Emotion Regulation and Valance Bias

Drue Marr
University of Nebraska - Lincoln, druemarr12@gmail.com

Catherine Brown
University of Nebraska - Lincoln, catherinebrown@huskers.unl.edu

Maital Neta
University of Nebraska - Lincoln, maitalneta@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch
Part of the Applied Behavior Analysis Commons, and the Cognitive Psychology Commons

Marr, Drue; Brown, Catherine; and Neta, Maital, "Emotion Regulation and Valance Bias" (2016). UCARE Research Products. 35.
http://digitalcommons.unl.edu/ucareresearch/35

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Emotion Regulation and Valence Bias
Drue A. Marr, Catherine C. Brown, & Maital Neta
University of Nebraska – Lincoln

Introduction

Surprised faces can predict both positive (e.g., birthday party) and negative (e.g., car crash) outcomes.

Ratings of ambiguous faces can reveal a person’s “valence bias”, since ambiguous stimuli. Ratings of ambiguous faces can reveal a person’s “valence bias”, since ambiguous stimuli. Objective measures of affect, using psychophysiology, can track this bias. Despite these differences, the more automatic response is negative, suggesting that positivity requires regulation.

Hypothesis 1: Training in emotion regulation would result in more positive ratings of surprise.

Hypothesis 2: Facial muscle movements in the corrugator, as well as electrodermal activity, should reflect emotion regulation ability.

Methods

Participants are successful in regulating their emotions (less negative ratings during reappraise than maintain).

As hypothesized, the participants rated these ambiguous surprised faces less negative after they practiced regulating their emotions. This is an indication that these emotion regulating exercises may be beneficial to those who might have a more negative bias, and those who have difficulties regulating their emotions (anxiety, depression). These exercises could help provide individuals with the tools to develop a healthier and more positive outlook on life.

Results

EMG ratings during the “Maintain” task were lower than those of the “Reappraise” task.

EDA ratings during the “Maintain” task were also lower than the “Reappraise” task.

<table>
<thead>
<tr>
<th>EMG</th>
<th>EDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain</td>
<td>Reappraise</td>
</tr>
<tr>
<td>POS</td>
<td>NEG</td>
</tr>
<tr>
<td>HAPPY</td>
<td>ANGRY</td>
</tr>
</tbody>
</table>

Ratings of surprise are more positive in session 2 than session 1 (after emotion regulation training).

N = 31, ages: 17+

In the first session, participants provided baseline ratings for positive, negative, and ambiguous pictures.

In the second session, participants were taught to regulate their emotions. “Maintain” = experience emotions naturally; “Reappraise” = decrease the negative emotions.

Results, Continued

Participants are successful in regulating their emotions (less negative ratings during reappraise than maintain).

Conclusion

As hypothesized, the participants rated these ambiguous surprised faces less negative after they practiced regulating their emotions.

This is an indication that these emotion regulating exercises may be beneficial to those who might have a more negative bias, and those who have difficulties regulating their emotions (anxiety, depression). These exercises could help provide individuals with the tools to develop a healthier and more positive outlook on life.

References