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Spin structure at nanojunctions and constrictions
R. Skomskia) and D. J. Sellmyer
Department of Physics and Astronomy and Center for Materials Research and Analysis,
University of Nebraska, Lincoln, Nebraska 68588

~Presented on 14 November 2002!

A micromagnetic Green-function approach is used to investigate the effect of nanojunctions,
constraints, and other obstacles on spin-dependent conduction. Depending on geometry, the
determination of the spin structure involves several types of Bessel functions. A common feature of
the Green functions is the involvement of the domain-wall width of the main phase, which can be
interpreted as the decay length of the magnetization perturbation away from the junction. This
length is typically on the order of 10 nm and independent of the strength of the perturbation. Only
the magnitudeof the magnetization perturbation depends on the strength of the inhomogenity. A
particular feature of the considered structures is that the total spin-dependent scattering cross
section, as estimated from the squared magnetization gradient, exhibits a characteristic real-structure
dependent maximum as a function of the boundary phase or junction dimensions. ©2003
American Institute of Physics.@DOI: 10.1063/1.1558666#

I. INTRODUCTION

Magnetic nanojunctions and other inhomogeneities, such
as granular interfaces, are of considerable interest in the con-
text of spin electronics.1–7 Since the scattering of conduction
electrons depends on the magnetization gradient¹M (r ), the
determination of the micromagnetic spin structure is of great
importance.8,9 In the past, theoretical research has largely
focused on quasione-dimensional structures, which have
been tackled by phenomenological continuum and atomic-
resolution methods.10–14From a theoretical point of view, the
spin structure at granular interfaces and in constrained do-
main walls was first investigated in the context of polycrys-
talline rare-earth transition-metal intermetallics,10 although
various earlier articles, such as Refs. 15–19, anticipate much
of the involved physics. A key feature is magnetization and
energy-density tails extending well into the bulk of the
grains. In hard magnets, the corresponding penetration length
is proportional to the wall-width parameterdo5AA/K1,
whereas in soft magnets it isl o5AA/moMs

2.20 Both lengths
are typically on the order of a few nanometers.

At granular interfaces, both reduced grain-boundary ex-
change and grain misalignment contribute to the perturbation
of the spin structure and define an effective intergranular
exchange.13,14 Furthermore, the reduced exchange at inter-
faces gives rise to a quasidiscontinuity of the magnetization.
In the absence of external fields it has a relative strength of
1/(112A8do /AD), whereD is the thickness of the inter-
face, andA andA8 are the exchange stiffnesses in the bulk
and in the interface region, respectively.14 A detailed com-
parison of continuum and atomically resolved models yields
only minor corrections due to the discrete nature of the layer-
resolved model.13,14

A common feature of the above-mentioned structures is
their one-dimensional nature, but many geometries of inter-
est in spin electronics are quite complicated and cannot be
described in terms of planar models. One key aspect of this
article is to discuss three-dimensional effects.

II. BOUNDARY CONDITIONS

The local magnetizationM ~r ! is obtained by finding and
analyzing the local minima of the free-energy functional

F5E H AF¹S M

Ms
D G2

2K1

~n"M !2

Ms
2 2moM "H

2
mo

2
M "Hd~M !J dV. ~1!

Here Ms(r ) is the spontaneous magnetization,K1(r ) is the
first uniaxial anisotropy constant,A(r ) denotes the exchange
stiffness, andn~r ! is the unit vector of the local anisotropy
direction. H is the external magnetic field, andHd is the
magnetostatic self-interaction field. All parameters entering
Eq. ~1! are local parameters, because they depend on chem-
istry, crystal structure, and crystallite orientation. For ex-
ample, the anisotropyK1(r ,T) is easily changed by varying
the chemical composition.20

For simplicity, we restrict ourselves to linear case, which
is realized, e.g., in weakly textured systems. Nonlinear cor-
rections yield, for example, a wall-width enhancement by a
factor of p/2, but the essential physics remains unchanged.
We start by rewriting the easy axis direction asn(r )
5A12a2(r ) ez1a(r ), wherea~r ! are the transverse vector
components ofn. A similar equation exists forM . Series
expansion yields n5(12a2/2) ez1a and M5Ms(1
2m2/2)ez1Msm. Next we assume thatH5Hez , so that
putting M andn into Eq. ~1! leads to

E5E FA~¹m!21K1~m2a!21
1

2
moMsHm2Gdr . ~2!

a!Author to whom correspondence should be addressed; electronic mail:
rvdskomski@msn.com
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Here we have ignored a physically unimportant zero-point
energy and, in fair approximation,21 incorporated the magne-
tostatic self-interaction intoK1 and H. To minimizeE with
respect tom~r ! we exploit that minimum of any functional
F5*hdV is given by the functional derivativedF/dm(r )
50. Explicitly,

dF

dm~r !
52¹S ]h

]¹m~r ! D1
]h

]m~r !
~3!

so that10

2¹~A¹m!1~K11 1
2MsH !m5K1a~r !. ~4!

This equation means that the polycrystalline easy-axis disor-
der a~r ! acts as an inhomogeneity.

The term¹(A¹m) in Eq. ~4! reflects the local character
of the exchange stiffnessA(r ).19 For sharp phase bound-
aries, the exchange term reduces to the boundary condition

S A~x!
]m

]x D U
xO2«

5S A~x!
]m

]x D U
xO1«

. ~5!

Figure 1 illustrates the physical meaning of this boundary
condition. A jump inA(x) yields a change in the slope of the
perpendicular magnetization componentm(x). Reduced
grain-boundary exchange yields the above-mentioned quasi-
discontinuity of the magnetization, which is unrelated to the
hard or soft character of the involved phases.

III. NANOJUNCTIONS

In the one-dimensional case, the solutions of Eq.~4! are
piecewise exponential, proportional to exp(6x/do(x)). In the
case of arbitrary geometries, it is convenient to rewrite Eq.
~4! as a linear operator equation,Qm5a. The formal solu-
tion of this equation ism5Ga, or, in real space,m(r )
5*G(ur2r 8u)a(r 8)dV8, where G5Q21 is the propagator
of the micromagnetic problem~micromagnetic Green
function!.10 G(r ) is proportional toKd/221(r /r d), whereKm

is Macdonald’s modified Bessel function on the order ofm
and r d is the interaction length of the problem.22 In the ab-
sence of strong magnetic fields,r d'do5AA/K1. Typical do

values are 12.9, 4.4, and 26.1 nm for Fe, Co, and Ni,20 cor-
responding to 51, 17, and 107 interatomic distances, respec-
tively. For one-dimensional problems,G(r ) is exponential,
whereas three-dimensional problems are described by

K1/2(r /r d);exp(2r/rd)/r. Figure 2 illustrates the meaning of
this function by comparing a nanojunction with a one-
dimensional grain boundary.

In Fig. 2~b!, the semi-infinite character of the connected
ferromagnetic bodies does not affectG(r ) very much, be-
cause the boundary conditions discussed above imply that
]m/]r'50 at free surfaces. Surface anisotropies lead to a
partial clamping of the magnetization, although the effect is
less pronounced than in Ref. 23. Note thatr d does not de-
pend on the strength of the inhomogenities. Varying the ex-
change in the interface region in~a! or the size or coupling
strength of the junction in~b! affects the amplitude of the
perturbation but leaves its ranger d unchanged. This compli-
cates the determination of the spin structure at nanojunctions
and similar features from first principles, because the per-
turbed regions tend to contain thousands or even millions of
atoms and because the involved energy differences are very
small. Note that the present spin structures must not be con-
fused with atomic-scale noncollinear structures, which in-
volve higher energy differences and are comparatively easy
to treat with first-principle calculations.

The spin-dependent scattering of electrons at nanojunc-
tions and grain boundaries affects the magnetoresistance of
spin-electronic structures. On a one-electron level, the scat-
tering reflects the spin dependence of the exchange potential
Vs(r i),

3,5,7 so that the resistance is a functional of the local
magnetizationM ~r !. In particular, large magnetization gradi-
ents ¹M (r ) are expected to yield strong scattering
contributions.4 Typical domain walls are smooth and extend
over many interatomic distances, but grain boundaries and
nanojunctions have regions with very large gradients.

A crude measure to gauge the spin-dependent scattering
ability of an interface is the integral*(¹M )2 dx
'Ms

2*(¹m)2 dx. This expression is maximized for inter-
face thicknesses of the order ofD5do A8/A. Most of the
scattering is realized in the nanojunction. In spite of their
extension, the tails contribute very little to the scattering.
Compared to Bloch wall scattering, where*(¹m)2dx

FIG. 1. Boundary conditions and exchange stiffnessA: ~a! hard-soft inter-
face with commonA, ~b! interface between two ferromagnetic phases with
differentA, and~c! quasidiscontinuity due to reducedA in the grain bound-
ary.

FIG. 2. Exchange effects and spin structure:~a! reduced interface exchange
and ~b! narrow junction.
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'1/do , the maximum scattering is enhanced by a factor
A/A8. For example, takingdo515 nm andA850.1A yields
a maximum scattering for boundaries having a thickness of
1.5 nm. For thinner boundaries, the spin perturbation be-
comes delocalized, thereby reducing the average gradient,
and in the limit of zero thickness, the quite small bulk value
1/do is reproduced. Exchange-decoupled grains, where
A8/A'0, would yield the largest magnetoresistance, but
strong reductions ofA8 are likely to negatively affect the
spin injection through the boundary region. Another way of
enhancing the scattering is using nanojunctions, which can
be shown to have a reduced optimum lengthD. For contact
nanojunctions such as that shown in Fig. 2~b!, the optimum
length is proportional to the cross-section area of the junc-
tion. Hard materials, wheredo is small, could also be used,13

but this requires large fields to switch the magnetization di-
rection.

IV. DISCUSSION AND CONCLUSIONS

The range of the perturbationdo is a direct consequence
of the functional structure of Eq.~4!. However, Eq.~4!
amounts a rather crude description of the magnetostatic self-
interaction in terms of shape anisotropy, which scales as
moMs

2 and is incorporated into the anisotropy constantK1 .
First, this ignores long-range cooperative effects such as
flux-closure domains, which may occur in soft-magnetic ma-
terials. Second, in soft magnets the shape anisotropy is much
larger than the magnetocrystalline anisotropy, so that the ef-
fective anisotropy is essentially equal to the shape anisotropy
and the range of the perturbation is on the order ofl o

5AA/moMs
2. This ensures that the range of the perturbation

remains finite in the soft-magnetic limit of zero magneto-
crystalline anisotropy. A similar cutoff is provided by the
external magnetic field, which is included in Eq.~4!.

In conclusion, we have investigated how the spin struc-
ture is modified by imperfections such as grain boundaries
and nanojunctions. Even for well-localized and weak imper-
fections the magnetization perturbation extends several na-
nometers into the adjacent ferromagnetic regions. For thin
films and plane surfaces, the decay is described by exponen-
tial functions, whereas three-dimensional geometries lead to
the involvement of modified spherical Bessel functions.
Models with atomic resolution yield small corrections to the
continuum results, whereas more accurate first-principle cal-

culations are very difficult due to the large number of atoms
and the small energies differences involved. A specific result
of our calculations is that the spin-dependent scattering de-
pends on the geometry, size, and material of the boundary or
junction and exhibits a size-dependent maximum. For ex-
ample, grain-boundary magnetoresistance has a maximum
for some boundary thickness but approaches the very low
bulk limit for very thin boundaries.
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