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* INTRODUCTION

In 1967, Merzhanov, Skhiro, and Borovinskaya
published the first comprehensive paper describing
self-sustaining character of reactions in a condensed
phase, which could be utilized for synthesis of many
ceramic and intermetallic materials [1]. In this paper,
the authors demonstrated the principle of the so called
“solid flame” using reactions between transition metals
and boron, carbon or nitrogen. The world-wide com-
bustion synthesis community considers this compre-
hensive paper and subsequent integrated experimental
and theoretical research effort conducted in the former
Soviet Union as the beginning of a new approach and
method of synthesizing advanced high temperature
materials. The main research was conducted by many
Russian scientists at the Branch of Russian Academy of
Sciences in Chernogolovka under the leadership of Pro-
fessors Merzhanov and Borovinskaya [2–11].

During that period of our history, free exchange of
information among scientists from different countries
was very limited due to the cold war. The main source
of information on research discoveries and accomplish-
ments of Russian scientists available to US and other
researchers was through publications in Russian jour-
nals or their translated versions. Such as 

 

Combustion,
Explosion, and Shock Waves, Doklady Academy Nauk
SSSR, Soviet Powder Metallurgy of Metals and Ceram-
ics, Inorganic Materials, and Doklady Physical Chem-
istry

 

 were the most searched journals in the area of
combustion synthesis. In the early 90s, a new 

 

Interna-
tional Journal of Self-Propagating High-Temperature

 

* Presented at the 

 

International Conference on Historical Aspects
of SHS in Different Countries

 

, October 22–27, 2007, Cher-
nogolovka, Moscow, Russia.

 

Synthesis

 

 was created and it is published quarterly since
its inception.

Self-propagating high-temperature synthesis (SHS)
also called combustion synthesis (CS) is the exothermic
process in which the reaction between two or more
solid reactants or gas and condensed reactants takes
place in a self-sustaining regime leading to the forma-
tion of solid products of a higher value [12–14]. During
the past forty years, hundreds of different compounds,
including, nitrides, borides, carbides, silicides, sulfides,
phosphides, hydrides, and oxides of many elements as
well as intermetallics, composites, nonstoichiometric
compounds, and solid solutions were successfully syn-
thesized by this method [12–18]. Some materials have
been successfully scaled-up and produced by the indus-
try. To this group of materials among others belong:
carbides of titanium, zirconium, tungsten, tantalum,
boron and silicon, titanium diboride, molybdenum dis-
ilicide, aluminum nitride, silicon nitride, nickel alu-
minides, titanium nickelide, zirconium aluminides, and
a number of composites (e.g. TiC–TiB

 

2

 

 and SiC–Si

 

3

 

N

 

4

 

)
or solid solutions such as SIALONs and aluminum
oxynitride (ALON).

REVIEW OF EARLY RESEARCH IN USA 
AND WESTERN COUNTRIES

A historical perspective on research in the area of
exothermic reactions occurring in a self-sustaining
regime was well documented by Hlavacek [19] and
McCauley [16]. In the United States, the first reported
research utilizing self-sustaining character of con-
densed-phase reactions was conducted by Walton and
Poulos [20] in the mid and late 1950s. These authors
explored thermite reactions to make refractory coat-
ings. Mixtures of aluminum and/or magnesium with
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oxides of iron, cobalt, and vanadium were used to pro-
duce different cermets. The authors also explored the
combustion synthesis of silicides, borides, and car-
bides. The use of beryllium as a reducing agent and
reduction of uranium oxide were discussed. Several
other researchers made attempts to synthesize other
materials like aluminum phosphide by direct reaction
between red phosphorous and aluminum powders [21],
tantalum metal by reduction of K

 

2

 

TaF

 

7

 

 with sodium
[22], and the formation of molybdenum disilicide by
direct reaction between molybdenum and silicon pow-
ders [23]. In 1964, Krapf [24] patented the chemical hot
press in which a mixture of reactive powders was
heated in a die by passing an electric current. After ini-
tiation of exothermic reaction, the product was pressed
by a uniaxial force. The concept of pressing hot prod-
ucts generated in strongly exothermic reaction was also
described in 1967 by Stringer and Williams [25].
According to these authors, reaction pressing can be
applied to intermetallic and metal–metalloid com-
pounds generated by fast evolution of energy due to a
chemical reaction between reactant powders. They
claimed that the exothermic effect of reaction in many
cases is sufficient to form plastic product mass which
can be quickly formed to different shapes. The authors
emphasized the use of aluminides, berrilides, titanides,
zirconides, and borides. In 1968, McKenna [26] pat-
ented a process of preparing tungsten monocarbide uti-
lizing exothermic effect generated during the reaction
between elemental powders. In 1973, Hardt and Phung
[27] published a very important paper on propagation of
gasless reactions in solids, which further alerted US sci-
entists about importance of the combustion synthesis.

COMBUSTION SYNTHESIS RESEARCH
IN USA AFTER 1980

After sporadic activities in Western World in the 50s
and 60s, a more significant research effort was made in
the United States starting in early 1980s. In 1982,
McCauley et al. [28, 29] and Holt and Kingman [36]
published new results in the area of combustion synthe-
sis, which generated interest at several universities and
US government laboratories. The review paper on the
SHS activities in Soviet Union written by Crider [37]
also stimulated a renewed interest. The work of
McCauley et al. [29] was initiated from comprehensive
investigation of burning characteristics of zirconium
metal with air and barium chromate for the potential
use of this reacting system in thermal batteries [16, 35].
The basic schematics of a thermal battery and key gas-
less and gas–solid SHS reactions are shown in Fig. 1.

Following this work on zirconium burning charac-
teristics [35], McCauley and his co-workers [28–36]
shifted their activities from using by-products of SHS
to processing, focusing on the following: (i) utilize
reaction sintering concepts without pressure,
(ii) importance of physical and chemical characteristics
of powders, (iii) focus on phase equilibrium, and
(iv) detailed characterization of final sintered products.

Critical issues in reaction sintering are as follows:

• chemical driving forces much higher than conven-
tional sintering,

• if gas forms most diffuse out,

• volume fractions of reactants and products change
with time,

• Kirkendall effects: porosity formation due to den-
sity change between reactants and products,

• wetting between liquids and solid phases becomes
important,
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Fig. 1.

 

 Use of zirconium in thermal batteries [16].
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• grain size reduction from reactants—nucleate new
phases.

A pioneering work of Holt and Kingman [36] was
mainly focused on combustion synthesis of ceramic
powders and refractory materials in general, which was
more aligned with the research activities conducted in
the former Soviet Union’s laboratories.

A turning point in the United States efforts in SHS
was catalyzed by a major contract from the Defense
Advanced Research Projects Agency (DARPA) that
was carried out during 1984–1986. The overall contract
manager was J.W. McCauley and the program manager
was J.B. Holt at the Lawrence Livermore National Lab-
oratory with sub-contracts at The University of Califor-
nia, Davis, Ceramatec, Los Alamos National Labora-
tory, and Rice University.

The key universities, which started research in com-
bustion synthesis in early 1980s included: University of
California at Davis, Georgia Institute of Technology,
State University of New York at Buffalo, and North-
western University. These early research activities were
supported by National Science Foundation, Depart-
ment of Energy (Los Alamos National Laboratory and
Sandia National Laboratory), and US Army. Also, some
research in the area of combustion synthesis was con-
ducted in US government laboratories, especially
Department of Energy, US Army, and US Navy. In the
table, the summary of research activities in academia,
government laboratories, and industry in the United
States at the end of 1980s is presented.

Both theoretical and experimental efforts were
undertaken to explain various phenomena of combus-
tion synthesis. Theoretical research describing combus-
tion front stability and bifurcation analysis was done by
Matkowsky from Northwestern University, and Marg-
olis, Armstrong and Koszykowski from Lawrence Liv-
ermore National Laboratory. Professor Matkowsky has
published numerous theoretical papers on the subject of
gasless and gas–solid reactions [38–52]. His pioneering
work with Margolis, Kaper, and Leaf on bifurcation on
pulsating and spinning reactions in condensed two-
phase combustion belongs to very fundamental classics
of combustion synthesis [39]. His further analysis with
Bayliss of two routes to chaos in condensed phase com-
bustion as well as a series of theoretical papers on filtra-
tion combustion with Booty and scientists from Cher-
nogolovka, Russia made very significant contribution
to better understanding of complex nonlinear phenom-
ena in combustion synthesis. Very accomplished math-
ematicians and theoreticians, such as Shkadinsky,
Shkadinskaya, Aldushin, and Volpert from Russia
cooperated closely with Professor Matkowsky during
the 1990s. Dr. Volpert joined Northwestern University
and he presently works there as a professor of applied
mathematics. Professor Volpert published several
papers with Professor Matkowsky on the theory of gas-
less and various aspects of filtration combustion in
porous structures with and without deformation. He

also contributed to better understanding of combustion
in microgravity environments and mathematical mod-
eling of frontal polymerization and understanding of
wave propagation during free-radical polymerization
with the gel effect [53–63].

A parallel mathematical modeling effort was under-
taken at the State University of New York at Buffalo
under the leadership of Professor Hlavacek who joined
that university in 1981. Professor Hlavacek established
a very active research group which focused its research
on both experimental studies and mathematical model-
ing of self-sustaining reactions and materials engineer-
ing aspects of combustion synthesis. Due to the access
to parallel computer processors in mid 1985, his
research modeling team was able to simulate complex
combustion patterns, including transition to chaos,
breaking of symmetry, fingering effects, multiple spin-
ning waves in two and three dimensions, as well as
complex behavior of the combustion front during gas–
solid reactions [64–76]. Figure 2 shows the transition to
chaos via period doubling in gasless reacting systems.
A typical sequence of spinning combustion waves in
two dimensions is shown in Fig. 3. It should be noted
that these simulations were done using a very sophisti-
cated adaptive mesh computer program, which allowed
completing calculations on available supercomputers
within a reasonable period of time. This computer tech-
nology looks old today, but truly it was the state-of-the-
art twenty years ago.

In the 1990s, Professor Law from Princeton Univer-
sity published a number of papers describing model for-
mulations, mathematical modeling of combustion front
propagation and comparison of key combustion charac-
teristics with experimental results [77–87]. Figure 4
shows comparison of experimental and theoretically pre-
dicted combustion limits for the Co–Ti system [82].

During the same period of time, other researchers
from various universities also contributed to develop-
ment of new reaction models and mathematical model-
ing of combustion synthesis processes. Contributions
by Professors Munir, Stangle [88], Kanury [89], Bhat-
tacharya [90], and Varma [91] are also of very signifi-
cant importance.

The experimental research conducted in the US
national laboratories and US universities resulted in
many accomplishments, which led not only to signifi-
cant contributions into the fields of physics, materials
science, ceramic engineering, and reaction engineering
but also to the development of several technologies,
which resulted in their commercialization.

In academia, Professor Munir, one of the key SHS
leaders in USA has been involved in the area of com-
bustion synthesis from the early 80s. His research activ-
ities at University of California at Davis resulted in edu-
cation of large number of excellent scientists who are
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working in many countries. His selected major research
contributions are listed below [92–105]:

• combustions synthesis of refractory carbides,
borides, silicides, nitrides, and intermetallic com-
pounds (1980s),

• analysis of the role of thermal migration in pore
formation during SHS synthesis (1990),

• theoretical analysis of the stability of self-propa-
gating combustion synthesis waves, concept of SHS
diagrams (1990–1992),

• use of the Boddinton–Laye mathematical analysis
for direct determination of kinetic parameters during
SHS (1992),

• analysis of the origin of porosity in SHS products
(1993),

• the role of electric fields in SHS reactions: model-
ing and experimental work (1995–1998),

• separation of the thermal (Joule heat) from the
intrinsic (electron wind effect) contributions of the field
(current), work on electromigration has demonstrated

 

SHS R&D groups in the United States in late 80s

Organization Principal investigators Technology focus

 

Department of Defense

 

Army Material Technology Lab. Croft, Marzik, McCauley Powder characterization, sintering, phase equilibria

Army Ballistic Research Lab. Niiler, Kottke Dynamic compaction, modeling

Army Research Office Crowson Coordination and management

 

Department of Energy

 

Los Alamos National Lab. Behrens High-temp, chemistry, laser ignition, modeling

Lawrence Livermore National Lab. Holt, Halverson, Chow SHS, bulk materials, models

Sandia National Lab. Margolis Modeling

 

Academia

 

Alfred University Spriggs Materials processing, reviews

Oregon State University Kanury Modeling

Washington State University Wojcicki Materials processing, eutectics

University of California Davis Munir SHS, materials processing, fundamentals

Northwestern University Matkowsky Mathematical analysis

Georgia Tech. Research Institute Logan SHS, materials processing, thermites

Rice University Margrave High temperature mass spectrometry

New Mexico Inst. of Mining & Tech. Thadani Explosive compaction

State University of NY Buffalo Hlavacek, Puszynski SHS, powders, mater, processing, math. modeling

University of California San Diego Meyers Explosive compaction

University of Florida Clark, Dalton Microwave processing

Colorado School of Mines Moore SHS, intermetallics

 

Industry

 

Research Triangle Institute Mullins Fibers and metal matrix composites

CERAMETEC Cutler SHS, powders, thermites

General Sciences Inc. Zavistanos SHS densification

System Planning Corp. Frankhouser Reviews and analyses

Lockhead Corp. Hardt SHS, sintering; phase equilibria

Corning Glass Works DeAngelis Reactive hot pressing

W.R. Grace Rice Materials processing

Advanced Refractory Technologies Blakely SHS powders, whiskers

Innovative Materials, Inc. Puszynski, Hlavacek SHS; nitride, boride, and carbide ceramics; intermetallics

Benchmark Structural Ceramics Hida SHS powders and whiskers

Powder Technologies, Inc.

 

Logan

 

SHS powders and bulk materials

Synergetic Materials, Inc. Halverson Advanced materials

Kiser Research, Inc. Kiser Soviet SHS technologies
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field effect on point defect generation and mobility
(2001),

• recent work on the combined mechanical and field
activation to synthesize dense (bulk) nano-ceramics
and nano-composites in one step (2001—present),

• use of field activation for simultaneous synthesis
and consolidation of complex materials [Ti

 

3

 

SiC

 

2

 

 (1999),
TiB

 

2

 

–WB

 

2

 

–CrB

 

2

 

 (2001), AlN–SiC (1996–2000)],
• use of field activation for microalloying (2003–

2004),
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 Combustion front propagation velocity 
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 in gasless systems with different dimensionless activation energy and heat of reac-
tion vs. time 

 

τ

 

 [68].
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• use of field activation to prepare nanostructured
functional oxides for fuel cell applications: novel dem-
onstration of power generation at room temperature by
protonic conduction.

The main advantage of the field-assisted process is
the electrical discharge at particle contacts which pro-
mote sintering. Numerous materials, including TiN,
TiO

 

2

 

, SiC, Si

 

3

 

N

 

4

 

–TiN, ZrO

 

2

 

–Al

 

2

 

O

 

3

 

, and FeAl, were
sintered during the past several years resulting in the
formation of dense articles with nanosize grains. The
starting powders were obtained by plasma, mechanical
alloying, or sol-gel techniques. A very important mod-
ification of this field-assisted technique was presented
by Munir [93]. It was demonstrated that the combina-
tion of field-assisted technique, such as SPS, and in-situ
synthesis of materials from nanoreactants or mechani-
cally activated powders may result in the formation of
desired phase and consolidated products retaining
nanostructure. Experimental results did show that the
presence of electrical field influences on the mecha-
nism and rate of the condensed phase reaction as well
as the phase composition and elemental distribution in
solid solutions. The main effects of the electric field
during the reaction have been attributed to Joule heat-
ing, enhanced mass transport by electron-migration,
and the formation of plasma on the particle level.
Therefore, the entire process of in-situ densification of
combustion synthesized bulk materials exhibiting a
nanostructure can be divided into three steps:

• mechanical activation of participating reactants,
• cold compaction of pre-alloyed powders,
• field-activated pressure-assisted synthesis.
In the first step, reactant powders are mixed in a sto-

ichiometric ratio and co-milled in a planetary mill in
order to form nanocrystallites. During the milling, the
particles are flattened, fractured, and welded. This pro-
cess of grain size reduction, generation of residual
stresses, and phase transformation has a significant
effect on the kinetics of combustion reactions during
the final consolidation step in the presence of electrical
field.

The second step involves cold-compaction of
mechanically activated powders into a graphite die. The
final step includes simultaneous application of electric
current and uniaxial pressure under the inert atmo-
sphere. In this step, the combustion reaction is initiated
by Joule heating and the hot product is densified within
a few minutes. Relative densities between 90–100% of
the theoretical density can be commonly achieved.

It should be mentioned that Professor Munir has
published many papers and obtained numerous patents
for his innovations of combustion synthesis. In this
review only few selected papers are mentioned [92–
105]. He has also made very important contribution to
the SHS community by reviewing articles on SHS for
many journals, including the 

 

Ceramic Bulletin, 

 

and

 

Materials Science Reports

 

, which are cited by thou-
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 Two-dimensional modeling: (a) single head spinning wave and (b) multiple head spinning waves [64].
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sands and continue to be cited to the present. Professor
Munir has established among US scientists the stron-
gest collaboration with researchers around the world.
He has collaborated with Professors: Frederic Bernard,
University of Burgundy, Dijon, France; Manshi Ohy-
anagi, Ryukoku University, Seta, Japan; Umberto
Anselmi-Tamburini, University of Pavia, Italy; Gia-
como Cao, University of Cagliari, Italy; Manfred Mar-
tin, University of Aachen, Germany; Rainer Telle, Uni-
versity of Aachen, Germany; In-Jin Shon, Chonbuk
National University, Korea; Myeong-Woo Cho, Inha
University, Korea; Roberto Tomasi, Sao Carlos Federal
University, Brasil; Qing-sen Meng, Taiyuan University
of Technology, China; K.A. Khor, Nanyang Technolog-
ical University, Singapore; Z.Y. Fu, Wuhan University
of Technology, China; and Yu. Maksimov, Tomsk Uni-
versity, Russia. He has also ongoing collaboration with
US national laboratories, including collaboration with
Dr. Alex Gash from Lawrence Livermore National Lab-
oratory, USA and Dr. John Neal from Oak Ridge
National Laboratory, USA. Professor Munir has pub-
lished many papers and he was awarded with numerous
patents related to combustion synthesis. In 1993, he
established the American Consortium of Combustion
Synthesis.

The State University of New York at Buffalo
(SUNY/Buffalo) was the second university strongly
involved in combustion synthesis research. As indi-
cated before, Professor Hlavacek built a very large
group of PhD students and research scientists. His inte-
grated approach resulted in a strong development of
combustion synthesis technologies supported by strong
basic experimental research and mathematical model-
ing programs [106–117]. In the mid 80s, Drs. Hlavacek
and Puszynski successfully transferred the technology
of synthesizing aluminum nitride by combustion syn-
thesis technique into Advanced Refractory Technolo-
gies Company located in Buffalo, NY. This company
was the first to produce aluminum nitride by this tech-
nique. In the late 1980s, other technologies for synthe-
sis of silicon nitride, titanium carbonitride, 

 

α

 

- and

 

β

 

-sialons, titanium carbide–titanium boride and silicon
nitride–silicon carbide composites as well as tungsten
carbide and aluminum phosphide were developed by
Drs. Hlavacek and Puszynski. The university spin-off
company Ceramic Materials Processing, Inc. was
involved in manufacturing of ceramic and intermetallic
powders by SHS method, scale-up of combustion reac-
tors, and technology transfer. During the 80s and early
90s, several researchers visited SUNY/Buffalo. Dr.
Puszynski joined Professor Hlavacek’s group in 1982.
In 1991, Puszynski accepted a position at the South
Dakota School of Mines and Technology where he has
been continuing SHS-related work. His research has
been focused on combustion synthesis of nanopowders
and nanocomposites as well as the reaction kinetics in
systems consisting of nanosize reactants [118–126].
Professor Puszynski established close cooperation with
Yerevan State University in Armenia, Academy of Min-
ing and Metallurgy in Cracow, Poland and several US
national laboratories. His recent work indicates that
various intermetallic composites reinforced with single
wall carbon nanotubes can be formed in a self-sustain-
ing regime with the ultimate grain structure being at the
nanoscale (see Fig. 5). His comprehensive work on
combustion synthesis in the Si–Al–Ti–O–N–C system
has led to the formation of many complex compounds
with different morphologies and phase compositions.
His work on chemically-assisted gas transport combus-
tion synthesis led to successful synthesis of nanosize
silicon carbide. Figure 6 shows inert gas pressure
regimes where silicon carbide can be formed. Figure 7
shows different morphologies of silicon nitride formed
with and without the presence of gas-transport promot-
ing additives.

Professor Puszynski has been actively involved in
the organization of technical sessions dedicated to com-
bustion synthesis at various conferences, including the
American Institute of Chemical Engineers and the
American Ceramic Society. Professor Puszynski also
serves as a frequent reviewer of journal manuscripts.
He also serves as a consultant to Noveltec Co. in Ten-
nessee, which is involved in production of variety prod-
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 Nanodiabatic combustion behavior for the Co–Ti
system with stoichiometric mixture at 

 

T0 = 573 K: (a)
Range of flammability as a function of 2r and R0, data are
from Itin et al.; (�) designates the steady propagation, (�)
the flame extinction during the propagation, and (×) the non-
ignition. (b) Burning velocity u0 as a function of 2r, with R0
taken as a parameter, data points are experimental in the lit-
erature.
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ucts, including sialons, carbides, borides, nitrides, and
sulfides by the SHS technique.

Dr. Viljoen spent several years at SUNY/Buffalo in
the late 1980s and early 1990s. Dr. Viljoen work in the
SHS area was focused on fundamental aspects of com-
bustion reactions involving the solid state. After accept-
ing a professor position at University of Nebraska, he
continued his fundamental work focusing on solid–
solid reactions with mechanical coupling, understand-
ing of solitons and non-equilibrium reactions in solid
phases, combinatorial approach to surface contacts in
solid-phase reactions, and analysis of the effect of heat
transfer on combustion front propagation limits [127–
131]. Professor Viljoen also contributed to a better
understanding of strongly exothermic reaction taking
place under strong compression. He also cooperated
with Russian scientists, including Dr. Schteinberg, and
he supervised several Russian graduate students who
joined his research group.

Dr. Lis joined Professor Hlavacek’s research group
in the late 1980s. His research at SUNY/Buffalo was
focused on combustion synthesis of silicon nitride–sil-
icon carbide composites and sialons. He published
jointly with Professor Hlavacek and his key staff sev-
eral papers, which outlined key aspects of combustion
synthesis, processing, and sintering of SHS synthesized
materials. After his return to Poland, he continued

building SHS related programs together with his former
PhD advisor Professor Pampuch. Later, the group
headed by Professors Pampuch and Lis became one of
the most active European groups outside the former
Soviet Union. It should be clearly noted that Professor
Hlavacek educated many excellent Ph.D students who
are currently working in the industry or academia. He
also was the pioneer who introduced many chemical
engineers into the field of combustion synthesis.

In the late 1980s and at the beginning of 1990s, sev-
eral other US universities got involved in combustion
synthesis research. In the early 1990s, Alfred Univer-
sity under the leadership of Drs. Spriggs and McCauley
initiated a research program focusing on further devel-
opment of SHS technologies. With the strategic hiring
of Dr. Stangle, several R&D initiatives were conducted,
including: (i) fabrication of dense MoSi2 and MoSi2-
based composites using SHS process, (ii) combustion
synthesis and fast-firing of nanocrystalline yttria-stabi-
lized zirconia, (iii) fabrication of functionally gradient
materials by SHS method (see Fig. 8 [156, 157]), (iv)
development of a centrifugal SHS process and analysis
of its fabrication capabilities, (v) investigation of the
mechanism and kinetics of combustion synthesis, and
(vi) study of the combustion synthesis process for
materials fabrication. This multi-year research program
resulted in thirty-one publications and international
recognition of an established research center [132–
162].

In addition, the Alfred group established several
international collaborations:

• interactions and formal agreement with NRIM,
Japan (Kaieda),
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Fig. 6. Combustion propagation diagram in Si–C–KClO3
reacting system: NP means no propagation; LTCR stands
for low temperature combustion regime; and HTCR, for
high temperature combustion regime.
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Fig. 5. (a), (b) TEM images of Al and Ni nanoreactants, (c)
reaction chamber, (d) SEM image of nanosized nickel alu-
minide–alumina composite prepared by simultaneous com-
bustion synthesis and densification, (e), (f) SEM images of
single-walled carbon nanotubes reinforced nickel alu-
minide–alumina nanocomposites.
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• formal agreement with the Institute of Materials
Science, School of Mining and Metallurgy, Poland
(Pampuch),

• interactions and formal agreement with ISMAN
(Merzhanov and Borovinskaya).

At approximately the same time period, Professor
Varma initiated combustion synthesis research at Notre
Dame University. His initial research interest was
focused on mathematical modeling of combustion
fronts. However, very quickly his research evolved
toward experimental investigation of reaction kinetics
of heterogeneous reactions as well as understanding of
system heterogeneity and melting effects on propaga-
tion of combustion fronts in the condensed phase [163–
177]. Professor Varma invited a few Russian scientists,
including Drs. Mukasyan and Rogachev, to work with

him at Notre Dame University. He also attracted several
graduate students, including some from Russia. Dr.
Mukasyan was offered a permanent position at this uni-
versity and he is still working there conducting his own
research program in the area of combustion synthesis.
A few years ago, Professor Varma accepted a new chal-
lenging position at Purdue University where he contin-
ues research in the area of strongly exothermic non-cat-
alytic reactions. Both Professors Varma and Mukasyan
when working together at Notre Dame University con-
ducted combustion synthesis research in a microgravity
environment. They also investigated possibilities of
synthesizing biomaterial using the SHS technique.
They also initiated work on combustion solution of
oxide nanomaterials for development of catalysts. Pres-
ently, Professor Mukasyan is actively continuing that
research. A variation of the combustion synthesis pro-
cess, namely utilization of exothermic redox reactions
in solutions, was already investigated by several
researchers in India and in the USA. Professor Bhaduri
was among first who explored this technique in USA
[178–182]. This type of the reaction is called solution
combustion synthesis (SCS) and involves a self-sus-
taining reaction between metal nitrates and carbon-
aceous fuels, such as urea, glycine or carbohydrazide.
The reaction between such fuel and oxygen containing
species results in a significant heat generation. In prac-
tice, this process is accomplished by dissolution of
metal nitrates and uniform mixing of the fuel and
nitrates in water, preheating of the oxidizer-fuel solu-
tion with subsequent water vaporization, followed by
self-ignition of the dry reactants. As a result, the forma-
tion of crystalline oxide nanopowders with tailored
compositions can be formed. The main advantage of
this approach is mixing of reactants at the molecular
level. The overall reaction process is very fast and
results in the formation of nanograins exhibiting a high
purity due to vaporization of all volatile species at high
reaction temperatures generated by this exothermic
reaction. Another important advantage of this method is
a possibility of the formation of complex oxide nanop-

(‡) 1 µm 1 µm(b)

Fig. 7. SHS produced β-Si3N4 (a) and α-Si3N4 (b).

40 µm

Fig. 8. Microstructure of in-situ densified TiC–25% Ni
composite formed during combustion synthesis and
obtained in Prof. Meyers’ laboratory.
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owders for different applications as structural ceramics,
catalysts, bio- or fuel cell materials [183–188].

The combustion synthesis research at Colorado
School of Mines has been carried out by Professor
Moore for almost twenty years. Professor Moore’s
research interest has been on the formation of compos-
ite materials at normal or reduced gravity environ-
ments. The recent research interest of Professor Moore
is focused on the formation of biomaterials [189–192].
Professor Moore is very actively involved in numerous
professional societies and his published contributions
into the field of SHS are highly regarded by the interna-
tional SHS community.

A significant research effort in the USA was focused
on simultaneous combustion synthesis and hot press-
ing. Professor Logan from Georgia Institute of Tech-
nology established an experimental program focusing
on densification of titanium diboride and various com-
posites generated during aluminum thermal reduction
of oxides [193]. Professor Logan developed a strong
cooperation with the R&D group led by Dr. Niiler from
US Army Ballistic Laboratory and McCauley of the US
Army Materials Technology Laboratory. Niiler and his
co-workers were involved in shock densification of
combustion synthesized materials by means of explo-
sives [194, 195].

Shock-induced densification of ceramics and cer-
mets by unique high speed forging was conducted by
Professor Meyers and his research group at University
of San Diego, CA [196–211]. Professor Meyers con-
tributed to elucidation of the reaction mechanism at the
front in the Ti–C system. This work was done with
Dr. LaSalvia from the US Army Research Laboratory
and produced some outstanding results describing
physicochemical mechanism of that reaction [200,
201]. Professor Meyers also contributed to fundamental
understanding of densification by quasi-isostatic press-
ing (QIP) of reaction products. This work was done in
collaboration with Professor Olevsky [210, 211]. The
use of a granular pressure transmitting medium, ini-
tially introduced at Chernogolovka, was used to pro-
duce TiC plates with dimensions of 12 × 12 × 2 inches.
Production and densification of TiC–NiTi cermets was
another accomplishment of this technology. Figure 8
shows a typical microstructure of TiC–25%Ni compos-
ite material formed by SHS dynamically densified
material. Professor Meyers collaborated with Dr. Kim,
South Korea, Professor Meyer, Chemnitz University,
Germany, Dr. Ramas Raman from Ceracon, Professor
Olevsky, San Diego State University, and Dr. Jamet
from Ecole Centrale de France.

A significant contribution into the area of shock
densification of combustion synthesized intermetallics
and ceramic materials was also made by Professor
Thadani [212–217].

Recently, Professor Luss and his co-workers devel-
oped a novel efficient synthesis method named carbon
combustion synthesis of oxides (CCSO) for production

of advanced nano and submicron complex oxides such
as ferroelectrics (BaTiO3, SrTiO3), hard and soft mag-
netic materials (Ba, Sr, Pb, Mn–Zn and Ni–Zn ferrites),
superconductors (Y123), optoelectronics (ZnSnO),
solid-oxide fuel cell components (LaGaO3), battery
electrodes (LiMn2O4), catalysts, membranes, and digi-
tal pigments [218–221]. The method is a modification
of self-propagating high temperature synthesis (SHS)
that uses carbon as the heat generating fuel instead of a
pure metal. The concentration of the carbon in the reac-
tant mixture enables control of the moving front tem-
perature and average temperature front velocity as well
as the products particle size and surface area. CCSO
may be used to produce oxides even when SHS cannot
be applied, such as when the pure metal is pyrophoric
(such as Li or La) or that it melts at room temperature
(for example, Ga), or when the metal heat of combus-
tion is relatively low. In contrast to the common SHS,
the combustion product (carbon dioxide) is not incor-
porated into the product and exits from the sample.
Moreover, the lubricating properties of carbon enhance
the mixing by ball milling. The high rate of CO2 release
increases the porosity of the particles and the friability
of the powder. The process is significantly faster than
common calcinations processes and produces powders
with smaller particle size.

Another interesting activity conducted by this group
is focused on spontaneous magnetization generated by
solid state combustion [222–228]. Using a highly sen-
sitive high-Tc superconducting quantum interference
device (SQUID), they were able to conduct the first
measurement of the very low intensity (order of nT)
transient magnetic field formed by a combustion front
motion. The front propagation generated a slowly oscil-
lating magnetic field on which, in some cases, high fre-
quency small oscillations were superimposed. The
magnetic power spectra of the oscillations scaled as a
power law, suggesting that they are associated with a
stochastic process. The combustion synthesis of ferrites
generated qualitatively different magnetic fields under
different modes of combustion front motion i.e., planar,
spin, and pulsating. The average magnetization vector
generated by either planar or pulsating combustion was
oriented at a smaller angle with respect to the pellet axis
(φ ≤ 45°) than those generated by spin combustion
(60° ≤ φ ≤ 80°). The Earth’s magnetic field had no
impact on the spontaneous magnetization field of the
samples. Dr. Luss’ research group also developed a
simple electromagnetic model which predicted the
qualitative features observed in the experiments. The
transient evolution of this field depends on whether the
combustion temperature exceeds or does not exceed the
Curie temperature. Figure 9 shows a case in which a
residual magnetic field of about 4 µT was generated by
the spontaneous magnetization of the ferromagnetic
product PbFe12O19 in the post-combustion zone. The
characteristic spontaneous magnetic field saturation
time of about 250 s was much longer than the 1–2 s
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duration of the electrical signal. The magnetic field was
created by three different mechanisms: (i) orientation
of the magnetic dipole moments by internal electrical
field force, (ii) dipole self-orientation along existing
residual field of the bulk material during the cooling,
and (iii) via chemisorption of O2 molecules on the fer-
romagnetic surface.

During the past several years, another interesting
technology was developed by Dr. Weihs from John
Hopkins University [229–231]. Multilayer reactive
foils provide ideal sample geometries for studying dif-
ferent SHS reaction with a high level of contact
between reactants. In addition, the thickness of each
layer can be precisely adjusted. Currently, his technol-
ogy is used by Reactive Nanomaterials Co. for bonding
dissimilar materials and in other applications.

SUMMARY

This review clearly indicated that the contribution of
US scientists to both theoretical understanding of com-
bustion reactions in condensed phase and development
of new innovative technologies based on the principle
of self-propagating reactions between solid reactants or
those involving solid and gas interactions is significant.
Despite the relatively small number of researchers
involved in this field, the number of publications, pat-
ents, as well as technological know-how development
is quite impressive.

Forty years have passed since the discovery of SHS
in 1967. It should be emphasized that during the last
seventeen years the exchange of information among all
scientists working in combustion synthesis is without
the political barriers that existed until the early 1990s.

Every two years, researchers have the opportunity to
present their results at international SHS symposia.
New close cooperation agreements have been estab-
lished between different universities and research insti-
tutes. We hope that this trend will continue and new
generations of scientists and engineers will contribute
into the field of SHS freely and without any external
constraints.
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