1-1-2006

Biotinylation of K8 and K12 co-occurs with acetylation and mono-methylation in human histone H4

Yap Ching Chew
University of Nebraska - Lincoln

Ashraf S. Raza
University of Nebraska - Lincoln, araza2@unl.edu

Gautam Sarath
University of Nebraska - Lincoln, Gautam.sarath@ars.usda.gov

Janos Zempleni
University of Nebraska - Lincoln, jzempleni2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/usdaarsfacpub

Part of the [Agricultural Science Commons](http://digitalcommons.unl.edu/usdaarsfacpub)

http://digitalcommons.unl.edu/usdaarsfacpub/35

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Biotinylation of K8 and K12 co-occurs with acetylation and mono-methylation in human histone H4

Yap Ching Chew¹, Ashraf S. Raza², Gautam Sarath³ and Janos Zempleni¹

1 Nutrition and Health Science, University of Nebraska-Lincoln, 307 Ruth Leverton Hall, Lincoln, NE, 68508-0806,
2 Biochemistry, University of Nebraska-Lincoln, E154 Beadle Center, Lincoln, NE, 68588-0664,
3 United States Department of Agriculture – Agricultural Research Service, University of Nebraska-Lincoln, 344A Keim Hall, Lincoln, NE, 68583-0937

ABSTRACT

Histones H1, H2A, H2B, H3, and H4 are proteins that are critical for folding of DNA into chromatin. Posttranslational acetylation, methylation, and biotinylation of histones participate in gene silencing, mitotic condensation of chromatin, and the cellular response to DNA damage. Various modifications of histones are known to interact ("cross-talk") in chromatin-remodeling events; interactions may be synergistic or antagonistic. Here, we sought to identify biotinylation sites in human histone H4 by using mass spectrometry (MS/MS), and we sought to determine whether biotinylation co-exists with acetylation and methylation in the same H4 molecule. Nuclear histones from human lymphoid (Jurkat) cells were digested with trypsin and analyzed by using a QStar XL mass spectrometer. Evidence was provided that K8, K12, and K16 in histone H4 are targets for biotinylation. Moreover, we observed that K8-biotinylated H4 may be mono-methylated at K5, and that K12-biotinylated H4 may be acetylated at K5 and K8 and mono-methylated at K16. This is the first study to identify biotinylation sites in histones by using mass spectrometry and to demonstrate co-occurrence of biotinylation, acetylation, and mono-methylation in the same histone molecule. This research is likely to unravel novel functions of biotinylated histones in chromatin remodeling events fundamental to human health.

(Supported by NIH grants DK 60447, DK 063945, COBRE 1P20RR17675, and by NSF EPSCoR grant EPS-0346476.)