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The signaling molecule cyclic AMP (cAMP) is a ubiquitous second messenger that enables cells to detect and
respond to extracellular signals. cAMP is generated by the enzyme adenylyl cyclase, which is activated or
inhibited by the G� subunits of heterotrimeric G proteins in response to ligand-activated G-protein-coupled
receptors. Here we identified the unique gene (CAC1) encoding adenylyl cyclase in the opportunistic fungal
pathogen Cryptococcus neoformans. The CAC1 gene was disrupted by transformation and homologous recom-
bination. In stark contrast to the situation for Saccharomyces cerevisiae, in which adenylyl cyclase is essential,
C. neoformans cac1 mutant strains were viable and had no vegetative growth defect. Furthermore, cac1 mutants
maintained the yeast-like morphology of wild-type cells, in contrast to the constitutively filamentous phenotype
found upon the loss of adenylyl cyclase in another basidiomycete pathogen, Ustilago maydis. Like C. neoformans
mutants lacking the G� protein Gpa1, cac1 mutants were mating defective and failed to produce two inducible
virulence factors: capsule and melanin. As a consequence, cac1 mutant strains were avirulent in animal models
of cryptococcal meningitis. Reintroduction of the wild-type CAC1 gene or the addition of exogenous cAMP
suppressed cac1 mutant phenotypes. Moreover, the overexpression of adenylyl cyclase restored mating and
virulence factor production in gpa1 mutant strains. Physiological studies revealed that the G� protein Gpa1
and adenylyl cyclase controlled cAMP production in response to glucose, and no cAMP was detectable in
extracts from cac1 or gpa1 mutant strains. These findings provide direct evidence that Gpa1 and adenylyl
cyclase function in a conserved signal transduction pathway controlling cAMP production, hyphal differenti-
ation, and virulence of this human fungal pathogen.

The conversion of intracellular ATP to cyclic AMP (cAMP),
catalyzed by adenylyl cyclase, is a central reaction in eukaryotic
signal transduction. The control of cAMP concentration is
principally determined by the precise regulation of adenylyl
cyclase activity (54). Adenylyl cyclases are either activated or
inhibited by interactions with G� or �� subunits liberated from
heterotrimeric G proteins in response to ligand-activated G-
protein-coupled receptors. The molecular basis of G protein
activation of adenylyl cyclase was recently determined by X-ray
crystallographic analysis of activated G� subunits with the cat-
alytic domains of the enzyme (55). Here we present studies
that illustrate how the regulation of adenylyl cyclase by G�
proteins has been conserved between microorganisms and
mammals.

Although the basic catalytic functions of adenylyl cyclases
are shared in fungi, the mechanisms of activation and the
downstream targets of these enzymes differ among divergent
fungal species. In the budding yeast Saccharomyces cerevisiae,

the single gene encoding adenylyl cyclase, CYR1, is essential
(40, 57). Two partially redundant Ras proteins, Ras1 and Ras2,
and the G� protein Gpa2 activate adenylyl cyclase in response
to nutrient conditions (10, 29, 37, 58) and intracellular acidi-
fication (10). The target of cAMP, cAMP-dependent protein
kinase (PKA), plays central roles in filamentation, sporulation,
and stress survival (6, 42, 47).

In contrast to the situation in budding yeast, adenylyl cyclase
is not essential in the fission yeast Schizosaccharomyces pombe
(39). Mutants lacking adenylyl cyclase (cyr1�) exhibit preco-
cious mating that is no longer repressed by nutrients, as in
wild-type cells (39). The G� protein Gpa2, and not Ras1, plays
a central role in regulating adenylyl cyclase in S. pombe (17).

Pathogenic fungi have coopted these conserved signal trans-
duction pathways to regulate their virulence (4, 5, 35). In the
corn smut fungus Ustilago maydis, the morphological transi-
tions involved in mating and pathogenicity are dependent upon
cAMP signaling. For example, disruption of the adenylyl cy-
clase gene uac1 results in constitutive filamentation (19). The
U. maydis G� protein Gpa3 activates adenylyl cyclase in re-
sponse to specific nutritional signals and is required for patho-
genesis (21, 27, 46).

Cryptococcus neoformans is an opportunistic human fungal
pathogen and an excellent model system for the genetic and

* Corresponding author. Mailing address for J. Andrew Alspaugh
and Joseph Heitman: DUMC 3355, Durham, NC 27710. Phone: (919)
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of Agriculture, Wenatchee, WA 98801.

75

 at U
N

IV
 O

F
 N

E
B

R
A

S
K

A
-LIN

C
O

LN
 on June 13, 2007 

ec.highw
ire.org

D
ow

nloaded from
 

http://ec.asm.org


molecular dissection of microbial pathogenicity (2). Recently,
it was demonstrated that the C. neoformans G� protein Gpa1
regulates mating and the expression of the inducible virulence
factors melanin and capsule. As a consequence, gpa1 mutant
strains are attenuated for virulence in animal models of cryp-
tococcal meningitis (3, 15; B. M. Allen, J. G. Kimbrough,
J. Heitman, and J. A. Alspaugh, unpublished data). Because
exogenous cAMP restores mating and virulence factor produc-
tion in gpa1 mutant cells, it was proposed that Gpa1 might
regulate adenylyl cyclase. Interestingly, Gpa1 belongs to a con-
served subgroup of fungal G� proteins that primarily respond
to nutrient deprivation signals (35). We also note that the
central role that this conserved G� protein-cAMP signaling
pathway plays in pathogenesis could not have been predicted
from studies of model organisms such as budding and fission
yeasts.

To investigate the direct role of cAMP signaling in fungal
differentiation and microbial pathogenesis, we cloned and dis-
rupted the C. neoformans CAC1 gene, which encodes adenylyl
cyclase. Strikingly, cac1 mutants were viable, lacked any de-
tectable cAMP, and maintained the budding growth phenotype
of wild-type cells. These findings indicate that adenylyl cyclase
and cAMP are dispensable for viability and do not play a major
role in determining morphology in this pathogenic basidiomy-
cete under conditions that promote growth as a budding yeast.
Mutant strains lacking adenylyl cyclase were sterile, failed to
induce capsule or produce melanin, and were avirulent in an-
imal models. Exogenous cAMP or reintroduction of the wild-
type gene restored mating and virulence factor production.
Genetic epistasis tests support a model in which the G� pro-
tein Gpa1 regulates adenylyl cyclase. Taken together with re-
cent studies on the role of PKA in C. neoformans (15), these
findings reveal that the central features of G� protein regula-
tion of adenylyl cyclase are conserved between unicellular and
multicellular eukaryotes. The similarities and differences
among cAMP signal transduction pathways in divergent fungi
demonstrate how a conserved nutrient-sensing signaling path-
way that controls differentiation in nonpathogenic yeasts has
been coopted for the control of virulence in pathogenic fungi.

MATERIALS AND METHODS

Strains and media. The strains used are listed in Table 1. Except for strain
JEC20, a serotype D MATa strain used in all of the mating experiments (31), the
C. neoformans strains used in these experiments were derived from the serotype

A wild-type strain H99 (43). H99-ura5 is a spontaneous 5-fluoroorotic acid-
resistant derivative of H99 that was isolated on 5-fluoroorotic acid-containing
medium by using the method of Kwon-Chung et al. (33). Strain AAC1 is a
serotype A gpa1 mutant strain, and strain AAC3 is a gpa1 GPA1-reconstituted
strain (3). RPC3, LCC2, and LCC23 are cac1 mutant strains described in this
study. RPC7 and LCC22-1 are cac1 CAC1-reconstituted strains derived from
strains RPC3 and LCC22, respectively. Strain AAC17 is a gpa1 mutant strain in
which the CAC1 gene was ectopically integrated in multiple copies.

Standard yeast media were used for most experiments as described previously
(51). Niger seed agar (30), Dulbecco’s modified Eagle’s medium (DMEM) with
22 mM NaHCO3 (20), and V8 mating medium (30) were prepared as previously
described. When needed, cAMP was added at 2.5 to 5 mM.

PCR. All PCRs were performed by use of a Perkin-Elmer GeneAmp 9600
thermocycler with 50 ng of template DNA, 100 ng of each oligonucleotide
primer, and standard reagents from a TaKaRa kit (Takara Shuzo Co.). For initial
identification of the adenylyl cyclase gene in C. neoformans, primers were de-
signed based on conserved regions of fungal adenylyl cyclases: primer DF2,
5�-AGTIAAGACIGARGGIGAYATG, and primer DF5, 5�-AYTGICCICCRT
CIGC (I, inosine; R, purine; Y, pyrimidine). Genomic DNA from strain H99 was
used as a template for the PCRs. The PCR conditions were 35 cycles at 94°C for
30 s, 35°C for 30 s, and 72°C for 30 s. The resulting 316-bp PCR fragment was TA
cloned (Invitrogen) and sequenced.

Southern hybridization and cloning of the CAC1 gene. Genomic DNA was
isolated from strain H99 as described previously (45). Restriction digestion, gel
electrophoresis, DNA transfer, prehybridization, hybridization, and autoradiog-
raphy were performed as described previously (49) with the initial 316-bp CAC1
PCR fragment as the probe. The probe was labeled by using a Random Primed
DNA labeling kit (Boehringer Mannheim) and 32P-dCTP (Amersham).

Based on the Southern hybridization data, subgenomic libraries of NheI-
digested genomic fragments were cloned into pBluescript, and the clones con-
taining the CAC1 gene fragments were identified by colony hybridization.

Identification of 5� and 3� regions of the CAC1 gene. Strain H99 was incubated
at 30°C for 18 h in yeast extract, peptone, dextrose (YPD) medium. Aliquots
were subcultured for 4 h at 30 and 37°C in YPD medium and in DMEM–22 mM
NaHCO3. The cells were pelleted, and total RNA was isolated by using an
RNeasy Mini kit (Qiagen). The RNA samples were pooled, and the polyadenyl-
ated RNA fraction was purified by using an Oligotex mRNA Midi kit (Qiagen).
This sample was used as the template for cDNA production and subsequent PCR
amplification of the 5� and 3� ends of the CAC1 gene message by using a
Marathon cDNA amplification kit (Clontech).

Disruption of the CAC1 gene. To create a cac1::URA5 disruption construct, we
subcloned a 6.7-kb SacI/XhoI fragment of the CAC1 locus (extending from 523
bp before the start codon to 6,234 bp after the start codon) into plasmid pUC18.
The URA5 gene was inserted as a selectable marker into the BamHI-digested
CAC1 fragment, resulting in the loss of 1,652 nucleotides internal to the CAC1
open reading frame (ORF). The cac1�::URA5 linear fragment was precipitated
onto 0.6 �g of gold microcarrier beads (Bio-Rad) and biolistically transformed
into strain H99-ura5 as previously described (44). Stable transformants were
selected on synthetic medium lacking uracil and containing 1 M sorbitol.

To screen for cac1 mutant strains, genomic DNA from each transformant was
isolated and used as the template for PCR amplification with the CAC1-specific
primer 3273 (5�-CCAACATCTCTCAACGTGACG) and the URA5-specific
primer 5151 (5�-CCTCTTCTTCATCTAGTCGG). Because the recognition se-
quence of primer 3273 lies outside the disruption construct, only strains in which
the cac1::URA5 disruption allele was integrated at the endogenous CAC1 locus
amplified a 2-kb PCR band in this reaction. One strain (RPC3) of 120 transfor-
mants screened in this manner was found by PCR to have a cac1�::URA5
mutation. Southern hybridization was performed by using genomic DNA di-
gested with PstI and the 3.7-kb XbaI/KpnI fragment of the CAC1 gene (corre-
sponding to nucleotides 1153 to 4900 of the CAC1 GenBank sequence) as the
probe. We observed that the wild-type bands at 2.2 and 1.7 kb were missing and
that only the expected band at 4.1 kb was present in the samples of strain RPC3,
confirming that the CAC1 locus was replaced by the cac1�::URA5 allele, with no
ectopic integrations.

Two independent cac1 mutant strains were made by using the ADE2 gene as
the selectable marker for gene disruption. Both of these strains were made by
using the serotype A ade2 strain M001 as the recipient for transformation (44,
53). Strain LCC22 was created by using a cac1�::ADE2 disruption construct with
the ADE2 gene cloned into a StuI site at nucleotide position 5176 of the pub-
lished CAC1 sequence. The majority of the CAC1 open reading frame was
replaced by the ADE2 gene in strain LCC23 by using a cac1�::ADE2 construct
with the ADE2 gene inserted into the XbaI-digested CAC1 gene, resulting in the
loss of 6,590 nucleotides of CAC1 sequence.

TABLE 1. Strains used

Serotype Strain Genotype Reference
or source

A H99 MAT� 43
H99-ura5 MAT� ura5 This study
M001 MAT� ade2 44
AAC1 MAT� ade2 gpa1::ADE2 3
AAC3 MAT� ade2 gpa1::ADE2 GPA1-hph 3
AAC17 MAT� ade2 gpa1::ADE2 CAC1-hph This study
RPC3 MAT� ura5 cac1::URA5 This study
RPC7 MAT� ura5 cac1::URA5 CAC1-hph This study
LCC22 MAT� ade2 cac1::ADE2 This study
LCC23 MAT� ade2 cac1::ADE2 This study
LCC22-1 MAT� ade2 cac1::ADE2 CAC1-hph This study

D JEC20 MATa 31
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The cac1 CAC1- and gpa1 CAC1-reconstituted strains were created by biolis-
tically transforming the wild-type CAC1 gene, linked to the hph gene conferring
resistance to hygromycin B, into the cac1 mutant strains RPC3 and LCC22 and
the gpa1 mutant strain AAC1 as previously described (3, 13).

Northern analysis. Strains were incubated in YPD medium at 30°C for 18 h.
Cells were pelleted and divided equally for incubation for 4 h in synthetic
complete medium with 2% glucose, synthetic complete medium with 0% glucose,
or synthetic low-ammonium–dextrose (SLAD) medium (18). Cells were pelleted
at 4°C and frozen on dry ice, and total RNA was isolated as previously described
(3). Fifteen micrograms of RNA was analyzed for each sample. Gel electro-
phoresis, RNA transfer, hybridization, and autoradiography were performed as
described previously (49).

Mating assays. All strains to be tested for mating were initially grown in YPD
medium for 48 h at 30°C. Mating reactions were performed by coincubating cells
of opposite mating types on V8 mating medium in the dark at room temperature
for 1 to 2 weeks. Mating mixtures were analyzed for filamentation, and photomi-
croscopy was performed on representative sectors of the mating mixtures.

Capsule assessment by packed-cell-volume measurement. Packed-cell volume
was assessed as previously described with modifications (20). Strains were incu-
bated in DMEM–22 mM NaHCO3 at 30°C for 24 h, treated with 10% formalin,
and normalized to 109 cells/ml. The normalized samples were added to heparin-
ized Microhematocrit capillary tubes (Fisher 02-668-66) and spun for 5 min in a
model MB Microhematocrit centrifuge (International Equipment Co.). Packed-
cell volume, or cryptocrit, was measured as the length of the packed-cell phase
divided by the length of the total suspension within the capillary tube.

Determination of the intracellular cAMP concentration. Cells were preincu-
bated at 30°C for 18 h in YPD medium. The overnight culture was inoculated
into fresh YPD medium to an optical density at 600 nm of 0.05 and grown under
the same conditions for 20 h. Cells were collected by centrifugation and washed
twice with water and once with buffer (10 mM morpholineethanesulfonic acid
[MES] [pH 6.0], 0.1 mM EDTA). Cells were resuspended in buffer and incubated
at 30°C with shaking so that they would be subjected to glucose starvation. After
2 h, glucose was added to a final concentration of 2%. At various time points, 0.5
ml of cell suspension was transferred to a tube containing an equal volume of
ice-cold 10% trichloroacetic acid and 0.3 ml of glass beads and was immediately
frozen in liquid nitrogen. Crude cell extracts were prepared by homogenization
with a bead beater at 4°C and were lyophilized. cAMP assays were performed by
using a cAMP enzyme immunoassay kit (Amersham) as previously described
(38).

Virulence experiments. In the murine inhalation model of systemic cryptococ-
cosis, A/Jcr mice were intranasally inoculated with 5 	 105 cells as previously
described (12). Groups of 10 mice were infected with each strain, and animals
were observed twice daily. Symptoms due to the experimental infection included
lethargy, ruffled fur, and inability to maintain daily care. In this model, mice
develop meningitis and resulting hydrocephalus due to C. neoformans, mimicking
the natural history of infection in humans. Moribund mice were sacrificed prior
to death. The Kruskal-Wallis algorithm was used to determine the statistical
significance of differences in survival.

In the rabbit model, New Zealand White rabbits were sedated with ketamine
(Fort Dodge) and xylazine (Vedco) and intrathecally inoculated with the CAC1
wild-type strain (H99), the gpa1 mutant strain (AAC1), and the cac1 mutant
strain (LCC22) as previously described (3). Three rabbits were infected with each
strain and were treated daily with 1.2 mg of betamethasone sodium-betametha-
sone acetate (Schering). Cerebrospinal fluid (CSF) was obtained by cisternal
puncture after sedation on experimental days 4, 7, and 11 after infection, and the
total CFU per milliliter of CSF was determined by quantitative culturing on YPD
medium. All virulence studies were performed in compliance with institutional
guidelines for animal experimentation.

Nucleotide sequence accession number. The CAC1 has been assigned Gen-
Bank accession no. AF290191.

RESULTS

Identification and disruption of the C. neoformans adenylyl
cyclase gene. In previous studies, it was found that mutants
lacking the G� protein Gpa1 were viable and exhibited cAMP-
remediable phenotypes (3; Allen et al., unpublished). Here we
tested the hypothesis that Gpa1 regulates cAMP production by
adenylyl cyclase. Because adenylyl cyclase is essential in S.
cerevisiae, we wished to distinguish between two alternative
models. In the first model, adenylyl cyclase is essential and

Gpa1 is not essential because redundant upstream factors reg-
ulate adenylyl cyclase in gpa1 mutants. In the second model,
neither Gpa1 nor adenylyl cyclase is essential for viability in C.
neoformans.

We identified a fragment of the gene encoding C. neofor-
mans adenylyl cyclase, CAC1 (Cryptococcus adenylyl cyclase),
from serotype A strain H99 by using low-stringency PCR and
degenerate primers based on conserved regions of other fungal
adenylyl cyclase genes. Southern hybridization, under high or
low stringency, revealed a single copy of the CAC1 gene. Two
adjacent NheI restriction fragments, spanning the entire CAC1
open reading frame, were isolated from the genomic DNA of
strain H99 by colony hybridization of size-selected libraries
and then sequenced (GenBank accession number AF290191).
The 5� and 3� regions of the CAC1 gene were determined by
rapid amplification of cDNA ends, and the intron-exon bound-
aries were identified by comparing CAC1 cDNA fragments and
the genomic sequence.

The CAC1 gene consists of 7,188 nucleotides from the start
to the termination codons, contains 7 introns, and encodes a
predicted protein of 2,271 amino acids. The C. neoformans
adenylyl cyclase shares 62% amino acid sequence similarity
and 45% identity from residues 838 to 2228 with the analogous
region of its closest homolog, U. maydis adenylyl cyclase Uac1.
Like other fungal adenylyl cyclase proteins (25, 63, 64), the C.
neoformans Cac1 enzyme lacks the hydrophobic transmem-
brane domains characteristic of the mammalian enzymes (28).
It does, however, share the tandemly repeated leucine-rich
motifs found in the S. cerevisiae and S. pombe adenylyl cyclase
proteins. These regions are predicted to serve regulatory or
cell localization functions, since they are not required for cat-
alytic activity (25).

To disrupt the C. neoformans CAC1 gene, an internal por-
tion of the gene was replaced with the URA5 gene. The result-
ing cac1�::URA5 disruption construct was introduced into the
serotype A ura5 strain H99-ura5 by biolistic transformation. In
1 isolate (RPC3) from among 120 Ura� transformants, the
CAC1 gene was replaced by integration of the cac1�::URA5
mutant allele, with no ectopic integrations (see Materials and
Methods). Two independent cac1 mutant strains (LCC22 and
LCC23) were also isolated by using the ADE2 gene as a se-
lectable marker in ade2 mutant strain M001 (44, 53). The in
vitro phenotypes of the three independent cac1 mutants were
identical. It is important that all three mutants exhibited a
budding morphology like that of wild-type cells. This observa-
tion is in contrast to the situation for another basidiomycete
pathogen, U. maydis, in which disruption of the gene for ad-
enylyl cyclase results in constitutive filamentation and the loss
of budding growth (19).

To ensure that the phenotypes observed were attributable to
the cac1 adenylyl cyclase mutation, the wild-type CAC1 gene
was reintroduced into the cac1 mutant background. The wild-
type CAC1 gene was linked to the hph gene, encoding resis-
tance to hygromycin B, and ectopically integrated into the
genome of the cac1 mutant strains (RPC3 and LCC22) by
biolistic transformation to generate cac1 CAC1-reconstituted
strains. Three reconstituted strains in the RPC3 strain back-
ground and nine reconstituted strains in the LCC22 strain
background demonstrated identical phenotypes in vitro.
Therefore, one cac1 CAC1 strain from each mutant back-
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ground was selected for a more detailed evaluation (RPC7 and
LCC22-1). This transformation technique has been used to
integrate C. neoformans genes and typically results in the in-
tegration of multiple tandem copies of the linked hph gene,
which are apparently necessary for sufficient expression to con-
fer hygromycin B resistance (3). We note that as a conse-
quence, the reintroduced linked CAC1 gene is also present in
multiple copies, often resulting in functional overexpression,
which can be used for epistasis analysis. We have used this
approach to achieve overexpression, since the serotype D
GAL7-regulatable promoter is not tightly regulated or highly
expressed in serotype A strains (14). Additionally, the pCnTel1
(16) and pPM8 (41) episomal plasmids, which have been used
for overexpression studies with serotype D strains, are often
unstable and integrated in serotype A strains (unpublished
observations). To observe the effects of CAC1 overexpression
in the gpa1 mutant background, the CAC1 gene was similarly
introduced into a gpa1 mutant strain (AAC1). The in vitro
phenotypes of four such gpa1 CAC1 strains were identical, and
one (AAC17) was chosen for further studies. Northern analysis
confirmed that the CAC1 gene was not expressed in the cac1
mutant strain but was markedly overexpressed in the gpa1
CAC1 and cac1 CAC1 strains, albeit to different extents, inde-
pendent of medium conditions (Fig. 1A). In contrast to the
important role of nutrient deprivation in the transcriptional
regulation of the GPA1 gene (59), expression of the CAC1
gene was not induced by either glucose or nitrogen limitation
(Fig. 1A).

The G� protein Gpa1 and adenylyl cyclase control intracel-
lular cAMP production. The hypothesis that mutation of the
CAC1 gene affects cAMP production in C. neoformans was
tested by assaying intracellular cAMP levels (Fig. 1B). The
CAC1 wild-type (H99), cac1�::ADE2 mutant (LCC22), cac1
CAC1-reconstituted (LCC22-1), gpa1 mutant (AAC1), gpa1
GPA1-reconstituted (AAC3), and gpa1 CAC1 (AAC17) strains
were grown overnight in YPD medium and then starved in
glucose-free buffer for 2 h. Following the readdition of glucose,
cells were collected and frozen, and cAMP levels were deter-
mined by an enzyme immunoassay. The cAMP concentration
was modestly increased in wild-type cells in response to glucose
readdition, as in previous studies with S. cerevisiae (56) (Fig.
1B). No cAMP was detectable in total cell extracts from either
the cac1 or the gpa1 mutant strains under any conditions (Fig.
1B). When the wild-type GPA1 gene was reintroduced into the
gpa1 mutant strain, the basal cAMP level was modestly in-
creased compared to that in wild-type cells, a result which may
be attributable to partial activation of the pathway by the
increased level of the Gpa1 protein. cAMP production in re-
sponse to glucose readdition was also restored in the gpa1
GPA1 strain (Fig. 1B). In comparison, both the basal cAMP
level and the glucose-induced cAMP increase were signifi-
cantly enhanced in the cac1 CAC1 strain, in which adenylyl
cyclase is overexpressed. Importantly, overexpression of adeny-
lyl cyclase in the gpa1 mutant strain restored basal cAMP
production but not glucose-stimulated cAMP synthesis. These
findings support a model in which a receptor coupled to Gpa1
detects extracellular glucose and activated Gpa1 then stimu-
lates cAMP production by adenylyl cyclase.

C. neoformans adenylyl cyclase is required for efficient mat-
ing. The cac1 mutants lacking adenylyl cyclase showed signif-

icantly reduced mating compared to isogenic wild-type strains.
The CAC1 wild-type (H99), cac1 mutant (RPC3), cac1 CAC1-
reconstituted (RPC7), gpa1 mutant (AAC1), and gpa1 CAC1
(AAC17) strains were incubated in mating reactions with the
serotype D MATa strain JEC20 on V8 mating medium. The
mating reaction mixtures containing the wild-type and cac1
CAC1-reconstituted strains produced extensive mating hyphae
after 7 days of incubation. In contrast, the cac1 and gpa1
mutant strains produced no mating hyphae after 7 days (Fig.
2). As previously described, isolated foci of mating hyphae
were observed with the gpa1 mutant strain following prolonged
incubation (�14 days); however, no significant mating was
observed with the cac1 mutant strain. The addition of 2.5 mM
cAMP to V8 mating medium restored the mating of both gpa1
and cac1 mutant strains (Fig. 2). Similarly, overexpression of
adenylyl cyclase restored the mating of the gpa1 mutant strain.
These findings further support a model in which the G� pro-
tein Gpa1 regulates cAMP production by the Cac1 fungal
adenylyl cyclase.

cAMP restores melanin production in adenylyl cyclase mu-
tant strains. We next tested whether adenylyl cyclase is re-
quired for melanin production. The CAC1 wild-type (H99),
cac1 mutant (RPC3), cac1 CAC1-reconstituted (PRC7), gpa1
mutant (AAC1), and gpa1 CAC1 (AAC17) strains were incu-
bated on Niger seed medium with and without cAMP. The
wild-type and cac1 CAC1-reconstituted strains produced sim-
ilar amounts of melanin after 3 to 4 days of incubation at 37°C,
whereas the cac1 and gpa1 mutant strains made little or no
visible melanin, even after 7 days of incubation (Fig. 3). Exog-
enous cAMP restored melanin production by both gpa1 and
cac1 mutant strains. Interestingly, overexpression of adenylyl
cyclase in the gpa1 CAC1 strain partially restored melanin
production after 72 h of incubation on Niger seed medium, and
exogenous cAMP further enhanced melanin production by this
strain. These observations demonstrate that adenylyl cyclase is
necessary for melanin production and provide additional evi-
dence that Gpa1 normally functions to regulate cAMP produc-
tion by adenylyl cyclase.

cAMP suppresses the capsule defect of adenylyl cyclase mu-
tant strains. The polysaccharide capsule of C. neoformans is
induced by conditions that mimic environmental signals en-
countered by this pathogenic yeast in the infected host, includ-
ing iron deprivation and physiological CO2/HCO3

� levels (20).
To assess the role of adenylyl cyclase in C. neoformans capsule
production, the CAC1 wild-type (H99), cac1 mutant (RPC3),
cac1 CAC1-reconstituted (RPC7), gpa1 mutant (AAC1), and
gpa1 CAC1 (AAC17) strains were incubated in DMEM–22
mM NaHCO3 for 24 h. India ink analysis revealed a marked
decrease in the size of the capsule in the cac1 and gpa1 mutant
strains compared with the wild-type strain (Fig. 4A). When the
CAC1 gene was introduced into either the cac1 or the gpa1
mutant strains, capsule induction was restored (Fig. 4A). Ex-
ogenous cAMP also restored capsule production by the cac1
and gpa1 mutant strains and increased capsule size in all of the
strains tested (Fig. 4A).

To quantify the differences in capsule production of these
strains, the packed-cell volume (3, 20), which is related to
capsule size, was determined for normalized suspensions of
strains incubated in capsule-inducing medium in the absence
or presence of cAMP. The quantitative findings indicated a
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significant decrease in capsule size in the cac1 and gpa1 mutant
strains as well as complete restoration of encapsulation in
these mutant strains by exogenous cAMP or the CAC1 adeny-
lyl cyclase gene (Fig. 4B).

Adenylyl cyclase is required for C. neoformans virulence. The
roles of melanin and the polysaccharide capsule in the patho-
genesis of cryptococcal infections are well established. Strains
deficient in either melanin or capsule production are dramat-

ically attenuated for virulence in animal models of cryptococ-
cosis (7–9, 32, 48). Moreover, C. neoformans gpa1 mutant
strains are significantly less virulent than wild-type parent
strains in both rabbit and murine models of cryptococcal men-
ingitis (3, 15). Based on models in which Gpa1 regulates ad-
enylyl cyclase, we hypothesized that disruption of the CAC1
gene would similarly impair virulence.

Ten A/Jcr mice were infected by inhalation with the CAC1

FIG. 1. Disruption of the adenylyl cyclase gene CAC1 abolishes cAMP production. (A) CAC1 wild-type (WT) (H99), cac1 mutant (RPC3), cac1
CAC1-reconstituted (RPC7), and gpa1 CAC1 (AAC17) strains were incubated in YPD medium for 18 h. The cells were divided for incubation for
4 h in one of three different media: synthetic complete medium with 2% glucose (nitrogen �, glucose �), synthetic complete medium with 0%
glucose (nitrogen �, glucose �), or SLAD (nitrogen �, glucose �). Total RNA from each sample was assessed by Northern analysis with the CAC1
gene as a probe. The rRNA bands of the ethidium bromide-stained gel (rRNA) are shown to demonstrate RNA loading. (B) CAC1 wild-type (H99)
(squares), cac1 mutant (LCC22) (diamonds), cac1 CAC1-reconstituted (LCC22-1) (triangles), gpa1 mutant (AAC1) (circles), gpa1 GPA1-
reconstituted (AAC3) (crossed squares), and gpa1 CAC1 (AAC17) (crosses) strains were starved for glucose for 2 h. At the indicated time after
a glucose pulse, aliquots of the cell suspensions were frozen, and intracellular cAMP concentrations were determined. Data points represent the
mean and standard deviation for duplicate samples in two identical experiments (four samples for each data point).
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wild-type (H99), cac1 mutant (RPC3), and cac1 CAC1-re-
constituted (RPC7) strains. In this model, inhaled cells ini-
tially infect the lung and then disseminate hematogenously
to infect the brain, resulting in meningoencephalitis in all
infected animals. Survival was monitored over the course of
a 60-day infection. Mice infected with the CAC1 wild-type
strain survived a median of 20 days (Fig. 5). In contrast, the
cac1 mutant strain was avirulent, and no lethal infection was
observed in any infected animal (P 
 0.01) (Fig. 5). Impor-
tantly, reintroduction of the wild-type CAC1 gene restored
the virulence of the cac1 mutant strain to the wild-type level
(median survival, 21 days; P � 0.076 in a comparison with
the wild-type strain).

Two independent cac1�::ADE2 mutant strains were also

found to be avirulent. In the murine inhalation model of
systemic cryptococcosis, the cac1�::ADE2 mutant strains
(LCC22 and LCC23) produced no lethal infections after 120
days of observation. Isogenic CAC1 wild-type strains in-
duced lethal infections in all animals by day 23 in the same
experiment. Additionally, in the rabbit model of cryptococ-
cal meningitis, cac1 mutant strain LCC22 showed a signifi-
cant reduction in the ability to survive in the host compared
to the wild-type strain. The number of viable cells recovered
from the CSF of animals infected with cac1 mutant strain
LCC22 was reduced approximately 10,000-fold compared to
the results obtained with the wild-type strain after 10 days of
infection (1.5 	 105 CFU/ml of CSF for the wild-type strain;
60 CFU/ml of CSF for the cac1 mutant strain). In summary,

FIG. 2. Adenylyl cyclase is required for mating in C. neoformans. (A) CAC1 wild-type, cac1 mutant, cac1 CAC1-reconstituted, gpa1 mutant, and
gpa1 CAC1 strains were coincubated with the MATa strain JEC20 on V8 mating medium in the dark for 14 days at 30°C with and without cAMP
(2.5 mM). (B) The edges of the mating mixtures were examined microscopically each day for mating hyphae and photographed after 7 days (	61).
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in three separate experiments with three independent cac1
mutant strains, adenylyl cyclase was found to be required for
C. neoformans virulence.

DISCUSSION

All cells must sense and respond to changes in the extracel-
lular environment. In pathogenic microorganisms, dramatic
cellular adaptation occurs as these organisms infect their host.
An understanding of the mechanisms by which these organisms
adapt to and infect their host underlies the basis for the mo-
lecular dissection of microbial pathogenesis.

Here we demonstrate that the enzyme adenylyl cyclase and
its second messenger product, cAMP, play a central role in the
differentiation and virulence of the opportunistic fungal patho-
gen C. neoformans. First, we identified a single, nonessential
gene encoding adenylyl cyclase in this fungus. Second, we
showed that the adenylyl cyclase Cac1 plays a central role in

FIG. 3. Adenylyl cyclase mutants have defects in melanin produc-
tion. CAC1 wild-type (WT), cac1 mutant, cac1 CAC1-reconstituted,
gpa1 mutant, and gpa1 CAC1 strains were grown on Niger seed me-
dium with (�) and without (�) cAMP (2.5 mM) at 37°C and photo-
graphed after 4 days. Strains that produce melanin are brown (gray on
figure), whereas strains that produce less or no melanin are white.

FIG. 4. Adenylyl cyclase mutants fail to induce capsule. (A) CAC1 wild-type (WT), cac1 mutant, cac1 CAC1-reconstituted, gpa1 mutant, and
gpa1 CAC1 strains were incubated for 2 days under capsule-inducing conditions (DMEM–22 mM NaHCO3) with and without cAMP (20 mM).
Capsule induction was qualitatively assessed with a standard India ink preparation and photographed (	61). (B) Capsule size was quantified by
determining the packed-cell volume of normalized cell suspensions (109 cells/ml) for each sample. Data points represent the mean and standard
error for triplicate samples.

VOL. 1, 2002 C. NEOFORMANS ADENYLYL CYCLASE CONTROLS VIRULENCE 81

 at U
N

IV
 O

F
 N

E
B

R
A

S
K

A
-LIN

C
O

LN
 on June 13, 2007 

ec.highw
ire.org

D
ow

nloaded from
 

http://ec.asm.org


the induction of two virulence factors, capsule and melanin.
Third, we demonstrated that adenylyl cyclase is required for
virulence. Mutant phenotypes conferred by the adenylyl cy-
clase mutation were completely remediated by cAMP in vitro,
indicating that the enzyme is catalytic and that it is not re-
quired for scaffolding of other signaling components.

Previously it was found that the differentiation and virulence
of C. neoformans are controlled by the G� protein Gpa1 (3;
Allen et al., unpublished). Because the gpa1 mutant pheno-
types were suppressed by exogenous cAMP, it was proposed
that Gpa1 might function by regulating cAMP production.
Here we isolated the CAC1 gene encoding adenylyl cyclase
and, by molecular genetic approaches, provide compelling sup-
port for this model. Strains lacking the adenylyl cyclase gene
were sterile, similar to gpa1 mutants. Additionally, both the
gpa1 and the cac1 mutant strains failed to induce the expres-
sion of the major virulence determinants capsule and melanin.
All mutant phenotypes were suppressed by exogenous cAMP
or by overexpression of adenylyl cyclase. These findings sup-
port a model in which the Gpa1 and Cac1 proteins function in
a linear pathway controlling cAMP production. Our studies
and recent findings obtained with budding and fission yeasts
underscore how this pathway is conserved between microor-
ganisms and humans.

Determination of intracellular cAMP levels provides addi-
tional evidence that the C. neoformans G� protein Gpa1 and
adenylyl cyclase functionally interact to regulate cAMP pro-
duction. The cAMP level increased when glucose was added to
glucose-starved C. neoformans cells, directly implicating cAMP
as a central element in C. neoformans nutrient-sensing path-
ways. Similar responses to glucose have been observed for S.
cerevisiae (56). In contrast, no cAMP was detectable in the cac1
mutant strain. That no cAMP was produced in the gpa1 mutant
strain further supports a central role for the G� protein Gpa1
in cAMP signaling. Interestingly, the basal cAMP level was
restored in the gpa1 mutant strain overexpressing adenylyl
cyclase, but glucose failed to stimulate cAMP production. In
the same strain background, reintroduction of a wild-type
GPA1 gene complemented the mutant cAMP defect to wild-

type levels. Although the interpretation of these results may be
limited by the number of strains tested, together these findings
suggest that the Gpa1 protein is required to link a glucose-
sensing G-protein-coupled receptor to adenylyl cyclase. This
receptor has not yet been identified for C. neoformans, but the
corresponding receptors in budding yeast (Gpr1) and fission
yeast (git3) are known (61, 62).

Other fungal G protein subunits in this conserved signal
transduction pathway have been identified. The fission yeast
G� subunit git5 and the G� subunit git11 interact with the G�
protein gpa2 and are required for adenylyl cyclase activation by
glucose (34). Thus far, only one G� subunit (Gpb1) and no G�
subunits have been identified for C. neoformans (60). The
Gpb1 protein clearly functions in pheromone sensing and mat-
ing and is not coupled to the Gpa1-cAMP cascade (60). Its role
is analogous to those of the �� subunits Ste4 and Ste18 in
pheromone sensing in S. cerevisiae but is quite distinct from the
role of the �� subunits git5 and git11 that function with gpa2 in
nutrient sensing in S. pombe. Therefore, in budding yeast and
in C. neoformans, the nutrient-sensing G� subunits function in
the absence of other G protein subunits or with novel subunits
that remain to be identified (reviewed in reference 35).

Mating in the fission yeast S. pombe requires a nutrient-poor
medium, and the S. pombe gpa2-adenylyl cyclase pathway plays
a central role in signaling nutrient-rich conditions. cAMP lev-
els are regulated in response to carbon source, although nitro-
gen source may also play a role (52). Mutation of the S. pombe
cyr1 adenylyl cyclase gene leads to starvation-independent mat-
ing on nutrient-rich medium (39). Similarly, gpa2 mutant cells
mate and sporulate in rich medium and fail to produce cAMP
in response to glucose (23). Thus, the cAMP pathway in S.
pombe functions to signal the presence of abundant nutrients,
either carbon source or nitrogen source, and mutations in this
pathway result in starvation-independent mating (52).

Like fission yeast mating, C. neoformans mating can occur on
a nutrient-poor medium limiting for nitrogen source but con-
taining abundant fermentable carbon source, such as SLAD
medium. However, disruption of cAMP signaling in C. neofor-
mans impairs mating. These observations could suggest that
the C. neoformans Gpa1-Cac1-cAMP pathway is activated by
nutrient deprivation signals rather than the presence of abun-
dant nutrients. Alternatively, the Gpa1-Cac1-cAMP pathway
might function to sense abundant fermentable carbon sources
and thereby stimulate the mating of C. neoformans. In this
model, the pathway inhibits mating in S. pombe and stimulates
mating in C. neoformans. Nitrogen limitation stimulates mating
and meiosis in S. pombe, pseudohyphal differentiation in S.
cerevisiae, and haploid fruiting and mating in C. neoformans.
These events are also regulated by fermentable carbon sources
that are sensed by the cAMP signaling cascade. cAMP inhibits
mating in S. pombe, possibly to restrict mating and sporulation
until both nitrogen and fermentable carbon sources have been
exhausted. In contrast, pseudohyphal growth in S. cerevisiae
and filamentous differentiation and mating in C. neoformans
are stimulated by fermentable carbon sources and activated by
cAMP. Thus, mutations in the G� protein and adenylyl cyclase
lead to a loss of carbon source sensing and defects in devel-
opment in budding yeast and C. neoformans on minimal me-
dium and yet to precocious mating of S. pombe on rich me-
dium. Although the precise roles of components of the cAMP

FIG. 5. Adenylyl cyclase is required for virulence of C. neoformans.
Ten A/Jcr mice were intranasally inoculated with the CAC1 wild-type
strain (diamonds), the cac1 mutant strain (squares), or the cac1 CAC1-
reconstituted strain (triangles). The three groups of mice (30 total)
were monitored for survival over 60 days.
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pathway differ between organisms, the basic functions of G�
proteins and cAMP in nutrient sensing and mating are con-
served among divergent fungal species.

The mating processes of other fungi are also dependent on
nutrient-sensing G� protein-cAMP signal transduction path-
ways. In U. maydis, a basidiomycete plant pathogen, a G�
protein-cAMP pathway regulates mating. Strains with muta-
tions in the ubc1 gene, encoding a PKA regulatory subunit, are
mating defective (19). Additionally, the G� protein Gpa3, ho-
mologous to C. neoformans Gpa1, regulates cAMP signaling,
mating, and virulence in this organism (27). The cAMP path-
way also plays a major role in morphogenesis in U. maydis
because mutants defective in adenylyl cyclase display a consti-
tutively filamentous phenotype (19). As we have demonstrated
here, disruption of the CAC1 gene does not trigger filamentous
growth in C. neoformans.

G protein activation of adenylyl cyclases has been intensively
investigated in other systems, including the slime mold Dictyo-
stelium discoideum. Cell surface receptors sense extracellular
cAMP to monitor cell density signals (22, 26, 50). The cAMP
receptors in turn control intracellular adenylyl cyclase and
PKA activities through G protein activation. The molecular
dissociation and reassociation of heterotrimeric G protein sub-
units in response to receptor activation by the cAMP ligand
were recently demonstrated by fluorescence resonance energy
transfer (24). At present, there is no evidence that fungi ex-
press extracellular cAMP receptors. However, the basic signal-
ing machinery by which G proteins regulate adenylyl cyclases
in response to extracellular signals to control developmental
processes is remarkably conserved.

In addition to regulating mating and differentiation, the C.
neoformans cAMP pathway controls two major virulence fac-
tors: capsule and melanin. There was no difference in the
growth rates of the isogenic wild-type and cac1 mutant strains
at 30 or 37°C, arguing that the phenotypes of the mutant are
not simply attributable to defects in growth. In animal exper-
iments, the cac1 adenylyl cyclase mutant strain had defects in
capsule and melanin that conferred a severe disadvantage in
the host. This strain was completely avirulent in two animal
models with different modes of infection. Therefore, a func-
tioning cAMP pathway is necessary for the expression of vir-
ulence irrespective of animal host or site of infection. Further-
more, in comparison to C. neoformans mutants lacking Gpa1
(15), phospholipase B (11), or urease (12), which are attenu-
ated but not avirulent, the cac1 mutant strain was more se-
verely compromised in the host. This mutational block may
result in an in vivo fungicidal response, which could have ther-
apeutic implications in the design of fungicidal drugs that tar-
get this enzyme.

While the phenotypes of adenylyl cyclase mutant strains are
strikingly similar to those of strains lacking the G� protein
Gpa1, the cac1 mutation confers more severe phenotypes.
Some degree of mating by gpa1 mutants is observed after
prolonged incubation, whereas cac1 mutants are completely
sterile. Higher concentrations of cAMP are required to sup-
press the capsule defect of cac1 mutant strains compared to
gpa1 mutant strains (3). In the murine inhalation model of
cryptococcosis, gpa1 mutant strains are attenuated for viru-
lence but are still capable of causing lethal infections (15). In
contrast, no lethal infections are observed with cac1 mutant

strains. These observations could be explained by a basal level
of adenylyl cyclase activity present in gpa1 mutants but not in
cac1 mutants, possibly implicating other signaling elements
that also act on adenylyl cyclase function. For example, the C.
neoformans RAS1 protein may play a dual role in the regula-
tion of both cAMP and pheromone-responsive pathways (1).
We note that the cAMP measurements (Fig. 1B) showing an
undetectable level of cAMP in the gpa1 and cac1 mutants
argue that the quantitative phenotypic differences between the
gpa1 and cac1 mutant strains may not simply be attributable to
differences in cAMP levels in total extracts prepared from bulk
cultures. We offer three possible explanations. First, since the
cAMP levels were below the limits of detection of this assay,
gpa1 mutant cells may have a higher level of cAMP than cac1
mutant cells that we cannot detect. Second, there may be a
difference in cAMP levels in some cells of the population such
that some gpa1 mutant cells have more cAMP than cac1 mu-
tant cells. Third, there may be differences in localized cAMP
levels that are not detected in total cell extracts. The identifi-
cation of other signaling elements in this conserved pathway
should further illuminate the molecular regulation of microbial
pathogenicity and eukaryotic cellular differentiation.
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