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Length scales of interactions in magnetic, dielectric, and mechanical 
nanocom posites 
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/Jepartment q/Physics and Astronomy and Center/or Materials Research and Analysis, 
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'Department a/Electrical Engineering, Universitya(Nebraska, Lincoln, Nebraska 

ABSTRACT 

It is investigated how figures of merits of nanocomposites are affected by structural 
and interaction length scales, Aside from macroscopic effects without characteristic 
lengths scales and atomic-scale quantum-mechanical interactions there are nanoscale 
interactions that reflect a competition between different energy contributions. We 
consider three systems, namely dielectric media, carbon-black reinforced rubbers and 
magnetic composites. In all cases, it is relatively easy to determine effective materials 
constants, which do not involve specific length scales. Nucleation and breakdown 
phenomena tend to occur on a nanoscale and yield a logarithmic dependence of figures of 
merit on the macroscopic system size. Essential system-specific differences arise because 
figures of merits are generally nonlinear energy integrals. Furthermore, different physical 
interactions yield different length scales. For example, the interaction in magnetic hard­
soft composites reflects the competition between relativistic anisotropy and 
nonrelativistic exchange interactions, but such hierarchies of interactions are more 
difficult to establish in mechanical polymer composites and dielectrics. 

Keywords: Maxwell-Garnett equation, Bruggeman composites; Dielectric Energy 
Density; Breakdown; Fracture; Polymers; Rubber; Nanocomposites; Coercivity; Energy 
Product 

INTRODUCTION 

Nanocomposites are widely used in technology, because they combine the 
advantages of single-phase materials and range from naturally occurring biological 
structures and traditional materials to artificial materials used in transport, space, 
microelectronic, and other high-tech applications. Examples are naturally occurring 
skeletal materials, such as bones and wood, whose nanostructure ensures stiffness 
without brittleness, and in artificial mechanical materials, such as concrete, fiber com­
posites, reinforced polymers for car tires to [I, 2, 3]. In magnetism, aligned two-phase 
permanent magnets have been predicted to yield energy products beyond those of single­
phase rare-earth permanent magnets [4]. Many multiferroic and multifunctional materials 
are also structured as two-phase composites. Some of these structures are straighforward 
mixtures, but many exhibit macroscopic or nanoscale interactions between the phases. 
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Examples are magnet-polymer composites, which have been investigated in the light of 
future 1pplications such as materials with negative index of refraction [5, 6, 7]. 

A traditional approach to composite materials is the description in terms of effective 
materials constants. Some mixtures of materials obey mixing rules of the type 

(1) 

where Ai and Am are the materials constants of the matrix and inclusion phases, 
respectively, and f is the volume fraction of the inclusion phase. However, Eq. (I) is 
limited to noninteracting mixtures and to interacting phases where Ai ;::; Am. Consider, for 
example, the resistivity of insulating oxide particles (Pi = 00) in a metallic matrix of finite 
resistivity pm. For arbitrarily small but nonzero volume fractions f, Eq. (1) then leads to 
the unphysical prediction of an infinite resistivity peff = 00 (Aeff = 00). Similar violations of 
the mixing rule exist in other systems. For instance, dielectric and magnetic suscepti­
bilities rarely obey Eq. (I). 

For small volume fractions, the unphysical divergences are removed by using the 
generalized Maxwell-Garnett equation 

( 
Ai -Am J 

Aeff = Am 1+ f g Ai + (I - g) A.J (2) 

This equation contains a shape parameter g, which can derived for specific systems by 
explicit single-inclusion calculations. Examples are dielectrics [8], magnets [9, 10], 
conductors [10], and mechanical composites [2, II, 12]. In many but not all cases (see 
below), the shape factor is equal to the inclusion's depolarizing factor, g = N. In 
particular, N = 1/3 for spheres, N = 0 for strongly elongated ellipsoids (rods or needles) 
and N = I for oblate or flat ellipsoids (platelets). Figure I shows the geometry of typical 
composites. Most of these structures can be prepared by traditional methods, but some 
need new approaches, such as glancing-angle deposition (GLAD) onto rotating substrates 
in the case of magnetic nanospirals [13]. The extension to arbitrary volume fractions is 
generally nontrivial, but there exists a powerful effective-medium approach known as the 
Bruggeman theory [I], which covers arbitrary volume fractions and percolation phe­
nomena on a mean-field level (see next section). 

The question arises how nanoscale interactions affect the performance of composite 
materials and whether the underlying physics exhibits universal tendencies across 
systems and phenomena. This question has three important ramifications. First, figures of 
merit such as the electrostatic energy density stored in dielectrics, the energy product of 
permanent magnets and the energy dissipated in viscoelastic composites, are integrals 
over nonlinear functions, and different figures of merit may be differently affected by 
nanoscale inhomogeneities. Second, effective materials constants are only one aspect of 
the performance of composites. Phenomena such as dielectric breakdown, coercivity, and 
mechanical fracture usually involve nanoscale materials imperfections and are poorly 
described by effective medium theories [4, 9, 14]. Third, nanoscale interactions directly 
modifY the materials constants when the structural features size becomes comparable to 
the nanoscale interaction lengths. The purpose of this paper is to analyze how these 
mechanisms operate in nanostructures, comparing various systems and elaborating simi­
larities and differences. 
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(a) (b) (e) 

(d) 

Fig.!. Geometry and depolarization factors for some two-phase nanostructures: (a) rods (N = 0), 
(b) platelets (N = I), (c) spheres (N = 1/3), (d) prolate ellipsoids (N < 1/3), (e) oblate 
ellipsoids (N) 1/3), and (t) nanospirals. 

SCIENTIFIC BACKGROUND: BRUGGEMAN MODEL 

The Bruggeman approach is a length-scale-free and selfconsistent mean-field 
method to calculate materials properties of composites [I, 15]. The idea is to start from 
the Maxwell-Garnett equation (I) and to treat arbitrary volume fractions f by 
selfconsistently embedding the matrix and inclusion phases in an effective medium. It is 
also known as the Polder-van Santen formula, self-consistent field theory (SCF) or 
simply effective medium theory [16, 17]. In solid state physics, the Bruggeman theory is 
closely related to the coherent-potential approximation (CPA) for binary alloys [IS, 19, 
20]. 

The theory was originally derived for dielectric materials but can be used for a broad 
variety of static and dynamic phenomena. Examples are effective dielectric suscep­
tibilities (static and dynamic dielectric response of inhomogeneous media, materials with 
negative index of refraction) [10, 21], effective magnetic permeability [4, 10, 22, 23], 
optical properties [S, 21], mechanical composites (elasticity of reinforced construction 
materials and filled polymers, such as car tires) [12, 20, 23, 24], geoscience [17], 
rheology (viscosity and viscoelasticity of colloidal suspensions, such as blood, food, gels) 
[25], electrical conduction (insulating inclusions in metals and metal-superconductor 
composites) [10, 26, 27], thermal conduction (heat insulation using composite con­
struction materials) [10], and diffusivity (hydrogen transport) [10]. In general, both 
isotropic and anisotropic composites can be treated [26, 23, 2S, 29]. 

The starting point is a generalized potential <1>( r) whose negative gradient is the 
(generalized) field, f = - V'<I>. For example, the electric field in a static dielectric can be 
written as E = - V'<I>. The field creates a generalized flux density b, and this flux density 
is described by the materials equation b = A f, where A is a generalized materials constant 
(compliance). In the dielectric analogy, this is the electric permeability. The flux is 
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usually fed into the system by applying an extemal force or field but has no sources 
inside the material, so that Vb = O. This yields the flux-conservation relation 

V'(A(r)V<t» = 0 (3) 

In any single-phase region of the composite, this reduces to V2<t> = 0, accompanied by 
appropriate boundary conditions. This equation does not contain any characteristic 
length, so that is can be used for macroscopic, micron-size and nanoscale inclusions. The 
respective parallel and perpendicular components of the force f and of the flux density b, 
are continuous at interfaces, and far away from the inclusion, the field f = -V<t>(r) is 
homogeneous. The solution ofEq. (3) yields the Maxwell-Garnett equation [2, 10, 12, 15, 
23,24]. 

In contrast to Eq. (2), which is limited to small volume fractions f, the Bruggeman 
approach describes arbitrary f on a mean-field level. This is achieved by selfconsistently 
embedding both phases in an effective medium averaging over the total volume. The 
procedure yields 

Ai-Aeff 1 Am-Aeff - 0 
f g Ai + (I - g) Aeff + ( - f> gAm + (1 - g) Aeff - (4) 

which is basically a quadratic equation for Aeff. Aside from the input parameters Am, Ai, 
and f, Eq. (3) contains a single parameter, namely the shape constant g. This parameter 
depends on the considered physical property and on the geometry of the composites. 
Many electromagnetic and transport systems belong to the first group, where g = N. In 
particular, g = 0 for long needles, g = 1/3 for spherical inclusions, and g = I for 
multilayers of embedded plates [23, 30]. In mechanical composites, g '* N depends on 
Poisson's ratio and on the considered elastic modulus, because Eq. (3) must be modified 
[2, 23]. 

Equation (4) yields a percolation transition with a dimensionality-independent 
mean-field exponent y = I [19]. For example, metallic regions in an insulator do not 
affect the resistivity until the metallic volume fraction reaches the percolation thresholdfc 
= 1/3. By putting Ai = 0 and investigating the transition Aeff ~ 0 we obtain a thresholdfc 
= I - g, whereas Ai = 00 and Aeff ~ 00 yields f = g. The metal-insulator percolation 
threshold fc = g is obtained by considering the effect of insulating inclusions (a = 00) in a 
metallic matrix (a = am), which yield volume fractions of I - g = 2/3 for the insulating 
phase and g = 1/3 for the metallic phase. The conductivity of superconducting spheres in 
a normal conductor is of the type Ai = 00 and yields percolation atf= 1/3. More generally, 
the switching between inverse quantities, such as resistivity p and conductivity a = 1/p, is 
realized by the transformation g ~ 1- gin Eqs. (2) and (4). The mean-field character of 
Bruggeman percolation means that fluctuations are treated in a very crude way, on the 
level ofOrnstein-Zernike correlation functions with the critical exponent v = 1/2 [23, 31]. 
This leads to inaccuracies in the predictions for Aeff near the percolation threshold. 

The applicability of the Bruggeman theory to stationary transport processes, such as 
electrical conduction, thermal conduction, and diffusion, may be shown in two alternative 
ways. The first derivation exploits that conductivity and diffusion (A) involve generalized 
forces V<t> that have the character of concentration, potential, or temperature gradients. 
The flux density j is conserved, V·j = 0, and obeys Fick's law, for example j = - D Vc for 
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. . This yields Eq. (3) in the fonn V"(D(r)V'c) = 0 and leads to g=N. A second 
dIfTus·ton~ is based on Maxwell's equation V'xH = j + aDlat, which shows that the time 
den va 10 . d" I h . tive of the displacement IS a current enslty, m ana ogy to t e current necessary to 
~cnva a capacitor. Application of E(t) = Eo exp(ioot) in combination with D = e E and 
~~rg~ yieldS the complex pennittivity e* = e - iO'/oo. This makes it possible to treat static 
! -d ~tationary phenomena on a common footing, by considering complex quantities such 
~Hl - . II 

·~f·=~+lli. . 
,. A somewhat less well-known ~ppr~ach IS the use of the Bruggeman theory for 
"'t!cil(/I1ica/ composites. T~ere IS a nch hterature on small volu.me fractIOns [2, 32, 33], 
,;nd Irue Bruggeman equatIOns. have later been obtamed for varIOUS elastIc, VISCOUS, and 

'. oelastic materials [20). It IS mstructlve to extract generahzed shape constants g for 
~;~~hanical composi.tes. For spherical inclusions, the shear modulus G and the bulk 
modulus K are descnbed by 

2(4-5 vo) 
g = 15 (1 - vo) 

(5a) and 
I + v 0 

g= 
3 (1 - v 0) 

(5b) 

r~spcctively. In both equations, is Poisson's ratio of the matrix. Taking typical solids with 
V0 = 0.35 yields g = 0.46 for G and g = 0.69 for K. Incompressible materials (rubbers) 
have Vo = 112, that is, g = 2/5 for G and g = I for K. 

The shear stress in a viscoelastic material contains an elastic component 0' = G e and 
a viscous component 0' = 11 de/dt, and the complex shear modulus G* = G + iOO11 [2, 27]. 
When the material as incompressible, then both the viscosity and shear modulus exhibit g 
= 2/5. The corresponding Maxwell-Garnett relation, 11 = 110(1 + 2.5 j), was first derived 
hy Einstein [2, 32, 33], but g = 2/5 is easily derived by putting Vo ~ 112 in Eq. 5(a). 
h;compressibility is realized in ordinary liquids, which are largely imcompressible by 
nature, and in elastic (and viscoelastic) rubbers, where K » G and Vo ~ 112 [II). In a very 
good approximation, this limit is realized for carbon-reinforced rubber composites, as 
used in car tires [II, 34). Since g = 2/5, percolation is predicted when the volume fraction 
of rigid spheres reaches 40%. This is close to the experimental value of about 49% [2). 

NONLINEAR AND LOCAL ENERGY AND ENTROPY 
EFFECTS 

A counterintuitive feature of many composites is that an improvement of materials 
constants may actually lead to a deterioration of figures of merit. The first example 
comes from permanent magnetism, where a increased fraction ofrare-earth atoms may be 
used to improve the coercivity (magnetic hardness) He of the material but deteriorates the 
energy product by reducing the magnetization. In more detail, He scales as 2K.IMs and 
can be made arbitrarily large by choosing materials with a small Ms. However, the energy 
product of a pennanent magnet does not exceed Ms2/4, so that this coercivity increase is 
not an option. The second example is metallic inclusions in dielectrics, which enhance 
the permittivity but tend to reduce the breakdown field and the electrostatic-energy 
density in a capacitor made from the composite material [17, 21, 35, 36, 37). Elastic 
moduli are important for construction materials, but very often the main considerations 
are mechanical toughness and fraction behavior [38). 
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This deterioration of figures of merit of composites violates effective-medium 
theory, which predicts materials constant Aeff intermediate between Am and Ai. There are 
two reasons for this effect, namely nonlinear and local mechanisms. First, the underlying 
materials equations are nonlinear, characterized by field-dependent materials constants. 
Even in materials with linear equations of state, figures of merits often have the character 
of energy densities rather materials constants, which introduces nonlinearity. Compared 
to the determination of effective materials constants, whose physics largely reduces to the 
determination of a single parameter (g), the nonlinearity yields an essential differentiation 
between different systems, not only between different classes of materials but also 
between different figures of merit for a single class of materials. The reason is that there 
are usually many ways of constructing energy functions from materials constants. For 
example, losses in soft-magnetic materials are described by the area of the M-H 
hysteresis loop, whereas the energy product of permanent magnets is equal to the largest 
rectangle fitting under the B-H loop in the 2nd quadrant of the magnetization curve, 
where B = M + H [22]. In dielectric materials, the electrostatic energy W= f 11 dV, where 
11 is the electrostatic energy density. In the linear regime, 11 = f E dD yields 11 = Y2 eo lOr 

Ema,2, but D is in general a nonlinear function of the field, which affects 11 [26,33,39]. In 
practice, the saturation polarization puts an upper limit to 11, and E is limited by the 
breakdown field. For example, an external electric field may rotate or align nearly free 
dipoles, but the energy stored by this mechanism is very low. 

Second, the Bruggeman theory is a mean-field approach, considering inclusions in 
an average environment and unable to account for long-rangejluctuations. For example, 
electric breakdown may be realized via a percolating backbone, where the creation of a 
single percolation bond initiates the collapse of the electric field. The Bruggeman theory 
is poorly equipped to handle this scenario and yields, for example, incorrect critical 
exponents. Fluctuations often determine the main figures of merit of materials. For 
example, mechanical fracture tends to start at cracks [14], the dielectric storage capacity 
is limited by the maximum local electric field [35] (as contrasted to the average field), 
and the coercivity of permanent magnets is determined by the local rather than average 
anisotropy [9, 22]. In fact, the dielectric contrast caused by the embedding of a single 
high-e particle in a low-e matrix is known to shift field strength and energy density from 
the particles into the matrix and to substantially reduce the breakdown field. The effect 
depends on geometrical factors such as surface curvature of the particle surface [35]. 

Materials-specific breakdown, fracture, and coercivity mechanisms often yield a 
logarithmic dependence of materials constants and figures of merit on the system size L. 
Figures of merit describing the failure of dielectric and mechanical materials are often a 
power of I/ln(L), and a similar size dependence is encountered in permanent magnets 
[14, 22]. In the former case, the cracks responsible for mechanical failure may be 
modeled as ellipsoidal inclusions, which assimilates the mechanical problem to the 
dielectric problem [14]. The latter case may be understood by considering defect­
containing models hard-magnetic particles in bonded or sintered magnets [22]. 

NANOSCALE EFFECTS 

Breakdown phenomena are often realized on a nanoscale or even atomic scale [14], 
as epitomized by the mean free path of the electrons that realize the breakdown 
(scattering or capturing of electrons). A different question is the effective interaction 
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I th 11K in dielectrics. Aside from affecting the break-down field, interactions may 
~ng yield a direct modification of materials constants if the inclusion size become 
a so parable to the interaction range. The Bruggeman theory is unable to distinguish 
~o::~een macroscopic and nanoscale effects, because the partial differential equation 
V\p = 0 does not involve a characteristic length. Nanoscale effects would require 

(6) 

'here 11K can be interpreted as a screening length [4, 25, 40]. This screening length 
:\'flect the competition between difterent local and non-local energy contributions and is 
;~metimes of the order of a few nanometers. It has far-reaching consequences for the 
understanding of advanced mechanical and electromagnetic composites, because the 
inclusion size tends to interfere with the length scale of the interaction. 

(a) (e) 

Fig. 2. Range of interaction effects: (a) atomic, (b) nanoscale, and (c) macroscopic. 

Magnetic Composites 

The magnetic permeability of some soft-magnetic composites is described by Eq. 
(4), but in general the finite saturation magnetization puts a limit to the applicability of 
the Bruggeman theory. Hard-soft nanocomposites magnets for permanent-magnet appli­
cations, which have been investigated quite intensively [4, 9,22,41], exhibit nontrivial 
nanoscale interactions. In these materials, the energy product is determined by the 
coercivity, which is, in a crude nucleation-field approximation [4, 9], obtained as the 
lowest-lying H eigenvalue of 

(7) 

Here A is the exchange stiffness and K, is the first uniaxial anisotropy constant. Equation 
(7) has the structure of Eq. (6), and both coercivity and energy product depend on the size 
of the hard and soft regions, as described by the local anisotropy K,(r). The cor­
responding interaction length is 

K 
(8) 
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This means that g is a function of the radius of the hard inclusions rather than a constant. 
Physically, the hard-magnetic spheres create an 'interaction cloud' of a exchange-coupled 
soft-magnetic material. 

The length 11K is essentially equal to the domain-wall width of the hard phase. In 
practice, it reaches several nanometers, in spite of the atomic origin of the two parameters 
A and K,(r). The reason is the relativistic smallness of K, [9, 42], meaning that 11K 
describes a competition between Heisenberg exchange, which is characterized by Curie 
temperatures of several 100 K, and magnetoerystalline anisotropy, which corresponds to 
energy equivalents of I K or less [23]. Consequently, magnetic domain walls are quite 
broad, from about 20 interatomic distances (5 nm) for very hard materials to more than 
1000 interatomic distances in soft magnets. This length scale also determines the spin 
structure in nanospirals, Fig. I(t). Note that the ferromagnetic (and ferroelectric) domain­
wall width must not be confused with the actual domain size, which may be much larger. 

The nanoscale range of the coupling is limited to the coercivity. Equations such as 
(7) cannot be used, for example, to determine effective Curie temperatures Te. As 
analyzed elsewhere [23, 43], Curie temperatures differing by more than a few K mean 
that the phase with the lower Tc slightly polarizes the phase with the higher Te, but the 
corresponding decay length is only a few interatomic distances. In a strict sense, the 
residual coupling is a thermodynamically equivalent to a ferromagnetic phase transition 
with a relatively high Te, but for any practical purposes the Curie-temperature behavior is 
two-phase like. 

Mechanical Composites 

There is a wide range of mechanical composites, but our focus is on a specific case, 
namely reinforced rubbers, as used for car tires. The reinforcement is caused by small 
silica or carbon-black particles, and it is well-known that the use of nanoparticles 
drastically improves mechanical properties such as modulus and toughness. For 'ideal' or 
'phantom' polymer networks, the shear modulus Is Go ~ nkBT, where n is the cross-link 
density, and Young's modulus is three times as large. For large particles, one can use the 
Einstein formula, G = Go (I + 2.5 f), which corresponds to Eq. (5) with g = 2/5. 

High-performance fillers have particle radii of about 10 nm, which is comparable to 
the average end-to-end distance RN - N"2 of the polymer chains [II, 34]. In other words, 
the average cross-link distance, which determines nand G, becomes comparable to the 
radius of the carbon or silica nanoparticles and leads to a complicated chain behavior in 
filled rubber [44, 45]. Figure 3 illustrates some of these chain configurations. Since the 
surface of the particle creates additional crosslinks, there is an additional 'Bueche' 
contribution proportional to the number of chains that touch a particle, which enhances G 
[34] and means that g becomes a function of RNIR. However, Go ~ nkBT derives from the 
entropy reduction of the chains as the end-to-end distance increases under strain. Some 
chains, such as C in Fig. 3( a), do not exhibit a change in the end-to-end distance, so that 
their zeroth-order contribution to Go vanishes. This effect is also governed by the ratio 
RNIR but qualitatively different from an enhanced cross-link density. 
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Fig. 3. 

(a) (b) 

Rubber reinforcement due to nanoparticles: (a) types of chains (A: phantom chain, B: 
extra crosslink, C: dead chain) and (b) behavior of the chain under strain. The toughness 
enhancement probably reflects the release of excessive strain due to particle motion and 
rotation (b). 

Dielectric Composites 

A key materials constant for dielectrics is the permittivity E, as it appears in the 
electric energy density w = Y2 E £2 Since composites have materials constants 
intermediate between the materials constants of the individual phases, it is tempting to 
use composites where E is enhanced by embedding inclusions that have a high E, such as 
Ti02 [25, 46]. In fact, metallic [35, 36] particles have an infinite permittivity und are 
ideally suited for E-enhancement. The dielectric constant can be enhanced by embedding 
highly permittive particles in a matrix or using structures such as metallic grains 
separated by non-metallic grain boundaries [37]. In former years, it was difficult to create 
nanoparticles of very small sizes, which has lead to problems such as eddy currents in 
metallic inclusions, but a recent development is that nanoparticles can now be produced 
on length scales of 5 nm or less [47], as compared to the submicron particles used in 
earlier research. However, as discussed above, the positive effect on E is typically 
overcompensated by the reduction in break-down field. 

An interesting question is how nanoscale phenomena affect dielectric composites 
and whether nanostructuring can be used improve the dielectric energy density. Gradient 
expressions similar to the exchange-stiffness term of Eq. (7) can be added to a Landau­
type potential energies for dielectric polymers, but the question is the range of the 
exchange interaction. An exchange length of a few nanometers has recently been used to 
discuss core-shell particles in a polymeric matrix [25, 48], but the interaction range 11K is 
treated as an adjustable phenomenological parameter. Mindlin [49] considered the 
polarization gradient in the stored energy function of elastic dielectrics, but the 
interaction range is usually rather small, only a few A in typical dielectric materials. In 
fact, Askar et al. [50] used a long-wavelength approximation to calculate an interaction 
length of about 11K - 0.2 nm for some ionic compounds, without indication that other 
materials might exhibit robust interactions on a much larger length scale. 

In magnetism, the exchange length reflects the relativistic competition between 
anisotropy energy Ea per atom and the Heisenberg exchange J, and this leads to a 
physically well-based hierarchy in terms of Sommerfeld's fine structure constant, £JJ -
(1/137i [42]. In dielectric materials, there is no comparable hierarchy. The interface acts 
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as a perturbation and locally changes the polarization of the adjacent phases, but the extra 
polarization costs energy and decreases quite rapidly with increasing distance from the 
interface. In fact, cohesive and dielectric energies are of comparable orders of magnitude, 
as epitomized by typical ferroelectric Curie and melting temperatures, respectively. 

Figure 4 illustrates how nanoscale interactions may be realized in dielectrics. The 
model assumes dipoles separated by a segment length a and having a polarization Pi(X) = 

Po cos(6i), subjected to an electric field that points in the z direction. The dipoles can 
freely rotate in the y-= plane, but there is a coupling - K COS(6i - 6j) between neighboring 
dipoles. The free chain (a) gets easily polarized by the electric field (high e but low 
energy density w - Ue), whereas the coupled chain (b) can store a relatively large energy 
associated with the torque interaction constant K. The permittivity and energy density 
depend on the interaction length L - a -JKIPoE and on the particle spacing, and by 
adjusting the latter, one can optimize the performance of the structure. 

In a few cases, electric interactions may be long range, with a Urm power-law 
distance dependence of the interaction strength. One example is the switching of the 
magnetization in insulating multiferroic composites that contain dielectric and rare-earth 
magnet regions [23, 51]. Here the electric dipoles create a crystal-field contribution that 
scales as 1/,.4 and interacts with the electric quadrupole moment of the tripositive rare­
earth ions. Due to the rigid spin-orbit coupling of the rare earths, this can be used to 
switch the magnetization direction. 

1·111111· 
(a) 

·l····l\~~~oB/'I·I~ 
r- L "I m 

(b) 

Fig. 4. Nanoscale interaction effects in a dielectric polymer model: (a) free chain and (b) chain 
adsorbed to a nanoparticle (right). 

DISCUSSION AND CONCLUSIONS 

In summary, we have investigated how different magnetic, mechanical and dielectric 
properties are affected by nanostructuring. Length-scale independent effective-field 
theories, whose physics is contained in a single shape parameter g, yield reasonable 
volume-averaged materials parameters and even provide a qualitative description of 
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ercolation phenomen~. H?wever, physical figures of merit ten? to have the c~ara~ter of 
P ergy densities, which Introduces a considerable complexity and diverSity In the 
~~scription of composite ma~erials. Examples a~e the dependence of the dielectric energy 
n the permittivity of the oXide or metal inclusIOns and the energy-product enhancement 

on magnetic two-phase nanocomposites. A further complication is due to nanoscale 
I henomena, which affects coercivity, break-down, and fracture, and often lead to a 
fogarithmiC dependence of figures of merit on the macroscopic size of the considered 
body. Nanoscale interaction lengths are materials- and property-specific, as contrasted to 
the length-scale independent character of effective-field theories. 
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