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Some Comments on the Plasmon Spectrum of Tetrathiafulvalene 
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and 
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Our random-phase-approximation model calculation of the high-frequency dielectric re- 
sponse of a quasi-one-dimensional metal is generalized to the case of n conducting strands 
per unit cell. For a model of the two-band system tetrathiafulvalene tetracyano-p-quinodi- 
methane we obtain good agreement with recent experiments, and also predict an acoustic- 
plasmon branch, Some implications for the physics of the material are discussed. 

The f i rs t  experimental determination of the 
plasmon spectrum in a quasi-one-dimensional 
conductor has recently been reported by Ritsko 
et  al .' They found that the organic metal tetra- 
thiafulvalene tetracyano-p-quinodimethane (TTF- 
TCNQ)' displays an unusual plasmon response 
qualitatively consistent with the predictions of 
our model calculation3 for a simple quasi-one- 
dimensional metal in the random-phase approxi- 
mation (RPA). The predictions include negative 
dispersion, the absence of Landau damping, and 
a strongly angle-dependent long-wavelength plas- 
ma frequency. Our model, however, was not 
designed to represent a two-band system such a s  
TTF-TCNQ,4'6 and detailed agreement with ex- 
periment was lacking. 

Here we extend our calculation to a two-band 
model more nearly representative of TTF-TCNQ. 
We find that much of the discrepancy between the- 
ory and experiment i s  removed, and that com- 
parison of the two provides fresh insight into the 
electronic structure and optical properties of the 
material. Further, our analysis predicts a sec- , 

Equation (1) replaces Eq. (5) of Ref. 3, and we have defined 

S ~ ( ~ ) ~ C ~ ~ ~ * ( & + ~ ) V ~ ~ ~ ( & + G ) .  

ond, low-frequency plasmon branch, acoustic in 
the limit of zero interchain bandwidth and experi- 
mentally signficant a t  short wavelengths . 

The model of Ref. 3 consisted of a periodic a r -  
ray of parallel, infinite, metallic strands, em- 
bedded in a uniform medium of dispersionless 
dielectric constant E ,, and coupled to one another 
only by their mutual Coulomb interaction. As we 
remarked in Ref. 3, the model in this simple 
form does not apply directly to a material such 
as TTF-TCNQ, whose crystal structure consists 
of four conducting chains (two each of stacked 
TTF and TCNQ molecular ions) per cross-sec- 
tional unit celL7 To treat such cases, we gener- 
alize the model to include n distinguishable 
strands per unit cell. 

Our analysis proceeds in parallel with our orig- 
inal ~ o r k , ~  and employs essentially the same 
notation. If , y j ( q , W )  [Ref. 3, Eq. (6)] i s  the coq -  
plex density-density response function8 and pj(Q) 
[ ~ e f ,  3, Eq. (3)] the molecular form factor for 
conduction electrons on the jth strand of the unit 
cell, thetotal potential due to an applied poten- 
tial V,,t(Q) is 
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-. 4 * 
The relations (1) and (2) represent an infinite se t  of coupled linear equations in V,,,(Q), V,,,(Q+ G), 

. . . . We multiply these by Bi*(Q+ G') and sum over al1 G' to obtain 

where the effective interchain Coulomb interaction i s  [cf. Eq. (7a) of Ref. 31 - -  - - - - .  uij(6)= ( ~ T ~ ~ / E , ) c G P ~ * ( Q +  G)P~(Q+ G) IQ+  G/ 

T&einverse dielectric tensor components ~ ~ ' ( 6  
+ G,Q,+ Go,S1) can be found by solving (3) for the 
Sj and substituting into (1). To determine the 
plasmon spectrum, however, we need only note 
that a t  a plasmon pole, the response to an infini- 
tesimal driving force i s  finite, so  that the plas- 
mon dispersion i s  completely specified by the ze- 
ros  of the n Xn secular determinant: 

We now consider the particular case of TTF- 
TCNQ. For the moment we neglect the small in- 
terchain b a n d ~ i d t h s , ~  as in Ref. 3. In this limit 
the one-electron band s t r ~ c t u r e ~ ' ~  contains two 
doubly degenerate one-dimensional conduction 
bands chemically constrained to cross at the Fer- 
mi level, and the response function xj(q9o) for 
each i s  of the one-dimensional tight-binding form 
[ ~ e f .  3, Eq. ( l l ) ] .  As in Ref. 3, we find i t  con- 
venient and sufficiently accurate to approximate 
the form factors B j  by representing the molecular 
orbitals a s  anisotropic Gaussians centered a t  the 
appropriate lattice sites.' With these approxima- 
tions, the distinction between crystallographical- 
ly inequivalent chains of like molecules becomes 
academic, and the plasmon problem reduces to 
the case n = 2 .  

We have solved Eq. (5) numerically for two an- 
gles of plasmon propagation, 6, relative to the 
conducting b axis. Our results for Q in the crys- 
tallographic a-b plane7 are  compared with exper- 
iment in Fig. 1; results for the b-c* plane a re  
similar. Here we have employed the known cell 
constants7 a ,  b ,+e* and Fermi wave numberg k ,  
= 0.28n/b7 and have chosen Gaussian orbital ra-  
d i i (p j0 ,  p j , ,  pj , , )of  2,5, 1.8, 3 .5AforTCNQ 
and 2.0, 1.8, 2.0 A for TTF,  consistent with the 
extent of molecular charge d i s t r i b ~ t i o n s . ~  Since 
neither E, nor the bandwidths Uil and W ,  are  ac- 
curately known, they were regarded as adjust- 
able over a range consistent with recent calcula- 
t i o n ~ . ~  The final values W ,  = 0.4 eV, W, = 0.2 eV, 
E , =  1.5 were chosen so  as to reproduce the long- 
wavelength plasma frequency at 6 = 0" and to give 
a good fit to experiment elsewhere. This fit i s  
by no means unique, and we regard Fig. 1 as il- 

' lustrative. 
In addition to the usual optic branch, a second, 

acoustic-plasmon mode appears in Fig. 1. The 
sole condition for i ts  occurrence when n = 2 is 
that the two Fermi velocitites, v ,, and u,,, be 
unequal. Thus the prediction of an acoustic 
branch is more general for the quasi-one-dimen- 
sional case than for isotropicl0 two-band systems. 

The presence of a plasmon pole in the very-low- 
frequency inverse dielectric tensor can have im- 
portant effects upon the strengths of BCSIO o r  
Peierlsl1 interactions. We note, however , that 
interchain hybridization516 in TTF-TCNQ will al- 
te r  the low-frequency dispersion a s  Q- 0, and 
that our description i s  also incomplete insofar as 
i t  neglects the electron-phonon coupling and the 
exchange . 

For s m d l  Q the acoustic mode propagates with 

FIG. 1. (a) Plasmon dispersion and expected electron 
scattering intensities for  propagation along the b axis. 
Intensities a r e  in units of 7Wp/2. The shaded a r e a  in- 
dic ates the range of single-particle excitations . Exper- 
imental points a r e  from Ref. 1. (b) Same a s  (a) except 
for propagation direction in the a-b plane and making 
an angle 45" with the b axis. 
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velocity 

The ilonlocal screening in our model raises  v, above both v,'s and precludes Landau damping. Since 
u, < c , the acoustic plasmons do not radiate. 

To evaluate the importante of the acoustic mode for+anitnelec~ron-scattering experiment like that of 
Ref. 1, we examine the relevant loss function,12 Imc''(Q,Q, w(Q)b, for the two branches. For n = 2 we 
have from (3) and (1) that 

The resulting intensities appear in Fig, 1. 
At long wavelengths, the 0 = O  optic and acous- 

tic modes correspond, respectively, to in-phase 
and 180" out-of-phase charge oscillations on the 
unlike chains, whereas near the Brillouin zone 
edge the upper branch becomes purely a strand-1 
(TCNQ) excitation and the lower branch purely 
strand-2 (TTF). Hence the pole strength, which 
resides entirely in the optic mode and exhausts 
the f -sum rule a s  Q -O, i s  more evenly divided 
between the two branches a t  the zone edge. 

Acoustic plasmons whose energies a r e  smaller 
than the largest W can relax into the single-par- 
ticle continuum via a low-frequency phonon. To- 
gether with the weak scattering intensity, the re- 
sulting broadening may r ender the low- frequency 
part  of the acoustic branch experimentally un- 
observable. 

At large Q, on the other hand, the two branches 
a r e  on a more nearly equal footing, and both 
should be detectable. Ritsko e t  al .' do not re-  
solve two branches, but do report an anomalous 
increase in apparent linewidth as the zone edge 
is approached. Our results for both 0 = O o  and 
6 =45" suggest that a t  least part of this increase 
may reflect the growing relative strength of the 
acoustic mode rather than any increase in r e -  
laxation rate. In any event, we agree with the 
authors of Ref. 1 that plasmon damping in this 
regime is probably dominated by multipair ex- 
citations or (perhaps more likely) the strongly 
coupled13 high-frequency intramolecular optical 
phonons. 

At 0 = O o ,  our calculated high-frequency plas- 
mon spectrum agrees closely with experiment 
and display S the negative disper sion expected3 
for W sufficiently smaller than o,. Macroscopic 

* ' electrodynamics requires that as Q- 0, the fre- 
quency of the optic branch behaves as w, cose, 
provided that E ,  i s  isotropic and that no current 
flows perpendicular to the ~ t r a n d s . ~  That the 
experimental angular dependencel is slower than 
cose (cf. Fig. 1) suggests that a t  least one of 
these conditions is violated. We neglect the un- 
known anisotropy of E ,  and consider the effect 
of a finite interchain bandwidth. The frequency 
of the optic mode a t  long wavelengths is now 
w2(Q = 0) cos2e +wpi2 sin28. Expressing the 
anisotropy in w, in te rms  of an anisotropic ef- 
fective mass, we deduce from the 0 = O 0  and 6 
= 45" experimentsl that the anisotropy in the band- 
width is roughly W , / T V l , ~ ( b ~ p , / ~ ~ p l , ) 2 "  0.03 in 
agreement with band-structure ca l c~ la t i ons .~  

The results of Ref. 1 also carry implications 
for  the high-frequency optical conductivity. We 
underscore the authors' remark that the observa- 
tion of the lowest-lying well-defined plasmon 
mode a t  0.55 eV places a s t r ic t  upper limit upon 
the (lifetime-broadened) effective single-parti- 
cle bandwidth. Optícal experiments, l" on the 
other hand, show a small but significant intra- 
band conductivity persisting to energies a t  least 
a s  large a s  the f i rs t  high-frequency absorption 
threshold near 1 eV. In this regioil, the simple 
Drude absorption mechanism clearly cannot ob- 
tain, Plausible alternatives include excitations 
of a single electron-hole pair plus a high-fre- 
quency intramolecular optical phonon, l3 or else 
the optical generation of plasinons via the elec- 
tron-lattice intera~tion.~ '  12* l5 In either case, 
the apparent "Drude" parameters derived at high 
frequencies need not bear upon the low-frequency 
conductivity, and inferences about the mechanism 
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of dc transport drawn from such comparisons16 
must be regarded with caution. 
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