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Introduction 

This study is focused on heat transfer in fins and slab 
bodies by the method of Green’s functions (GF). The 
method is powerful because a small set of GF can be 
used to find temperatures caused by many different 
boundary conditions and internal heating conditions. 
The method is systematic because if the GF is known, 
an expression for the temperature can be written imme-
diately according to a straightforward algorithm. Un-
fortunately, the power of the GF method has proved to 
be something of a barrier to its widespread use. Discus-

sions of the GF method generally involve a high level of 
abstraction, covering several differential equations, mul-
tiple coordinate systems, three-dimensional geometries, 
and so on. In this study, the discussion is limited to fins 
and slab bodies to make the GF method more accessible 
to undergraduate students. 

Another barrier to wider use of the GF method has 
been the daunting task of finding the GF itself. This study 
emphasizes use of an existing collection of GF to solve 
engineering problems. This approach exposes students to 
a broader landscape of analytic solutions than is typically 
present in heat transfer textbooks, with a minimum time 
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investment, at a mathematical level consistent with cur-
rent undergraduate courses. The task of finding the GF for 
new applications may be deferred to an advanced course. 

Next, a review of pertinent literature will be given in 
the areas of GF, fins, and computer programs for student 
learning in heat transfer. In the area of GF, the method 
was first applied to heat conduction early in the twenti-
eth century by Carslaw [1]. Later Carslaw teamed with 
Jaeger to produce an enduring reference on analytical 
heat conduction and the GF method. The 1959 edition of 
their book has never gone out of print [2]. Perhaps sub-
sequent researchers turned away from analytical meth-
ods as digital computers took center stage. However, in 
the last few years the GF method has been undergoing 
something of a revival, with several books entirely de-
voted to GF [3–6]. 

In the area of fins, the mathematical theory for heat 
conduction in fins was pioneered by Harper and Brown 
in 1922 [7] and refined by Garder in 1945 [8]. Jakob in-
cluded a discussion of fins in his influential 1949 book 
[9], and since then fin analysis has been included in es-
sentially every heat transfer text. There is an enormous 
literature of numerical solutions to heat transfer in fins 
which cannot be discussed here. However there is one 
paper that deserves mention for a discussion of fins with 
a variety of boundary conditions [10] solved by the GF 
method. The GF are computed numerically with a Galer-
kin-based integral method. In contrast, in the present pa-
per the GF for fins are given as analytical expressions. 

Next, the literature will be discussed in the area of 
computer programs designed for student learning in heat 
transfer. Some programs contain compilations of ready-
to-use formulas drawn chapter-by-chapter from a specific 
textbook (for example [11]). Other programs are intended 
to stand alone or to supplement a course on heat trans-
fer. One such program for one-dimensional transient con-
duction in solids was created by Haji-Sheikh [12] for the 
DOS operating system. The program has a graphical user 
interface, and the numerical results are computed from 
Galerkin- based GF [13]. Another stand-alone program 
for one-dimensional conduction, written for the Windows 
operating system by Ribando and O’Leary [14], uses a fi-
nite-difference method for the numerical results. 

Recently, programs to enhance student learning of 
heat transfer have begun appearing on the world wide 
web. A web-based program described by Somerton [15] 
contains Nusselt number correlations for predicting con-
vection heat transfer. The correlations are classified by 
the type of convection present (forced, free, or mixed), 
the type of fluid flow present (external or internal), and 
the surface geometry. The correlations are drawn from 

established heat transfer textbooks, and full citations are 
given. Use of this system can enhance the ability of stu-
dents to make good choices for predicting the behavior 
of physical systems. 

The author maintains an internet site devoted to GF 
called the GF Library [16,17]. The purpose of the GF 
Library is to catalog known GF and to promote the GF 
method. The GF Library also serves as a supplement to 
a senior course in heat transfer and a graduate course in 
heat conduction. The GF are organized by equation type, 
coordinate system, body shape, and type of boundary 
conditions. Specific GF may be found through the table 
of contents or from a search of the site. The site also in-
cludes a brief introduction to the GF method, some ex-
amples, and supporting material. 

This article makes two contributions. First, the 
method of GF is applied to heat conduction in fins and 
a comprehensive listing of the associated GF is given. 
Although fins were briefly discussed in our 1992 book 
on GF [5], to the author’s knowledge there has been no 
treatment of fins that includes a complete listing of the 
GF for fins. Second, computer programs are described 
that provide expressions for analytical solutions for heat 
conduction in fins and slab bodies, topics traditionally 
included in an undergraduate course in heat transfer. 
Since the solutions are based on the GF method, a wide 
variety of heating conditions are treated. These programs 
are intended to improve student learning. 

The remainder of the study is divided into sections, 
including: heat conduction in fins; the GF method; new 
computer programs for heat conduction; open-source 
software; computer display of math content; and, the 
conclusions. 

Heat Conduction in Fins 

Consider the steady temperature in a fin of uniform cross 
section, which satisfies the following second order, lin-
ear, differential equation: 

             (1) 

Here m2 = hP/(kA)describes heat loss by convection 
from the side of the fin where h is the heat transfer co-
efficient (W/m2/K), P is the fin perimeter (m), A is the 
cross section area of the fin (m2), and k is the thermal 
conductivity (W/m2/K) Term g(x) represents volume en-
ergy generation within the fin (such as by electric heat-
ing or chemical reaction); this term is included to dem-
onstrate the versatility of the GF method. Domain R may 
include (∞, ∞) for the infinite fin, (0, ∞) for the semi-in-
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finite fin, or (0, L) for the finite fin. The boundary condi-
tions at the ends of the fin may be of several types, all of 
which are described by the following condition: 

 (2) 

Here xi is located on the ith boundary and direction ni 
is the outward normal on the ith boundary. The general 
boundary condition (Equation 2) represents one of sev-
eral boundary types, as follows: for type 1, set ki = 0 and 
hi = 1 to give T(xi) = fi (specified temperature); for type 
2, set ki = k and hi = 0 to give kdT/dni = fi (specified heat 
flux); and, for type 3, set ki = k and hi = h for specified 
convection. The boundary condition of type 0 describes 
the condition where there is no physical boundary, for 
example at x → ∞ in a semi-infinite fin, where both dT/
dx → 0 and T – T∞) → 0. 

Green’s Function Method 

In this section, the temperature in the fin will be given 
with the GF method. Like many analytical solution tech-
niques, the GF method requires that the differential 
equation be linear, the boundary conditions be linear, 
and that the boundary conditions be applied at regular 
boundaries, all of which apply to the fin problem given 
above. The GF itself represents the response of the fin to 
a point source of heat which may, with superposition, be 
used to construct the desired temperature solution. Other 
names for the GF include impulse response, fundamen-
tal solution, and influence function, among others. 

The Dirac delta function, sometimes called the unit 
impulse function, is central to the GF method. The prop-
erties of the Dirac delta function that are needed for the 
GF method are given in Table 1. 

The GF for the fin satisfies the following equations: 

                 (3) 

 (4) 

Note that the above equations are similar to the temper-
ature problem, except the energy generation term is re-
placed by a Dirac delta function and the boundary condi-
tions are homogeneous. Most importantly, the boundary 
conditions must be of the same type as the specific tem-
perature problem of interest. The GF G(x|x0) represents 
the heat transfer response at observation point x to an in-
finitesimal heat source located at point x0. An important 
property of the GF is that the GF is symmetric with re-
spect to position: G(x|x0)=G(x0|x): This is called the rec-
iprocity relation. 

The temperature solution is constructed from a suit-
able distribution of the GF within the body so as to re-
produce the heating conditions. The temperature in the 
fin is given by: 

(5) 

This is the GF solution equation for steady heat conduc-
tion in the fin, for a derivation refer to the Appendix. The 
summation over i is used to represent the contribution 
from boundaries of type 2 or 3, and the summation over 
j is used to represent the contribution from boundaries 
of type 1. There are, of course, a total of two boundar-
ies for fins of finite extent (0 < x < L). The above no-
tation also applies to semi-infinite or infinite bodies, if 
one or zero boundary terms are included, respectively. 
The above expression represents the solution to a wide 
variety of fin problems, with different heating and cool-
ing conditions, including internal heat generation. In the 
next section, a number system is introduced that is use-
ful for keeping track of the many different possible fin 
solutions that can be treated by the GF method. 

Number System 

A number system is essential to identify various GF for 
storage and retrieval on a computer. The GF number has 
the form “X– –” where the X represents the coordinate 
system and the “– –” represent two digits, one each for 
the type of boundary conditions. For example, designa-
tion X12 represents a GF with a type  1 boundary at x = 0  

Table 1. Properties of the Dirac Delta Function,  
δ(x – x′) 
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and a type 2 boundary at x = L. As another example, des-
ignation X10 represents a GF with a type 1 boundary at 
x = 0 and the other boundary is nonphysical, that is, the 
fin is semi-infinite. 

The number system also extends to precise descrip-
tions of temperature distributions with the addition of 
descriptors for boundaries, generation, and initial condi-
tions. Boundary information is identified by prefix “B,” 
generation by prefix “G,” and initial condition by prefix 
“T.” Numbers following the letter prefixes indicate the 
value specified. Number “0” denotes zero effect; num-
ber “1” denotes a constant effect; and a dash “–” denotes 
a nonconstant effect. For example, descriptor “B11” de-
notes a constant heating condition at each of two bound-
aries; and, “G–” denotes a nonconstant energy-genera-
tion effect in the body. An example is given later of the 
number system applied to a fin. 

The number system also applies to transient heat con-
duction, to other coordinate systems, and to multidimen-
sional problems. Further details of the number system 
may be found elsewhere [5]. 

GF for Fins 

The GF needed for all the fin problems discussed above 
are designated XIJ where I, J=0, 1, 2, 3. The GF for 
these geometries is given by 

 (6) 

where the coefficients depend on the type of boundary 
conditions at boundaries i=1,2 and are given by: 

 (7) 

Here Bi = hiL/k is the Biot number at boundary i. For a 
derivation of the above GF for the slab-body cases (0 < 
x < L) see Reference 18. 

Program TFIN 

In this section, a computer program is described that 
provides a formal solution for temperature in a fin by 
the method of GF. These formal solutions have not been 

stored in advance, but they are assembled, on demand, 
according to Equation (5). 

Program TFIN is a tool for teaching and demonstrat-
ing the GF method. The program exposes students to 
several aspects of the GF method, including: that several 
types of boundary conditions that can be treated analyti-
cally; that superposition can be used to find the response 
to multiple simultaneous heating conditions; and, that 
diverse heating effects may be categorized by a number-
ing system. The temperature result from program TFIN 
is an analytical expression, and additional analysis is 
needed (differentiation and/or integration) in order to 
find numerical values for the temperature, the heat flux 
from the fin, and the fin efficiency. 

Program TFIN, when run, displays a window that of-
fers several choices to the student as shown in Figure 1. 
The student enters information through buttons or pull-
down menus concerning fin geometry (infinite, semi-
infinite, or finite), boundary conditions, and any inter-
nal heating. As information is entered, it is encoded in 
a Heat Transfer Number which is displayed at the bot-
tom of the window. Alternately, the student may directly 
enter the Heat Transfer Number. Once the student has 
set all the desired conditions, the student must click on 
“Show Temperature” to direct the program to do the fol-
lowing: parse the displayed Heat Transfer Number for 
its content; assemble the requested temperature expres-
sion as a LaTeX file using an algorithm based on Equa-
tion (5); process the LaTeX file; and, display the results 
on screen. 

Figure 1. Main window for program TFIN provides for user 
input of fin size, end conditions, and internal heating condi-
tion. This information is encoded in a heat transfer number. 
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Program TFIN automatically configures itself to the 
computer operating system, and it has been tested on 
computers running Linux, Win2000, and WinXP. How-
ever, program TFIN should run on any computer running 
Perl, Tk, and LaTeX in a sufficiently current version. All 
this software is generally part of the standard distribu-
tions of Linux and Unix. Windows users will have to in-
stall Perl, Tk, and LaTeX which are available at no cost 
if downloaded from the internet. Information on down-
loading and installing required software is available in 
the file “readme.txt” distributed with the program. 

Next an example of the use of program TFIN will be 
given. Consider a long fin with base temperature of T1. 
The sides of the fin lose heat by convection to a fluid at 
T∞. There is no internal heating. When this information is 
entered into program TFIN the computer display takes on 
the form shown in Figure 1. The GF number for this case 
is X10, and the heat transfer number is X10B1G0. Fig-
ure 2 shows the computer display after the button “Show 
Temperature” is clicked. The output display includes: the 
differential equation for temperature; the boundary condi-
tions; a formal expression for the temperature involving 
the GF designated by symbol GX10; and, a formula for the 
particular GF needed for this case. 

The temperature expression given by TFIN is not cal-
culator-ready, so the student must do additional work to  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

find an expression which can be evaluated numerically. 
For case X10B1G0, the student must differentiate the 
GF with respect to x′ and evaluate at x′ = 0 to find: 

T(x) – T∞ = (T1 – T∞)e–mx                 (8) 

This result is given in many heat transfer texts. 
This concludes the discussion of steady heat trans-

fer in fins. In the next section, transient heat conduction 
in slab bodies, with no fin effect, is treated by the GF 
method. 

Heat Conduction in Slab Bodies 

In this section, unsteady heat conduction in one-di-
mensional planar bodies is discussed (such as walls, 
slabs, plane layers etc.). Side heat losses (fin losses) are 
not included. Consider the following boundary value 
problem: 

(9) 

 (10) 

 (11) 

The boundary conditions represent several different spe-
cific conditions at boundary i, as in the earlier discus-
sion of fins. Additional issues, not present in the earlier 
discussion of fins, include: an initial condition; bound-
ary conditions that may be a function of time; and, inter-
nal heating that may be a function of both position and 
time. 

The temperature solution, found by the method of GF, 
has been discussed several times in the literature [5,6], 
so at present the formal solution will simply be stated 
without further discussion. If the GF is known, the tem-
perature solution is given by 

 (12) 

Figure 2. Output of program TFIN for the temperature in a 
fin, case X10B1G0, showing an expression for temperature, 
along with the associated differential equation, heating condi-
tions, and Green’s function. 
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The GF required in Equation (12) satisfies: 

 (13)

 (14)

 (15) 

Expressions for the specific GF, cases XIJ, are given in 
several books (see for example References 4 and 5) and 
are also available on the internet site called the Greens 
Function Library [17]. 

Steady Cases X00, X20, X22 

Special treatment is needed for steady heat transfer in 
nonfin slab bodies designated X00, X20, and X22. In 
these cases, the GF as defined by Equations (13)–(15) 
does not exist. However a modified GF may be defined 
by adding term 1/V to the differential equation where V 
is the volume of the domain and by relaxing the con-
dition that the GF must vanish at infinity (see for ex-
ample [3]). The modified GF may then be used in the 
temperature solution Equation (12), with additional con-
straints, as follows: the input heat to the body must sat-
isfy an energy balance; and, the resulting temperature is 
unique only up to an additive constant. Physically, these 
constraints arise because in these geometries there is no 
global “heat sink” to which introduced heat can flow 
(there are no type 1 or 3 boundaries present). An addi-
tive constant is allowed because at physical boundaries 
only the derivative of temperature is specified, not the 
temperature itself. These constraints do not apply to fins 
for which the side-heat losses provide a heat sink. 

Program TSLAB 

In this section, a computer program is described for 
transient heat conduction in bodies of uniform cross sec-
tion. Steady heat transfer is also included along with the 
special cases discussed above. Program TSLAB is sim-
ilar in operation to that of program TFIN, with addi-
tional choices appropriate for the possibility of transient 
heat transfer, including: initial condition; time-varying 
boundary conditions; and, time-varying energy genera-
tion. Next an example for program TSLAB is given. 

Consider a slab body, initially at uniform temperature 
T0 suddenly heated at x = 0 by heat flux q1 and cooled at 
x = L by convection to a fluid at temperature T∞. The GF 
number for this case is X23, and the heat transfer number  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is X23B11T1. To save space, the input display for pro-
gram TSLAB is not shown, however it is quite similar 
to that for TFIN with the additional choice of steady or 
transient heat transfer. The output display of program 
TSLAB for heat transfer number X23B11T1 is shown in 
Figure 3. The boundary value problem for temperature 
is given, followed by an integral expression for the tem-
perature and a series expression for GX23. 

Open-Source Software 

Programs TFIN and TSLAB produce output in LaTeX 
format. LaTeX is the typesetting standard for the Amer-
ican Mathematical Society, and it is available for free 
for a variety of computer operating systems. LaTeX 
was also used because the GF were already available in 
this format in the GF Library [17]. Programs TFIN and 
TSLAB were written in Perl with graphics library Tk. 
Perl was chosen both for its strength with string manipu-
lation and because it is an open-source language. 

An open-source language was specifically chosen for 
this project because it will run on a variety of computer 
operating systems and supporting software needed by 
the user is available at low (or zero) cost. Cost is partic-

Figure 3. Output from program TSLAB for temperature as it 
appears on a Windows computer for case X23B11T1G0. 
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ularly important to students and educators. Open-source 
software was also chosen, in part, to avoid putting too 
much “stock” into a single software company. The au-
thor intends to develop additional programs in the com-
ing years, perhaps in the coming decades, and to invest 
time and effort in software that depends upon the finan-
cial health of a single software company is risky. Just as 
a financial portfolio should be diversified to reduce risk, 
open-source software is supported by a diverse commu-
nity of users and software developers that are indepen-
dent of any single software company. 

Open-source code is not for everyone, however. Pro-
grams written in an interpreted language such as Perl/
Tk generally must be distributed as source code, not as 
a compiled binary. Since anyone can look at the source 
code, the intellectual property is “given away” with the 
program, and generally such code does not produce 
royalties. 

Programs TFIN and TSLAB are distributed as free 
software. The programs are copyrighted by the author 
and distributed under the GNU General Public License, 
with the intention that the programs will remain avail-
able for re-distribution and/or modification by anyone in 
the hope that it will be useful, but without any warranty 
whatsoever [19]. 

Math Standards for Computers 

Several educators, upon seeing programs TFIN and 
TSLAB, have asked if a version exists in their favor-
ite symbolic software such as Maple, Mathematica, etc. 
The answer is no, as the author has chosen open-source 
software as discussed above. However, anyone is free 
to alter programs TFIN and TSLAB, under the General 
Public License, to add a “translation module” to port the 
output into a symbolic program. This would produce 
a narrow application tailored to a single symbolic pro-
gram. A broader solution would be possible if there were 
a standard syntax for math that all symbolic math pro-
grams could use. Although typesetting standard LaTeX 
is useful for display of math, what is needed is a stan-
dard syntax for math content. As the world wide web 
has become a potent force for cross-platform software 
development, the future of math and computers proba-
bly lies with web browsers. 

In February 2001 version 2.0 of MathML, which 
stands for mathematics markup language, was an-
nounced as a recommendation by the World Wide Web 
Consortium [20]. MathML is likely to evolve into a 
widely accepted standard for display of math and for en-
coding math content on the world wide web [21]. The 

latest version of several web browsers already support 
some aspects of MathML, but more development is 
needed. For example, MathML is too verbose for people 
to write directly (except for the simplest expressions), so 
that authoring tools will also be needed before MathML 
can be widely used. Several authoring tools are under 
development or are in beta testing [22]. 

The author’s hope is that MathML translation soft-
ware will soon be developed to convert LaTeX into 
MathML, and that many symbolic manipulation pro-
grams will soon accept MathML as an option for import-
ing data. How soon will this be possible? Early versions 
of LaTeX to MathML translation tools for math display 
are already under development by the open-source com-
munity. A few proprietary conversion tools already ex-
ist as browser plug-ins that produce MathML output. 
Several companies that sell symbolic manipulation pro-
grams are publicly committed to support of MathML in 
their products, and some math programs currently sup-
port MathML output for display in a web browser. How-
ever, the “import” of MathML into symbolic math pro-
grams may have to wait for additional development of 
the MathML standard for math content. 

Conclusion 

Exact solutions will always play a role in engineering 
practice for checking purposes and for precisely quan-
tifying the accuracy of fully numeric codes. Students 
need to develop a balanced understanding of the uses of 
both analytic and numeric methods. In this paper, the GF 
method is discussed for fins and one-dimensional slab 
bodies, material usually taught in an undergraduate heat 
transfer course. Computer programs TFIN and TSLAB 
are intended to expose students to the breadth of con-
ditions that may be treated analytically in the hope that 
they will be better informed on the use of both analytic 
and numerical methods. 
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Appendix: GF Solution for Fins 

In this appendix, the temperature solution in fins is de-
rived with the GF method. The derivation begins with 
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the reciprocity relation applied to the differential equa-
tion for the GF: 

 (16) 

The next step is to rewrite the temperature equation 
with a simple change of variables x → x′ and let θ = T(x′) 
– T∞ to give: 

 (17) 

Multiply Equation (16) by θ and multiply Equation 
(17) by G and subtract, the result is: 

(18) 

Note that the term involving m2 cancels. Now inte-
grate with respect to x′ over domain R and use Table 1, 
property 3 of the Dirac delta function (sometimes called 
the sifting property) to find: 

 (19) 

The second term is the contribution to the tempera-
ture from the energy generation in the form of a super-
position integral over the domain. The first integral term 
in the above equation will now be simplified. Consider 
just the first integral term from Equation (19) and per-
form integration by parts (in two- or three-dimensional 
bodies Green’s theorem is needed): 

 (20) 

For the moment, domain R has been replaced by domain 
(x1, x2) so that two boundaries can be discussed. Later, 
notation to include semi-infinite and infinite domains 
will be re-introduced. In the equation above, the term in 
brackets is evaluated at the boundaries and the remain-
ing integral term is zero. 

The boundary terms in the above expression can now 
be simplified with the boundary conditions for G and θ, 
however, the type of boundary condition influences the 
form of the solution. For boundary conditions of type 

2 or 3, the boundary conditions given by Equations (2) 
and (4) may be written: 

 (21) 

(22) 

Now the notation for the outward-normal direction in 
the boundary conditions finds its use. Replace the above 
boundary conditions into Equation (20), and remem-
ber that there is a sign change at x′ = x1 where d/dn′1 = 
–d/dx′: 

 (23) 

Note that all terms containing θ have canceled, and that 
the two remaining boundary terms have been combined 
together into a single sum representing the effect on tem-
perature of boundaries of type 2 or 3. 

For boundary conditions of type 1 the boundaries 
must be treated differently. Go back to Equation (20) 
and use the fact that on type 1 boundaries G = 0 and θ = 
fj, j = 1, 2, so that 

(24) 

Here the outward normal, nj, is used to determine the 
sign of the boundary terms. 

Now the temperature expression can be assembled 
into a general form by combining Equations (19), (23), 
and (24) to give: 

 (25) 

This is the GF solution for fins stated earlier in Equation (5).  
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