.66)

and

H2 (φ2(y)) ≤ H2

(
ε2

1‖y‖
)
≤ H2

(
ε2

1‖(x, y)‖
)
, (11.67)

for each each (x, y) ∈ K. Next, as in the proof of Theorem 11.6, we may assume that

inequalities (11.33)–(11.34) hold whenever x+y ≥ r2. Moreover, by assumption (H4)

with κi0 = 0, there is a number r∗2 > 0 sufficiently large such that, for each i,

Hi(z) ≤ z, (11.68)
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provided that z ≥ r∗2. Now, define the number r∗∗2 by

r∗∗2 := max

{
2r∗∗1 , r2,

r∗2
min {ε1

1, ε
2
1}

}
. (11.69)

Note that for ‖(x, y)‖ = r∗∗2 , by means of (11.66) and (11.68) we may thus estimate

H1 (φ1(x)) ≤ H1

(
ε1

1‖(x, y)‖
)

= H1

(
ε1

1r
∗∗
2

)
≤ ε1

1r
∗∗
2 (11.70)

since

ε1
1r
∗∗
2 ≥

ε1
1r
∗
2

min {ε1
1, ε

2
1}
≥ r∗2. (11.71)

Reasoning similarly, we also deduce the estimate

H2 (φ2(y)) ≤ ε2
1r
∗∗
2 (11.72)

whenever ‖(x, y)‖ = r∗∗2 . Finally, we may assume that r∗∗2 is chosen sufficiently large

such that inequality (11.53) and hence inequality (11.54) hold for the number r∗∗2 .

Now, define the set Ωr∗∗2
⊆ X by

Ωr∗∗2
:= {(x, y) ∈ X : ‖(x, y)‖ < r∗∗2 } . (11.73)
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Then, for each (x, y) ∈ K ∩ ∂Ωr∗∗2
, similar to inequality (11.56) we estimate

‖T1(x, y)‖ ≤ H1 (φ1(x)) + λ1

∫ 1

0

G(s, s)a1(s)g1(x(s), y(s)) ds

≤ ε1
1r
∗∗
2 + λ1

∫ 1

0

G(s, s)a1(s)g1(x(s), y(s)) ds

≤ ε1
1r
∗∗
2 + 2η1r

∗∗
2 λ1

∫ 1

0

G(s, s)a1(s) ds

≤ ε1
1r
∗∗
2 + ε1

2r
∗∗
2

=
(
ε1

1 + ε1
2

)
‖(x, y)‖

≤ 1

2
‖(x, y)‖.

(11.74)

In a completely similar manner, we deduce that

‖T2(x, y)‖ ≤ 1

2
‖(x, y)‖, (11.75)

whence

‖S(x, y)‖ ≤ ‖(x, y)‖, (11.76)

for each (x, y) ∈ K ∩ ∂Ωr∗∗2
.

Consequently, we may invoke Lemma 2.13 to deduce the existence of a fixed point

(x0, y0) ∈ K ∩
(
Ωr∗∗2
\ Ωr∗∗1

)
of the operator S. And this completes the proof.

Remark 11.9. We note that inequality (11.74) reveals that the slightly weaker condi-

tion

0 ≤ max
{
ε1

1, ε
2
1

}
<

1

2
(11.77)

may replace the slightly stronger hypothesis (H7) in the statement of Theorem 11.8.

In this way, it is unnecessary to assume that ε1
1 +ε2

1 ∈
[
0, 1

2

)
since as long as inequality

(11.77) holds, we may always choose εi2 > 0 sufficiently small such that εi1+εi2 ∈
(
0, 1

2

]
.
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However, we omit the statement of this slightly more general result.

We conclude with an explicit numerical example, which explicates the use of The-

orem 11.6, together with some final remarks.

Example 11.10. Consider the boundary value problem

x′′(t) = −λ1

(
et − 1

) (√
x+ y + 2

)
y′′(t) = −λ2

(
t2 + 1

)√
x+ y

x(0) = H1

(
φ1(x) +

1

200
x

(
2

5

)
+

1

30
y

(
2

5

))
y(0) = H2

(
φ2(y) +

1

200
x

(
2

5

)
+

1

30
y

(
2

5

))
x(1) = 0 = y(1),

(11.78)

where we make the following declarations.

φ1(x) :=
1

60
x

(
1

3

)
− 1

200
x

(
2

5

)
− 1

120
x

(
3

5

)
+

1

20

∫
[ 1320 ,

3
4 ]
x(s) ds

φ2(y) :=
1

6
y

(
3

10

)
− 1

30
y

(
2

5

)
− 1

15
y

(
11

20

)
+

2

3

∫
[ 35 ,

7
10 ]
y(s) ds

H1(z) := z cos

(
1

z + 1

)
H2(z) := z

1
3 + z

(11.79)

Obviously, each of H1 and H2 satisfies condition (H4) with κ1
0 = κ2

0 = 1. Moreover, it

is clear that each of g1(x, y) :=
√
x+ y+ 2 and g2(x, y) :=

√
x+ y satisfies conditions
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(H5), (H6), and (H9). Incidentally, we remark that if we define α1, α2 : R→ R by

α1(t) :=



0, t < 1
3

1
60

, 1
3
≤ t < 2

5

7
600

, 2
5
≤ t < 3

5

1
300

, 3
5
≤ t < 13

20

t− 97
150

, 13
20
≤ t < 3

4

31
300

, t ≥ 3
4

(11.80)

and

α2(t) :=



0, t < 3
10

1
6
, 3

10
≤ t < 2

5

2
15

, 2
5
≤ t < 11

20

1
15

, 11
20
≤ t < 3

5

t− 8
15

, 3
5
≤ t < 7

10

1
6
, t ≥ 7

10

, (11.81)

then we may write

φ1(x) :=

∫
[0,1]

x(s) dα1(s) and φ2(y) :=

∫
[0,1]

y(s) dα2(s), (11.82)

where the unique Borel measures associated to the Lebesgue-Stieltjes integrals in
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(11.82) are

µα1((−∞, t]) :=
1

60
δ 1

3
((−∞, t])− 1

200
δ 2

5
((−∞, t])

− 1

120
δ 3

5
((−∞, t]) +

1

20
m

(
(−∞, t] ∩

(
13

20
,
3

4

)) (11.83)

and

µα2((−∞, t]) :=
1

6
δ 3

10
((−∞, t])− 1

30
δ 2

5
((−∞, t])

− 1

15
δ 11

20
((−∞, t]) +

2

3
m

(
(−∞, t] ∩

(
3

5
,

7

10

))
,

(11.84)

respectively. Importantly, we observe that each of the measures µα1 and µα2 is signed.

Now, it is easy to check numerically that condition (H8) holds. Furthermore, we

may select ε1
1 := 7

200
here and ε2

1 := 1
3

here; for instance, we observe both that

φ1(x) ≤ 1

60
‖x‖+

1

200
‖x‖+

1

120
‖x‖+

1

20

[
3

4
− 13

20

]
‖x‖ ≤ 7

200
‖x‖ (11.85)

and that

φ2(y) ≤ 1

6
‖y‖+

1

30
‖y‖+

1

15
‖y‖+

2

3

[
7

10
− 3

5

]
‖y‖ ≤ 1

3
‖y‖. (11.86)

Since, in addition, ε1
0 = 1

200
and ε2

0 = 1
30

, it follows that condition (H7) holds, too.

Moreover, we find that

∫
[0,1]

1− t dα1(t) =
87

900
and

∫
[0,1]

1− t dα2(t) =
9

100
. (11.87)

Since the remaining conditions clearly hold, it follows that problem (11.78) has at

least one positive solution. Finally, we remark that problem (11.78) may be recast in
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the form

x′′(t) = −λ1

(
et − 1

) (√
x+ y + 2

)
y′′(t) = −λ2

(
t2 + 1

)√
x+ y

x(0) =

[
ψ1(x) +

1

30
y

(
2

5

)]
cos

(
1

1 + ψ1(x) + 1
30
y
(

2
5

))

y(0) =

[
ψ2(y) +

1

200
x

(
2

5

)] 1
3

+

[
ψ2(y) +

1

200
x

(
2

5

)]
x(1) = 0 = y(1),

(11.88)

if we put

ψ1(x) :=
1

60
x

(
1

3

)
− 1

120
x

(
3

5

)
+

1

20

∫
[ 1320 ,

3
4 ]
x(s) ds (11.89)

and

ψ2(y) :=
1

6
y

(
3

10

)
− 1

15
y

(
11

20

)
+

2

3

∫
[ 35 ,

7
10 ]
y(s) ds (11.90)

Remark 11.11. We note that problem (11.78) could not be addressed by any existing

results in the literature. This is due to several reasons, among which are the following.

Firstly, as (11.83)–(11.84) demonstrate, each of the measures µα1 and µα2 is signed;

contenting ourselves with the papers on systems with nonlocal, nonlinear boundary

conditions, this removes from straightforward modification the results of [65, 66, 90].

Secondly, since

H ′2(z) =
1

3
z−

2
3 + 1, (11.91)

it is clear that there is no β ∈ R satisfying +∞ > β > 0 such that H2(z) ≤ βz,

for all z ≥ 0. Thus, in particular, the results of [65] (and related works) cannot

straightforwardly modified. In summary, the fact that the measures are signed rather

than positive and that H2 does not satisfy uniform linear growth seems to remove

from consideration any simple modification of the existing results in the literature.
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Remark 11.12. We have elected not to give an explicit example of Theorem 11.8.

However, we emphasize that this theorem recovers at least one positive solution to

the unperturbed problem, namely

x′′(t) = −λ1a1(t)g1(x(t), y(t)), t ∈ (0, 1)

y′′(t) = −λ2a2(t)g2(x(t), y(t)), t ∈ (0, 1)

x(0) = H1 (φ1(x))

y(0) = H2 (φ2(y))

x(1) = 0 = y(1).

(11.92)

It ought to be noted that problem (11.92) is very nearly the problem studied by Infante

and Pietramala [65] as well as Yang [90]. Consequently, we have here obtained a direct

generalization and improvement of their results.



249

Bibliography

[1] O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional varia-

tional problems, J. Math. Anal. Appl. 272 (2002), 368–379.

[2] R. Agarwal, M. Meehan, and D. O’Regan, Fixed Point Theory and Applications,

Cambridge University Press, Cambridge, 2001.

[3] R. P. Agarwal, V. Lakshmikantham, and J. J. Nieto, On the concept of solution

for fractional differential equations with uncertainty, Nonlinear Anal. 72 (2009),

2859–2862.

[4] R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives

and fractional integrals, Appl. Math. Lett. 22 (2009), 1816–1820.

[5] D. R. Anderson, Solutions to second-order three-point problems on time scales,

J. Difference Equ. Appl. 8 (2002), 673–688.

[6] D. R. Anderson and J. Hoffacker, A stacked delta-nabla self-adjoint problem of

even order, Math. Comput. Modelling 38 (2003), 481–494.

[7] D. R. Anderson and R. I. Avery, An even-order three-point boundary value prob-

lem on time scales, J. Math. Anal. Appl. 291 (2004), 514–525.

[8] D. R. Anderson and J. Hoffacker, Even order self adjoint time scale problems,

Electron. J. Differential Equations (2005), no. 24, 9 pp.



250

[9] D. R. Anderson and C. C. Tisdell, Third-order nonlocal problems with sign-

changing nonlinearity on time scales, Electron. J. Differential Equations (19)

(2007), pp. 1–12.

[10] D. R. Anderson, Existence of solutions for first-order multi-point problems with

changing-sign nonlinearity, J. Difference Equ. Appl. 14 (2008), 657–666.

[11] D. R. Anderson, C. Zhai, Positive solutions to semi-positone second-order three-

point problems on time scales, Appl. Math. Comput. 215 (2010), 3713–3720.

[12] D. R. Anderson and J. Hoffacker, Existence of solutions for a cantilever beam

problem, J. Math. Anal. Appl. 323 (2006), 958–973.

[13] A. Arara, et al., Fractional order differential equations on an unbounded domain,

Nonlinear Anal. 72 (2010), 580–586.

[14] F. M. Atici and G. Guseinov, On Green’s functions and positive solutions for

boundary value problems on time scales, J. Comput. Appl. Math. 141 (2002),

75–99.

[15] F. M. Atici and P. W. Eloe, Fractional q-calculus on a time scale, J. Nonlinear

Mathematical Physics, 14 (2007), 333–344.

[16] F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus,

Int. J. of Difference Equ., 2 (2007), 165–176.

[17] F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus,

Proc. Amer. Math. Soc., 137 (2009), 981–989.

[18] F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator,

Electron. J. Qual. Theory Differ. Equ. (Spec. Ed. I) 3 (2009), 1–12.



251
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