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Projected Hartree product wavefunctions. VI. Natural orbital CI expansions in
nonsinglet cases*®

R. D. Koller{ and G. A. Gallup
-Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68508
(Received 7 July 1971)

The NSO’s and NO’s have been determined for some wavefunctions for Li, Belt, B2+, C#+ 2§, and Be 3S
wavefunctions containing radial correlation. It is shown how the NO’s may be utilized to form rapidly
converging CI expansions in general. The role of the NSO’s in this problem is discussed.

I. INTRODUCTION

As was shown by Wigner! in his pioneering work on
spin and the symmetric groups, a general form for an
antisymmetric, eigenfunction of the total spin is

f a
VEIDRUR: AUT RSN

va=]

(1)

where the 6, are eigenfunctions of S?, the &, are
functions of the spatial coordinates, and as the notation
indicates the ®; and 6; belong to conjugate irreducible
representations of S,. As has been emphasized by
Gallup,? the calculation of the expectation value of the

Tasre I. Principal quantum numbers and optimized scale
factors for three-electron atoms.

N L Li Bet B (O

1 0 4.57876  6.03010 7.59536  9.10996
2 0 4.13290 5.48961 6.99861 8.08749
1 0 2.71256  3.50957 4.46902 5.40385
2 0 2.12398  2.81384  3.58805 4.30654
1 0 0.83048 1.01105 1.28124 1.60147
2 0 0.62456  0.86181 1.06087 1.32123
2 0 0.27028  0.21496  0.25000  0.30531
3 0 0.31405  0.11000  0.13500  0.16350

energy corresponding to the state of Eq. (1) for spin-
free Hamiltonian can be obtained from @™ (or any
other) alone, viz.,

E=Q | H| )/ @)= @N | H| M)/ (@1 | $H),
| )

The function &M can be obtained from a function of
arbitrary symmetry with the use of Young operators?
based upon the appropriate Young tableau for the spin
state desired.

There are a number of ways in which a trial <I>1li1 =M
may be constructed, for example, by the use of a single
Hartree product of arbitrary.orbitals or again by using
a CI expansion. The single Hartree product form is
equivalent to the more conventional DODS procedure*
using Slater determinants and spin projection operators.
A recent article® discusses calculations of radial correla-

tion in the projected Hartree product (PHP) form for
some Li-like atoms. It is interesting to examine the
natural orbital expansion of these PHP functions, par-
ticularly for comparison with other forms.of trial func-
tions.

There has not been a large number of calculations of
natural orbitals for nonsinglet cases (see however
Ref. 6), apparently because there is no obvious way to
use natural spin orbitals (NSO) in such cases for the
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Fre. 1. Radial distribution functions for the PHP orbitals.

conventional CI expansions. In fact, Edmiston’ has
used NSO’s calculated for a singlet case to expand the
doublet case for H;. In addition to the calculations of
the natural orbitals for 25 Li and S Be, we examine the
problem of expansion of wavefunctions in terms of con-
figurations based on spinless, natural orbitals (NO),
and it will be shown that these functions are appro-
priate for any multiplicity.

II. FIRST-ORDER DENSITY MATRIX

The PHP functions for Li, Bet, B*, and C* have
been given in Ref. 5 and have been further refined with
respect to optimization of the exponential scale factors.
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Tasie II. Orbital coefficients, v’s, and energies for three-electron atoms.

Li Be*

a b c a b ¢
0.546076E—1 0.959160E 0 —0.892331E 0 —0.216945E 0 —0.830806E O 0.691270E 0
0.448180E—1 0.684433E 0 —0.798115E 0 —0.168359E 0 —0.544167E 0 0.598058E 0

—0.129630E 0 —0.728074E 0 0.263002E 1 0.336723E O 0.444020E 0 —0.231557E 1
0.151448E 0 0.379203E 0 —0.202229E 0 —0.673658E 0 —0.259998E 0 0.219047E 0
—0.151463E 0 —0.194764E O 0.156404E 0 0.130767E 1 0.960082E —1 —0.930883E 1
—0.104344E 1 0.115490E 0 —0.947139E—1 0.203651E 0O —0.337216E—1 0.327499E—1
0.325630E 0 ~—0.156656E 0 0.129752E 0 —0.143508E—1 —0.317583E—2 —0.307621E-2
—0.241238E 0 0.118396E 0 —0.981129E—1 0.495478E—2 —0.117580E—2 0.113826E—2
E=-7.44746 E=—14.2910
n=0.433727 7=0.437428
~v2=0.427901 v2=0.428757
Bt Cs+

a b ¢ a b c
0.153546E O 0.729323E 0 —0.575990E 0 0.104066E 0 0.976105E 0 —0.811385E 0
0.114188E 0 0.457821E 0 —0.479302E 0 0.882314E—1 0.719240E © —0.720058E 0
—0.156739E 0 —0.244581E 0 0.209658E 1 —0.144313E—1 —0.780091E 0 0.261406E 1
0.691302E 0 0.215019E 0 —0.202551E 0 0.672323E 0 0.331917E 0O —0.333514E 0
—0.160517E 1 —0.752324E—1 0.765870E—1 —0.171653E 1 —0.127402E 0 0.130135E ©
0.531100E~—1 0.265402E—1 —0.268409E—1 0.127449E 0 0.416641E—1 —0.422992E—1
0.240497E—2 —0.226058E—2 0.230751E—2 —0.246855E—2 —0.377695E—2 0.380594E—2
—0.100549E —2 0.911791E-3 —0.931221E—3 0.863676E—3 0.147580E—2 —0.149070E—2

E=-—23,3895 E=-34.7394
7 =0.440066 7 =0.441446
v2=0.430461 v2=0.431635

where NPN is the Young operator for the partition
[2, 1].8 Knowledge of @21 alone does not constitute
knowledge of the complete wavefunction, ¥, but group
theoretic methods have been given® to deal with opera-
tors containing spin, and hence the two spin components
of the first-order density matrix for ¢ may be deter-

The results are given in Tables I and II. The orbitals
for Be(®S) are given in Table ITI. The Li orbitals are
shown in graphical form in Fig. 1, and the notation of
Ref. 5 is followed here. The expression for ®21 is

Pr1=NPN[71a(1)5(2)c(3) +7.a(1)c(2)6(3)] (3)

TasLE III. Optimizéd scale factors, orbital coefficients, v’s, and energy for Be(3S).

Coeff

N L a b ¢ d
i 0 4. 50000 ~0.210647E 0 —0.408753E 0 0.108143E 1 —0.121185E 0
2 0 4.10000 —0.763125E—1 —0.247043E 0 0.977677E—1 —0.138777E 0
i 0 2.65000 0.462648E 0 0.698943E 0 —0.220156E 0 0.142638E 1
2 0 2.10000 0.168990E 0 —0.472396E 0 0.122546E 0 —0.344826E 0
1 0 0.75000 —0.138298E 1 0.189966E 0 —0.572733E—1 0.135193E 0
2 0 0. 60000 0.158574E 0 —0.732732E 0 0.206576E—1 —0.476171E—1
2 0 0.20000 —0.869251E—1 —0.426214E 0 —0.315139E—2 0.713187E—2
3 0 0. 10000 0.210664E —1 0.936589E—1 0.980246E—3 —0.219727E-2

E=—14.38547

7 =1.004124

v2=0.099671

v3=0.000295
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TasLE IV. a-NSQ’s, 8-NSO’s, and NO’s for Li.

Li
Occupation
Orbital a b c number
Alpha NSO’s
1 0.9988806E 0 —0.2489709E—2 —0.3332037E—2 0.9999994E 0
2 0.1950990E 0 0.5198426E 0 0.5168829E 0 0.9986252E 0
3 0.2590280E 0 —0.2686117E 1 0.2735792E 1 0.1375410E—2
Beta NSO’s
1 0.1050191E 1 —0.5793509E 0 0.7788625E 0 0.6479118E—2
2 —0.2193605E—3 0.5034716E 0 0.5150992E 0 0.9986246E 0
3 —0.4453013E—2 —0.2616088E 1 0.2622934E 1 0.1374762E—2
NO’s
1 0.1017668E 1 0.9869179E —1 0.9548502E—1 0.1000036E 1
2 0.8271391E—3 0.5070069E 0 0.5114503E 0 0.1997297E 1
3 0.259369%0E 0 —0.2686759E 1 0.2735148E 1 0.2667162E—2

mined from &1, The eigenfunctions of this density are
the NSO’s. Since the wavefunction here depends upon
three linearly independent one-particle orbitals, there
are three NSO’s of a-spin and B-spin type each, and the
spatial parts of these functions can be written as linear
- combinations of a, b, and ¢. The NSQ’s corresponding
to the PHP functions for Li, Bet, B*, C**, and Be(3S)
are given in Tables IV-VIII, and Figs. 2 and 3 show
the spatial parts of these functions for Li in graphical
form. As can be seen the occupation numbers of the
NSO’s are either quite close to 1 or to zero for these
systems.

—22
2
o
>
3
& 3
i
/
[
[e]
00 30 R 60 9.0

F1c. 2. Radial distribution functions for the & NSO’s of Li.

If one takes the trace of the spin coordinates only
in the first-order density the spinless density matrix is
obtained. However, the spinless density matrix, being
based on a spin-free operator, may be determined di-
rectly from &2 without knowledge of the two com-
ponents of the density matrix containing spin. This has
been done, and the eigenfunctions for the spinless den-
sity are the NO’s. There are three natural orbitals and
these may also be written as linear combinations of a,
b, and ¢. The results for Li, Bet, B+, C3*, and Be(3S)
are also given in Tables IV-VIII and a graphical repre-
sentation of the NO’s for Li is shown in Fig. 4. It is
seen that the occupation numbers here are close to 2,
1, 0r 0.

III. THE CI EXPANSION OF THE PHP
WAVEFUNCTION IN TERMS OF
NATURAL ORBITALS

As was stated earlier a CI expansion representation
for &M is possible. To discuss this we assume that we
have a complete orthonormal set of one-particle spatial
functions %, us, u3, « - -. As is well known, a tensor space,
V, for n particles may be constructed by taking all
possible products of the form,

R(@) =u(1) - 145, (),

as a basis, and these product functions constitute a
complete, orthonormal basis for this n-particle tensor
space. The function we wish to represent has, however,
a certain symmetry specification.? viz.,

ONPNON =M, (4)
Now, the functions NPNR (%) completely span the sub-

Downloaded 23 Feb 2007 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TasLE V. a NSO’s, 8 NSO’s, and NO’s for Be*.

Occupation
number

Bet
Orbital a b ¢
Alpha NSO’s
1 0.9964345E 0 0.5905868E —2 0.7582089E —2
-2 —~0.2765789E 0 0.5260218E 0 0.5215507E 0
3 —~0.3569385E 0 —0.3263250E 1 0.3356134E 1
Beta NSO’s
1 0.1093920E 0 0.9683403E 0 —0.1251501E 1
2 0.3644778E—3 0.4976630E 0 0.5152553E
3 0.1098732E—1 —0.3120927E 1 0.3115119E 1
NO’s
1 0.1034031E 1 —0.1365115E 0 —0.1323157E 0
2 0.1119215E—2 0.5029285E 0 0.5097975E
3 —0.3571561E 0 —~0.3264041E 1 0.3355340E 1

0.9999991E 0
0.9993397E 0
0.6611367E—3

0.8645581E—6
0.9993380E 0
0.6602722E—3

0.1000027E 1
0.1998721E 1
0.1252272E—-2

space of V appropriate for functions of symmetry type
according to Eq. (4). They are not all linearly independ-
ent, however. The theory of representations of the
symmetric group S, tells how to choose a linearly in-
dependent set from all NPNR(7). We consider two
Young tableaux, corresponding to the partition [A]=
[2#%=8 1287 where S is the total spin quantum number
of the wavefunction of Eq. (1). The first we call the
particle tableau, particle subscripts 1 to #/2+4S in the
first column and #/2+.541 to » in the second column.
This determines the permutations and their numbers in
the Young operator NPN. The second tableau contains
as entries the subscripts of the symbols for the original

orthonormal set, #;, #s, %3 ++, ordered to give standard
tableaux. These are called function tableaux, and match-
ing the particle tableau with the function tableau gives
us a particular product function,

R(k) =wy (1) + + 202, (1)

The set of functions NPNR(k) for all possible k satis-
fying the standard tableau requirements, forms a com-
plete set for expansions of functions of symmetry given
by Eq. (4). The functions R(k) can be considered to be
based upon a set of ordered configurations, &(%),

k k
2,210 g2k g asll) o o ,

o )
o 24 l—2
o %
2 &

3
8 AN

/ I

° o
S (o)
00 ' 30 X 60 so 00 ) 'R' 60 20

F1e. 3. Radial distribution functions for the 8§ NSO’s of Li.

Fre. 4. Radial distribution functions for the NO’s of Li.
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TaBLE V1. a NSO’s, 8 NSO’s, and NO’s for B2*.

2185

Rzt
Occupation
Orbital a b ¢ number
Alpha NSO’s
1 0.9943024E 0 —0.8354249E—2 —0.1044516E—1 0.9999993E 0
2 0.3229171E 0 0.5304064E 0 0.5253863E 0 0.9996151E 0
3 0.4086156E 0O —0.3768765E 1 0.3889872E 1 0.3856344E~3
Beta NSO’s
1 0.1122330E 1 —0.1277239E 1 0.1608647E 1 0. 738009SE—6
2 —0.3963070E—3 0.4950837E 0.5147655E 0.9996144E 0
3 —0.1596071E -1 —0.3550852E 1 0.3543212E 1 0.3848964E—3
NO’s
1 0.1045368E 1 0.1572598E 0 0.1526875E 0 0.1000018E 1
2 —0.1149716E—2 0.5009248E 0 0.5087047E 0 0.1999262E 1
3 0.4087579E 0O —0.3769527E 1 0.3889106E 1 0.7206672E-—-3
where each of the occupation numbers, a;(%), is either of these is
2, 1, or 0 and X_; o;(k) =#. The o;(k) must satisfy a 25+1 n. (@) +1
certain constraint, which may be written as fk) = (6)

. ne(a)+1 a)/2—S; '
n[a(k) =3 (2—a)a22S. (5) n(a)/2=S
* by
It is seen that this is just the number of singly occupied IV. NATURAL ORBITAL EXPANSION OF &
orbitals.

In general, there is more than one standard tableau
for each set of occupation numbers & and the number

For an arbitrary function of the spatial coordinates
of » particles there are n, in general different, first-order
densities. This is because the coordinates left uninte-

TaBLE VIIL. a NSO’s, 8 NSO’s, and NO’s for C3+.

st
Occupation
Orbital a b ¢ number
Alpha NSO’s

~N

3%

N -

0.9928930E 0
0.3475875E 0
0.4360760E 0

0.1138618E 1
-—0.3888364E—3
—0.1907614E—1

0.1051933E 1
—0.1099319E—2
0.4361791E 0

—0.9877769E —2
0.5328617E 0
—0.4165971E 1

Beta NSO’s

—0.1506449E 1
0.4940157E
—0.3889205E 1

NO’s

0. 1679709E
0.4999635E
—0.4166675E

-0 0

—0.1212952E—1
0.5276989E 0
0.4303198E 1

0.1863772E
0.5141256E
0.3880484E 0

O -

0.1633199E 0
0.5079574E
0.4302492E 1

o

0.9999994E 0
0.9997362E 0
0.2645057E—3

0.6044257E—6
0.9997355E 0
0.2639013E—3

0.1000013E 1
0.1999497E 1
0.4907071E—3
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TaBLg VIII. o NSO’s, 8 NSO’s, and NO’s for Be(3S).

Be
Occupation
Orbital a b ¢ d number

Alpha NSO’s
1 0.1356444E 1 —0.4789954E 0 0.4098474E 0 0.5495299E—1 0.9961466E 0
2 —0.8917479E 0 0.1528405E 1 0.2693233E—1 —0.4246156E—1 0.9963415E 0
3 —0.2130067E 0 0.8345794E—1 0.6638490E 0 0.2879802E 0 0.9996820E 0
4 0.6289829E 0 —0.2530711E 0 —0.3219215E 1 0.3433627E 1 0.7829871E—2

Beta NSO’s
1 0.1323974E 1 —0.4669206E 0 0.5763166E 0 —0.1844787E 0 0.3853414E—2
2 —0.8932916E 0 0.1529057E 1 0.3886747E—1 —0.7782480E—2 0.3658463E—2
3 —0.3826011E—1 0.1537390E—1 0.2821101E 0 0.7183527E 0 0.9921701E 0
4 0.7237432E 0 —0.2831998E 0 —0.3249539E 1 0.3365357E 1 0.3179938E—3

NO’s

1 —0.1057337E 0 0.1094307E 1 0.2035192E 0O 0.1937192E 0 0.9999993E 0
2 —0.1629428E 1 0.1171587E 1 —0.3034437E 0O —0.2867145E—1 0.1000002E 1
3 —0.7854427E—1 0.3157543E—1 0.4870729E 0 0.5056933E 0 0.1984043E 1
4 0.6354225E 0 —0.2556335E 0 —0.3256071E 1 0.3408640E 1 0.1595575E—1

grated in the formula

vilri | )= ff(rl---r.---rn)*f(rr-r,---r,.)dn (7N

could be chosen to refer to any of the particles. The
symbol dr; is to indicate that integration over the ith
coordinate set is omitted. The various v; could even be
orthogonal and hence the corresponding eigenfunctions
are also orthogonal, and these densities could describe
and treat different particles in quite different ways.
This situation would be far from satisfactory physically
if one is dealing with identical particles. A way around
the difficulty is to use as a density the symmetric sum
of all of the v,

vl )= vile]s"), (8)

so that v represents all particles on equal footing. This
prescription has the additional advantage in that it
gives the conventional Léwdin-normalized, spinless
density corresponding to ¢ in Eq. (1) if Egs. (7) and
(8) are applied to ®™. It should be pomted out that
although the y(p | p’) calculated this way is independent
of ¢ in ®;M, the » different densities defined in Eq. (7)
can differ from one another in quite different ways for
different 4 in ®;1.

It has been shown (10) that if a wavefunction is to
be represented by a CI expansion in terms of a finite
set of orbitals, 7 in number, the best approximation
in the least squares sense to the correct function is ob-
tained if the m NSO’s of largest occupation number are
used. A rather similar theorem can be proved for the
NO’s which are the eigenfunctions of y(p | p’). We will
‘outline the proof since there are some details different
from the proof for NSO’s.

As was shown in Sec. III a complete set of # particle
functions NPNR(%) can be constructed appropriate
to the symmetry of &®, We must make our notation
more definite. This complete set of functions may be
catalogued in terms of an ordered set of configurations
[@(k) ]=[au(k)--+]. We need two indices on the func-
tions, however, the second represents the different
standard tableaux possible for the given set of occupa-
tion number [&(k) ], hence we write

¢i(k)=a:NPNRi(k); k=1,2,+-+; i=1,2, -, f(k),

&

where f(k) is given by Eq. (6), and a; is a normalization
constant. Examination of the form of NPN? shows
that the ¢:(£) are not all orthogonal, but one has

(pi(k) | gir(B') )=bpr Siir (R). (10)

Functions corresponding to different configurations are
orthogonal, but there is an overlap matrix between
functions corresponding to different standard tableaux
for the same conﬁguration All of the S(%k) matrices are
nonsingular since the set ¢;(%) is linearly independent.
®M may be expanded in terms of ¢:(k),

P = Z Cripi(k), (11)
where . .
Cri= 2 [S(R)Ju(9(k) | M), (12)
and
1= (@™ | $N)= 3 Co*Ci;Sis (k). (13)

kij

If the ¢;(k) are constructed from an arbitrary, complete
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TasLe IX. NO CI expansion coefficients and their squares for three-electron atoms.
Coeft Li Bet Bzt cet
Cu 0.999314E O 0.999671E 0 0.999810E 0 0.999879E O
Ca —0.353565E—1 ~—0.233966E —1 —0.173732E—1 —0.141598E—1
Ca 0.898410E —2 0.807842E—2 0.679051E—-2 0. 586900E—1
Ca 0.671130E—2 0.621017E—2 0.533303E~2 0.465381E—2
Ca —0.341765E—3 —0.217705SE—3 —0.141876E—3 1.102429E—-3
Ca 0.270646E—3 0.182688E—3 0.123145E-3 0.903128E—4
Cn 0.173552E—2 0.212516E—2 0.203814E—2 0. 187896E—2
Cn ~0.336243E 3 —0.372896E—3 —0.334585E—3 —0.302563E—3
Py 0.998628 0.999342 0.999619 0.999740
P, 0.001243 0.000547 0.000302 0.000201
Py 0. 000081 0.000065 0.000046 0.000034
P, 0.000045 0.000039 0.000028 0. 000022
Py 0. 000000 0. 000000 0. 000000 0. 000000
Py 0. 000000 0. 000000 0. 000000 0. 000000
Py 0. 000003 0. 000004 0. 000004 0. 000003
orthonormal basis, we have is a maximum, and this will be the situation when the
" — P matrix v is diagonal and we choose orbitals correspond-
(o] #) pz,,:, Yomttp (p) (') *. (14) ing to the m largest eigenvalues. This proof follows
. tly the form given by Lowdin for NSO’s.2® There-
From the form of NP exactly .8 y .
¢ form of NPN it is seen fore, the NO’s, eigenfunctions of y(p | p’) yield the most
Yoo= 2 ap(R) X Cri*CiiSii(k), (15) rapidly converging CI expansion of &,
k i The inequality expressed by Eq. (5) holds in general.
> Yop= Tr(y) =n, (16) Let us define Py,
p
Pr= 3" Cy*Cy;S:i(k 0<P<1 Pr=1
Vo= T [ (B), an(¥) 1S CuCuosSis(h, ), (17) T4 3 GCuSulB), OSRSL  Z Rt
. N (20)
where [@, o' ]is a symbol standing for +1if |a—o/| =1 and we have
and is zero othe_rvvlse. Si;(k, k’.) is the _coeﬂicient in Yop= 2. Pro, (k). (21)
NPN of one particular permutation. This is the permu- k
tation that transforms the jth tableau of &(#’) into the Tf v is diagonal we have
ith tableau of (k) except for the one position differing
between @&(k) and a(k’). Tr(2y—7*) =2n— g;; PPy 3 ap(k)ap(R').  (22)
From Eq. (15) it is easily seen that 2>v,,>0 and . ?
is equal to 2 only if , is doubly occupied in all con- Using Eq. (5) and the fact that
figurations and equal to O only if u, is missing from all '

. . . . ko (k) <3[op(k)? k)2 23
configurations. v,, will equal 1 if a,(k) =1 in all con- (k) oo (k) <3l (R)*+a (K)?], (23)
figurations but this is not necessary, merely sufficient. Eq. (22) becomes the inequality
We shall is poi .

all come back to this point later Tr(2y—v?) >28. (24)

As is well known, if we choose m functions from the
set %, - - and form all the configurations possible with
this truncated set, the best least squares approximation
to ®1M is obtained when A, given by

A=[1&MN— 3 Crpi(k) 12 dr (18)
ks

is a minimum, and the minimum is attained when the

Ci are given by Eq. (12). The sum in Eq. (17) is over

only those configurations arising from the set of m or-

bitals. An easy calculation shows that

A=1—(n:)"1Y v, (19)

where the sum is over vi; for the set of m functions
chosen. The quantity A will be a minimum when 3 v

When one is considering arbitrary antisymmetric
functions it may be shown that if the density matrix
containing spin is idempotent, the original function is
a single Slater determinant. It is interesting to examine
the corresponding situation for these NO expansions.
If the density satisfies the reduced characteristic equa-
tion,

v(1—7) (2—7) =0, (25)

then all its eigenvalues are either 0, 1, or 2 exactly, and
under these circumstances,

Tr(2y—~*) =n,, (206)

the number of exactly singly occupied NO’s. The num-
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TasLe X. NO CI expansion coefficients and their squares for

Be(3S).

Coefi. Be

G 0.992202
Gy —0.021869
Cs —0.002746
Cs 1 —0.002324
Cs —0.001560
Ce 1 0.000135
Gy —0.000819
Cs 1 0.000377
Cy 1 —0.000355
Cio1 0.000348
Cia 0.000161
Ci21 0.000100
Ciz 1 —0.000145
Cis2 —0.106132
Ciss 0.106132
P, 0.984464
P, 0.000478
Py 0.000008
P, 0.000005
Ps 0. 000002
Ps 0. 000002
Py 0.000001
Py 0. 000000
Py 0. 000000
Py 0. 000000
Py 0. 000000
Py 0.000000
Py 0.015039

ber of doubly occupied NO’s is evidently (n—n,)/2.
Using Egs. (22) and (23) we get

0< Zk3 P n,—n.(k) ], (27)
where n,(%) is the number of singly occupied orbitals
in the kth configuration. Since the P, are nonnegative
but otherwise sufficiently arbitrary, and using Eq. (5)
we see that

25<n,(k)<n, (28)

for all configurations contained in the function. Since
only a finite number of the v,, are nonzero we have only
a finite number of configurations (when expressed in
terms of the NO’s) and if we denote this number by

N. we have
Piax R \f He— P
(X))
p=0 P P

where pmax= (#,/2) —s. It is easily seen that if we let
Py=1/N_. for these configurations present, v will have
the form assumed. This is, of course, only one of an
infinity of sets of P’s which give this form for v. The
only exception is when #,=2S, and then there is one

R. D. KOLLER AND G. A. GALLUP

and only one configuration present in &M and there
is only one standard tableau for this configuration. We
conclude, therefore, any or all of the configurations
satisfying Eq. (28) may appear. There are some restric-
tions on the values of the P;’s but these will not be dis-
cussed here.

It is seen that there is no simple way to use the NSO’s
to represent the function ™ and hence y unless $=0,
where the NO’s and NSO’s are very closely related.
Indeed, the form for ¢ given in Eq. (1) clearly dissociates
the spin state of each particle from any spatial proper-
ties of that particle except for the case of a single par-
ticle, where ¢ given in Eq. (1) is just a single spin or-
bital. If, on the other hand, it is wished to represent ¢
by a sum of Slater determinants constructed from spin
orbitals, the use of a spin projection operator is in
general required to obtain a pure spin state. This pro-
cedure again mixes up the spatial and spin characters
of the individual particles and one is back to Eq. (1).
The only exception is the single doubly occupied Slater
determinant, but this is already in the form of Eq. (1),
or alternatively it may be said that the double oc-
cupancy means that differing spin properties of a par-
ticle are not distinguished by differing spatial proper-
ties. Of course, the preceding comments apply only if
H is spin free to a good approximation and S is a good
quantum number, with no fields present which destroy
the isotropic nature of spin space.

V. NATURAL EXPANSIONS

Since the NO’s and the PHP orbitals are both
linearly independent, the transformation between them
is nonsingular and may be inverted. Therefore, the
orbitals @, b, and ¢ may be written as linear combina-
tions of the natural orbitals u, %2, and u;. If these are
substituted into Eq. (3) and the various terms multi-
plied out and collected, we obtain an eight-term CI
expansion of ®;12! based upon the configurations of
NO’s, for the three-electron dtoms,

U1ty U1z U3
2N =y +Ca +Cs
U2 Us Uz
UslU3 Ualn U1y
+Cu +Cs1 +Ca
Ug Uz Us
Uit3 w1l
+Cn +Cn . (30)
Uz U3

Table IX gives the values of the coefficients Cy; for
each of the atoms discussed in this article assuming
that each tableau function is normalized. As can be seen
the values for Ci; fall off rapidly from the value for the
principal configuration. The values of P are also given
in Table IX. These are just C;? for all configurations
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except 7 in which case
. Pr=Cn*+CnCrtCr.

For the 35 state of Be there are four NO’s and these
give rise to 13 configurations and 135 functions. The ex-
pansion is

Uyt mu Uy
2
&P =Cu| w +Ca | % FCan | %
U3 Uy %44

] Uglthz

F+Ca] +Cal s

M
+Cyq (Wz (

U

‘ MU U U3 Uzl
+Cn <1la +Ca <M3 +Cn | u

U3 Uy U4
’ UyUs Uiy Ualy
+Cuoa| % +Cual % +Cral u
' Uy Ug Uy
Uiy U1l U
+Cuial us +Cu2l +Cus| )
Us Ua U3

(31)
Pyy=Cy3 > +Cr3 2+ Crs 2
+3(C13.C13,2— C13,1C13,5+Ci3 5Crs 3).-

Table X gives the Ci; and P;, for this function.
Examination of Tables IX and X shows that for the

VI 2189
%S systems the singly excited configuration has a small
value of P;, whereas for the 3S system configuration 13
which is a singly excited one has the second largest P;.
Because of Brillouin’s theorem this suggests that the
NO’s are rather closer to the SCF orbitals for the
doublet systems than for the triplet system.

VI. COMPARISONS WITH OTHER
CALCULATIONS

The calculations discussed in this article were done
on the IBM 360/65] computer in the University of
Nebraska Computational Center. For one set of ex-
ponential scale factors in the STO’s the three-electron
problem takes approximately 90 sec and the four-
electron problem 360 sec using the method described
in Ref. 5. Since there are no orthogonality constraints
in this method, there are no Lagrange multipliers and
hence no orbital energies. The times required to cal-
culate the NO’s and NSO’s were not significant.

Since the present calculations include radial correla-
tion only, the energies should be compared to those
from an S-only CI calculation. Brown and Fontana!
have given such a calculation for 25 Li with the
resulting energy of —7.44722 a.u. for 79 configurations.
Comparison with the energy of the present calculation
of —7.44746 a.u. shows this one to be slightly better.
There appears to be no comparable S-only CI for the
3§ Be state for comparison with these results.

* Based in part upon the thesis presented by R. D. Koller to
the Graduate College of the University of Nebraska in partial
fullfilment of the requirements for the Ph.D. degree.
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