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Abstract

The development of appropriate ground-based validation techniques is critical to assessing uncertainties associated with satellite data-

based products. In this paper, the second of a two-part series, we present a method for validation of the Moderate Resolution Imaging

Spectroradiometer Leaf Area Index (MODIS LAI) product with emphasis on the sampling strategy for field data collection. Using a

hierarchical scene model, we divided 30-m resolution LAI and NDVI images from Maun (Botswana), Harvard Forest (USA) and Ruokulahti

Forest (Finland) into individual scale images of classes, region and pixel. Isolating the effects associated with different landscape scales

through decomposition of semivariograms not only shows the relative contribution of different characteristic scales to the overall variation,

but also displays the spatial structure of the different scales within a scene. We find that (1) patterns of variance at the class, region and pixel

scale at these sites are different with respect to the dominance in order of the three levels of landscape organization within a scene; (2) the

spatial structure of LAI shows similarity across the three sites, that is, ranges of semivariograms from scale of pixel, region and class are less

than 1000 m. Knowledge gained from these analyses aids in formulation of sampling strategies for validation of biophysical products derived

from moderate resolution sensors such as MODIS. For a homogeneous (within class) site, where the scales of class and region account for

most of the spatial variation, a sampling strategy should focus more on using accurate land cover maps and selection of regions. However, for

a heterogeneous (within class) site, accurate point measurements and GPS readings are needed.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The Terra satellite was launched in December 1999 and

first Earth views from the Moderate Resolution Imaging

Spectroradiometer (MODIS) were taken in late February

2000. As MODIS Leaf Area Index (LAI) data become

publicly available through the EROS Data Center Data

Active Archive Center (EDC DAAC), product quality must

be ensured through validation.

‘‘Validation’’ is the process of assessing by independ-

ent means the accuracy (uncertainty) of data products

(Justice et al., 2000; Privette et al., 2000). However,

uncertainty assessment of these coarse spatial resolution

products is not straightforward, and presents a challenge

to the remote sensing community because ground-based

measurements cannot be easily compared to coarse reso-

lution satellite sensor data (Weiss et al., 2001). Develop-

ment of appropriate ground-based validation techniques

and sampling strategy is therefore critical to assessing the

uncertainties associated with such data products. The

main challenge in land satellite data validation is to attain

adequate ground sampling of observed biophysical varia-

bles, which exhibit spatial and temporal variance, at the

spatial scale of a satellite sensor (Lucht et al., 2000). In

addition, large-scale validation should rely on methods

that avoid time-consuming procedures while preserving

accuracy.

0034-4257/02/$ - see front matter D 2002 Elsevier Science Inc. All rights reserved.
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In this two-part series, we attempt to assess the uncer-

tainty of the MODIS LAI product via comparisons with

ground and high-resolution satellite data, and provide

guidance for field data collection and sampling strategies.

In the first paper of this two-part series (Tian et al., 2002)

we propose a region- or patch-based comparison method

and address the issue of spatially scaling ground-based

point measurements to the spatial scale of satellite obser-

vations. We also provide comparisons of validated 30 m

ETM+ LAI retrievals to those derived from the 250-m,

500-m and 1-km resolutions of simulated MODIS data.

Based on our experience from analyses of SAFARI 2000

data, it was concluded that improvements are needed

regarding field data sampling. The objective of this paper

is to design a statistically valid and logistically feasible

field sampling strategy.

Woodcock, Strahler, and Jupp (1988a,b) observed that

image semivariograms are diagnostic of scene structure.

Curran (1988) suggested that semivariograms in remote

sensing could help selection of spatial resolution and design

of sampling schemes. In this paper, hierarchical decom-

position of LAI images, coupled with analysis of the

component semivariograms, reveals information about

LAI variation over different scales, which in turn aids in

the formulation of sampling strategies for validation. In

addition, we demonstrate the dominant factors that influ-

ence the spatial distribution of LAI across the landscape,

and provide guidance for field data collection and sampling

strategies.

2. Hierarchical analysis of multiscale variation in images

2.1. Semivariogram

Semivariogram, which measures semivariance as a func-

tion of distance, is a useful measure of the spatial structure

of images (Curran, 1988; Woodcock, Collins, & Jupp,

1997). For a stationary and isotropic spatial process, the

semivariance c(h) in Z values between all the pairs of points

Z(x) and Z(x + h) separated by distance h (referred to as

‘‘lag’’) can be estimated as,

cðhÞ ¼ 1

2NðhÞ
X

NðhÞ
½Zðxþ hÞ � ZðxÞ�2: ð1Þ

Here N is the number of pairs of sample points (x, x + h)

separated by distance h. A plot of semivariance, c(h), as a

function of distance h, is semivariogram. There are two

important features noteworthy in the semivariogram. First,

with distance h increasing, semivariance tends to rise from

zero to the level of the global variance of the image, and

then levels off. This constant value (global variance) is

referred to as the ‘‘sill’’. Second, the value of h at which the

semivariogram reaches the sill is called the range of influ-

ence, and is related to the size of objects in the image.

Beyond this range, there is no relation between two pixels.

Within this range, Z values are more similar when the pairs

of sample points are closer together. The range and sill

together can help in describing the spatial variation and

structure of an image. Eq. (1) can be used to calculate a

semivariogram from any image, for example, LAI and

NDVI images in this study.

2.2. Hierarchical decomposition of scene semivariograms

A key to scaling in remote sensing is to understand the

magnitude of the effects resulting from processes acting at

different scales in the landscape (Woodcock et al., 1997).

Nested-hierarchical models can be used to partition var-

iance in an image at different levels. In a hierarchical model

of landscapes, each level in the hierarchy corresponds to a

different scale. In a forested landscape, for example, the

most fundamental element might be individual trees. The

next level might be patches or stands of trees. All patches

of the same kind would combine to form forest classes,

which would be a third level in the hierarchy. These

different forest types might then combine to form a general

class of forest, which exists with other classes at this level,

such as grassland, water, savanna, etc. Therefore, each

successive level in the hierarchy is more general and is

formed by combining elements from the levels below

(Woodcock et al., 1997).

A nested-hierarchical model of spatial data is provided

by Moellering and Tobler (1972) and is elaborated by

Woodcock et al. (1997) and Collins and Woodcock

(2000). Under this theory, the hierarchical model describes

the image as being composed of a number of land cover

classes, Di, which are defined as disjoint subsets of the

entire image D. Each class Di is in turn composed of a

number of regions (Dij). Note that ‘‘region’’ as defined here

has the same meaning as ‘‘patch,’’ mentioned in the pre-

vious paper (Tian et al., 2002). Regions are composed of

pixels, denoted Dijk (Woodcock et al., 1997; Collins &

Woodcock, 2000). The mean of the entire image, for

example LAI or NDVI image, is l(D). The mean of a class

at the first level of the hierarchy is l(Di), and the mean of a

region at the second level of the hierarchy is l(Dij). Under

this assumption, the observed pixel values may be defined

as

Zðm; nÞ ¼ xijk ¼ Dijk ; ð2Þ

where variables m and n represent the pixel’s position (row

m and column n) in the image.

A set of four new images, which are derivatives of the

original image, can therefore be created and these images

contain only the effects associated with an individual

scale, or level in the hierarchy. They are image scale

(I), class scale (C), region scale (R), and pixel scale (P)

images, respectively. Pixel values for these new images,

Y. Tian et al. / Remote Sensing of Environment 83 (2002) 431–441432



Za (a = I, C, R, P), can be calculated as (Woodcock et al.,

1997).

ZI ðm; nÞ ¼ I ¼ lðDÞ; ð3Þ

ZCðm; nÞ ¼ Ci ¼ lðDiÞ � lðDÞ; ð4Þ

ZRðm; nÞ ¼ Rij ¼ lðDijÞ � lðDiÞ; ð5Þ

ZPðm; nÞ ¼ Pijk ¼ xijk � lðDijÞ: ð6Þ

Here I is the image effect, Ci is the effect associated with

class i, Rij is the effect associated with region j of class i,

and Pijk is the residual or pixel effect associated with

pixel k of region j of class i. Fig. 1 is an example of a

LAI image, which consists of three classes, D1, D2 and

D3. Each class consists of several regions. For D1, there

are three regions; for D2, two regions. Each region

contains many pixels. Fig. 1(a) shows the class effect

image (Eq. (4)), in which all pixels belonging to the same

class have the same value of LAI. Fig. 1(b) is the region

effect image (Eq. (5)), in which all pixels belonging to

the same region have the same value of LAI. Pixels

located in different regions have different LAI values,

even though they might be the same land cover class.

Following this theory, any original image can be decom-

posed into four individual images. They correspond to

image effect, class effect, region effect, and pixel effect,

respectively. Each image contains only the effect associ-

ated with the individual scale. Adding the above four

equations indicates that an observed pixel value is equal

to the sum of the effects of all levels of the hierarchy:

Zðm; nÞ ¼ xijk ¼ I þ Ci þ Rij þ Pijk ¼
X

a¼I ;C;R;P

Zaðm; nÞ:

ð7Þ

According to Woodcock et al. (1997), this ordering of

levels by area size can be taken as a surrogate for scale or

resolution. Data at different levels of the hierarchy thus

correspond to different geographical or characteristic scales.

Squaring both sides of Eq. (7) and taking the mathematical

expectation lead to the basic result of the hierarchical

Analysis of Variance (ANOVA) model,

r2 ¼ r2
C þ r2

R þ r2
P: ð8Þ

Here, r2 is the overall data variance, and ra
2 (a =C, R, P)

is the variance of class, region and pixel effects, respec-

tively. The total variance of the data is the sum of the

variances of the individual effects. Eq. (8) indicates how the

total variance is partitioned into components corresponding

to each of these scales. To apply this model, data must first

be organized hierarchically.

Eq. (1) then can be used to calculate the semivariance for

these decomposed images to create separate semivariograms

for each cI, cC, cR and cP, i.e.,

caðhÞ ¼
1

2NaðhÞ
X

NaðhÞ
½Zaðmþ hm; nþ hnÞ � Zaðm; nÞ�2;

ð9Þ

Fig. 1. An example of a LAI image, consisting of three classes, D1, D2, and

D3. Classes D1 and D3 have three regions, while class D2 has two regions.

Each region contains many pixels. (a) The class effect image, in which all

pixels belonging to the same class have the same value of LAI. (b) The

region effect image, in which all pixels belonging to the same region have

the same value of LAI.

Y. Tian et al. / Remote Sensing of Environment 83 (2002) 431–441 433



where a = I, C, R, P, hm and hn are the distance in pixels in

the row and column direction between the two compared

pixels, and h ¼ resolution
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2m þ h2n

p
.

According to Collins and Woodcock (2000), the semi-

variance for the original image, c, can be decomposed as

cðhÞ ¼ cCðhÞ þ cRðhÞ þ cPðhÞ þ 2cCRðhÞ þ 2cCPðhÞ

þ 2cRPðhÞ; ð10Þ

where the subscripts are the same as in Eq. (8). Symbols

with single subscript are semivariograms, and symbols with

two subscripts are cross-semivariograms. The cross-semi-

variograms between hierarchical effects are usually small

(Collins & Woodcock, 2000) and are ignored here. As is

well known, validation efforts can be undertaken at a broad

range of observation scales. Efforts will likely be successful

when the observation scales are chosen to capture the

variation at the characteristic scale of interest.

3. Satellite and field data

In this study, we use three 30-m LAI fields retrieved from

ETM+ data. The corresponding ETM+ data are related to

three field sites as described below. The three sites are

savanna in Maun, Botswana (Fig. 2); broadleaf forests in the

Harvard Forest (Fig. 3), USA; and needleleaf forests in the

Ruokolahti Forest (Fig. 4), Finland. The Maun site is

located at 19.9229jS, 23.5943jE. The main vegetation

types are savanna and shrubs (Tian et al., 2002). The

Harvard Forest research site is located at 42.5382jN,
72.1714jW. It includes mixed hardwood and conifer forests,

ponds, extensive spruce and maple swamps, with pine and

hemlock, and conifer plantations. The Ruokolahti Forest

site is a typical northern needleleaf forest (61.5263jN,
28.7103jE), mixed with large and small lakes.

Following the procedures described in Tian et al. (2002)

that utilized 10� 10 km ETM+ data to validate the MODIS

LAI (Knyazikhin, Martonchik & Myeni et al., 1998; Knya-

zikhin et al., 1998; Knyazikhin et al., 1999) in Maun, a

15� 13 km (10 km by 10 km) ETM+ image, acquired on

August 31, 1999 (June 10, 2000), was used to validate the

algorithm at 30-m resolution in the Harvard (Ruokolahti)

Forest site. First, the raw data of Band 3 (red) and Band 4

(NIR) from both sites were atmospherically corrected using

the Dark Object Subtraction (DOS) approach (Chavez,

1989, 1996), and then converted to surface reflectances.

Second, the ETM+ images were classified to produce a land

cover map. Using an IKONOS image and 1-m resolution

black and white digital orthophotos from the Massachusetts

Geographic Information System (Massgis, http://www.

state.ma.us/mgis/masgis.htm), the 15� 13 km Harvard For-

est image was classified into broadleaf forests, needleleaf

forests, grasses, shrubs, bare land and water using a super-

vised classification procedure (Fig. 3(b)). With help of an

IKONOS image and a charge-coupled devices (CCD) image

from an aircraft, the 10� 10 km Ruokolahti Forest image

was classified into young, regular and dense needleleaf

forests, grasses and water (Fig. 4(b)). The three different

needleleaf forests were then merged into one biome type,

needleleaf forests. Third, an automated image segmentation

procedure (Woodcock & Harward, 1992) was used to

produce a region (homogeneous neighborhood) map of each

image. For the Harvard Forest site, the minimum region size

of 8 ETM+ pixels was used to define regions. Following the

definition of regions in the region map, the classification

map was overlaid on the region map and each region was

Fig. 2. (a) Color RGB image from Bands 4, 3 and 2 of a 10� 10 km region

of the Maun site from an ETM+ image. (b) Vegetation classification map

for the 10� 10 km region.

Y. Tian et al. / Remote Sensing of Environment 83 (2002) 431–441434
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assigned a class label. For the Ruokolahti Forest site, the

regions mainly represented the three different forest classes.

Finally, we ran the MODIS algorithm to produce LAI for the

ETM+ images at 30 m resolution (Fig. 5).

4. Multiscale variation in LAI and NDVI data

We decomposed the LAI data retrieved from ETM+

reflectances at 30-m resolution into a nested hierarchy of

classes, regions and pixels, to generate a set of data layers

corresponding to the three hierarchical levels for each site

using Eqs. (3)–(6). The semivariograms were calculated

according to Eq. (9) for each of the decomposed compo-

nents. NDVI was also included in this analysis in view of its

widespread use in vegetation remote sensing.

4.1. Maun

Table 1 lists the distribution of global variance at the

class, region and pixel level for the site at Maun following

the approaches of Moellering and Tobler (1972) and Collins

and Woodcock (2000). Most of the NDVI variance occurs at

Fig. 4. (a) RGB image of a 10� 10 km region of Ruokolahti Forest

produced from ETM+ Bands 4, 5 and 3. (b) Land cover classification map

using supervised classification procedure.

Fig. 3. (a) RGB image of a 15� 13 km region of Harvard Forest produced

from ETM+ Bands 4, 5 and 3. (b) Land cover classification map using

supervised classification procedure.

Y. Tian et al. / Remote Sensing of Environment 83 (2002) 431–441 435



the class (47%) and pixel scales (35%). For the LAI data,

the majority of variation is at the pixel (55%), and class

scales (32%). Therefore, most of the observed spatial

variation of LAI at the Maun site is due to the effect of

classes and pixels rather than regions, implying, for exam-

ple, that shrubs and savanna behave differently from each

other (class effect) and there is considerable internal varia-

bility within those two classes, but that variability exists at

the pixel rather than the patch scale.

While Hierarchical ANOVA quantifies the scale decom-

position of variance, examining the semivariograms can aid

understanding of the spatial structure (Collins & Woodcock,

2000). Fig. 6(a) and (b) shows the semivariograms of the

NDVI and LAI data. Sill heights are close approximations

of data variance, so these figures provide a graphic illus-

Table 1

Hierarchical model results for the Maun scenes

Scene Image Variance Percentage of

variance (%)

NDVI original image 0.006956 100

class effect 0.003263 46.52

region effect 0.001257 18.07

pixel effect 0.002436 35.02

LAI original image 0.18936 100

class effect 0.06044 31.92

region effect 0.02502 13.21

pixel effect 0.10391 54.87

Fig. 6. Hierarchical decomposion of semivariograms for (a) NDVI and (b)

LAI of the Maun site.

Fig. 5. LAI images from (a) the Harvard Forest site and (b) the Ruokolahti

Forest site.

Y. Tian et al. / Remote Sensing of Environment 83 (2002) 431–441436



tration of the information contained in Table 1. The semi-

variance of the original image, c(h), exhibits the highest sill,
as it contains the effects of all scales. It initially increases

quickly as a function of lag and later gradually throughout

the remainder of the graph.

The semivariograms of the class, region and pixel scales

are different. For both the NDVI and LAI data, the pixel

scale semivariogram reaches a sill at about 200 m (range),

and remains flat at larger lags. The class scale semivario-

gram reaches the sill at about 500 m, and still increases

slowly, which indicates that there are objects larger in size

than the 3000-m range. This interpretation is supported by

Fig. 6 in Tian et al. (2002), which shows that the savanna

exceeds this size in the upper left corner. The range is

related to the size of objects in the image. Therefore, these

plots give an indication of the spatial structure of the effects,

in addition to partitioning of the variance.

There is a stronger pixel effect on the LAI than NDVI,

which indicates that there is less difference between vege-

tation classes in the mean value of LAI than NDVI. The

large variance and small range (200 m) at the pixel scale are

consistent with field measurements (Tian et al., 2002),

which indicates that most LAI changes in Maun occur at

distances smaller than vegetation stands. The reason for the

different effect of classes on NDVI and LAI is that for the

same input reflectance, that is, the same NDVI, savanna

results in a higher LAI value than shrub. However, shrubs

have higher NDVI values than savanna in the ETM+

images. Thus, smaller differences in mean LAI values of

savanna and shrubs result from the MODIS LAI algorithm.

These results indicate that the dominant factor influenc-

ing the spatial distribution of LAI across the landscape in

Maun is variability within land cover types as opposed to

differences between land cover types. The strong spatial

heterogeneity observed in the field LAI measurements

indicates that for validation at the pixel level, individual

field measurements must have GPS readings accurate to

within a few meters, and the accuracy of geo-registration of

ETM+ images should be within half a pixel.

The variance of LAI retrieved from ETM+ data is much

smaller than the field measurements taken by LAI-2000

plant canopy analyzer (Fig. 4 in Tian et al., 2001 and Fig. 6),

which indicates that the resolution of the LAI-2000 is finer

than 30 m. Several measurements in one 30-m resolution

pixel are needed for a pixel-by-pixel comparison. These

requirements, that is, accurate GPS readings and geo-regis-

tration and a large number of measurements within each

pixel, make pixel-by-pixel validation risky if the spatial

accuracies of GPS and image registration are not achieved.

A region-by-region (or patch-by-patch) comparison is a

more conservative alternative.

4.2. Harvard forest

The decomposition of variance for the Harvard Forest

site is listed in Table 2, and the semivariograms of the three-

level hierarchy are shown in Fig. 7. The majority of

variation, 59.66% in the NDVI data and 76.55% in the

LAI data, is at the scale of classes. Both the region and pixel

Table 2

Hierarchical model results for the Harvard forest scenes

Scene Image Variance Percentage of

variance (%)

NDVI original image 0.008365 100

class effect 0.004991 59.66

region effect 0.002189 26.17

pixel effect 0.001185 14.17

LAI original image 2.7476 100

class effect 2.1032 76.55

region effect 0.3147 11.45

pixel effect 0.3296 11.99

Fig. 7. Hierarchical decomposition of semivariograms for (a) NDVI and (b)

LAI of the Harvard Forest site.

Y. Tian et al. / Remote Sensing of Environment 83 (2002) 431–441 437



variation are relatively small. For both the NDVI and LAI

data, the pixel semivariograms reach their sill at about 60 m

and remain flat for all larger lags. The range for the semi-

variogram of class scale is about 500 m, which is roughly

twice that of the region scale.

The class effect contributes more variance (76.55%) in

the LAI data than the NDVI data (59.66%). The variance of

the region effect decreases to 11% in the LAI data, com-

pared with 26.17% in the NDVI data. The relatively higher

variance of the class effect indicates that there are large

differences between the means of different land cover types.

For example, broadleaf forests have mean LAI values as

large as 5, compared to zero LAI values for water or bare

land. Thus, the LAI values at this site depend strongly on

the land cover types to which the pixels belong. Within a

vegetation type, the LAI variation among pixels contributes

only about 23.45% of total variance. Hence, the LAI at the

Harvard Forest site is relatively homogeneous within clas-

ses, but varies strongly among classes.

4.3. Ruokolahti forest

At the Ruokolahti site, the class effect contributes the most

(93.56%) to the total NDVI variance (Table 3). Of the total

LAI variance, the class, region and pixel effects explain

47.78%, 14.41% and 37.7%, respectively. The semivario-

gram of pixel scale reaches its sill at roughly 300 m, while the

range for the region scale semivariogram is about 400–500m

(Fig. 8). The semivariogram of class scale reaches the sill at

about 1000 m, and still increases slowly. The NDVI spatial

variation is almost completely determined by the class effect.

The LAI spatial structure, however, is determined not only by

the class effect, but also by the pixel effect, as at Maun.

The very small region scale variation in both NDVI and

LAI data is unexpected, because individual patches associ-

ated with harvesting and subsequent plantations can be

easily distinguished in a RGB ETM+ image of bands 4, 5

and 3. In the NDVI image (Fig. 9), however, these features

are blurred, possibly for two reasons. First, histograms of

NDVI from young, regular and dense forests (Fig. 10)

indicate that the NDVI of regular and dense needleleaf

forests are very similar. This is because smaller values of

both RED and NIR reflectance of the dense forests result in

indistinct NDVI values. Second, although variations in the

NDVI data among regions are small, they are large within

regions, especially in the case of young and regular forests,

which is also seen in the CCD aircraft photographs. This

possibly explains the dominance of the pixel effect.

The algorithm retrievals compare well with the field

measurements in the case of dense and regular forests, but

not in young forests. This could be a reason that the region

effect does not contribute much to the spatial variation in the

LAI data. Improvements to the algorithm are therefore

necessary.

4.4. Comparison of scale effects between sites

There are very different patterns of LAI variance with

respect to the three levels of landscape organization. At

Table 3

Hierarchical model results for the Ruokolahti forest scenes

Scene Image Variance Percentage of

variance (%)

NDVI original image 0.068958 100

class effect 0.006452 93.56

region effect 0.001422 2.62

pixel effect 0.003016 4.37

LAI original image 1.11046 100

class effect 0.53058 47.78

region effect 0.16002 14.41

pixel effect 0.41985 37.7

Fig. 8. Hierarchical decomposition of semivariograms for (a) NDVI and (b)

LAI of the Ruokolahti Forest site.
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Maun, the pixel effect is dominant, while at the Harvard

Forest site the class effect contributes most to the variance.

At the Ruokulahti Forest site, both the class and pixel effect

are equally important in determining the spatial variation of

LAI. A question of some importance is, under what circum-

stances is the spatial distribution of LAI across the land-

scape due to variations within land cover types as opposed

to differences between land cover types? The coefficients of

variation (standard deviation/mean, COV) of NDVI and

LAI at the three sites are listed in Table 4. The NDVI data

from Maun and Ruokolahti show a similarity: the COV

within classes is relatively larger than that from the Harvard

Forest, especially for the dominant class type (savanna in

Maun, broadleaf forests in the Harvard Forest, and needle-

leaf forests in the Ruokolahti Forest). Although most spatial

variation occurs at the class scale in the NDVI data, the

large COV within classes results in a large spatial variation

within classes in the LAI retrievals. As a result, the majority

of spatial variation is first at the scale of pixel in the LAI

data. On the other hand, the Harvard Forest exhibits smaller

COV in NDVI, thus, less spatial variation at the pixel scale

in the LAI data. Thus, whether the spatial distribution of

LAI across the landscape is due to variations within land

cover types depends on the homogeneity within the land

cover, especially the dominant class type. The validation of

homogeneous broadleaf forests will be relative easier than

savanna or needleleaf forests. The latter require more

accurate GPS readings and scientific sampling strategy to

capture the spatial variation of LAI.

The range of semivariograms is indicative of the size of

the largest elements (objects) in the scale. The < 500-m

range in the semivariograms of class scale at Maun and

Harvard Forest sites indicates that landscape variations

occur over relative small areas. Land cover generally varies

beyond 500 m. This also indicates that the 1-km MODIS

pixels are generally mixed pixels. Ranges in semivario-

grams of pixel scale from the three sites suggest that no

variation at scales finer than regions could be detected at

resolutions coarser than 200 m. Therefore, validation needs

to be performed in small regions ( < 500 m).

Results from Tables 1–3 indicate that the region effect

always contributes 10–15% of spatial variation in the LAI

data. This is why one could and should use the segmentation

procedure to compare field data with fine resolution satellite

Fig. 10. Histograms of (a) NDVI, (b) RED and (c) NIR for young, regular

and dense forests at the Ruokolahti Forest site.

Fig. 9. The NDVI image from the Ruokolahti Forest site. The color from

black to white represents the range of NDVI values. The brighter the image,

the larger the NDVI value.
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retrievals (Tian et al., 2002), especially at sites (e.g., the

Harvard Forest and Ruokulahti Forest sites) where the pixel

scale variation is small.

The decomposition of semivariograms according to the

hierarchical model shows the relative contribution of differ-

ent characteristic scales to the overall variation. This method

also displays the spatial structure of the different scales

within a scene. Knowledge gained from these analyses can

influence data collection practices. For a homogeneous

(within class) site such as broadleaf forests of the Harvard

Forest, where the class and region effect account for 90% of

the spatial variation, a sampling strategy should focus more

on using accurate land cover maps and selection of regions.

However, for a heterogeneous (within class) site such as

needleleaf forests of the Ruokulahti Forest or savanna of

Maun, accurate point measurements within GPS readings

are needed. The fine resolution of LAI-2000 makes it

difficult to quantify the relation between field measurements

and satellite retrievals. Therefore, either the number of point

measurements within 30-m resolution should be increased,

or a region-by-region comparison should be attempted.

The absolute magnitudes of variance vary significantly

across the three sites. The overall variance in the LAI data is

only 0.2 in Maun, compared to 2.5 at Harvard Forest; even

the pixel effect variance here is larger than the total variance

in Maun. Higher variance is equivalent to higher informa-

tion content. The Harvard Forest site contains more spatial

information than Maun.

In this study, we find that the spatial structure of NDVI is

not similar to that of LAI, due to the nonlinear relation

between NDVI and LAI. It may also be due to certain

limitations of the LAI/FPAR algorithm. It should be noted

that the algorithm does not use NDVI–LAI relations for

LAI retrievals.

Based on our study, here we propose the following

sampling and validation strategy:

1. Classifying an ETM+ image of the validation site over a

roughly 10� 10 km area, and identifying the major class

types.

2. Segmenting the classified map into the region (patch)

level map.

3. Partitioning the LAI image estimated from the algorithm

into the class, region and pixel scale; calculating

semivariograms of the decomposed components; identi-

fying the contribution of variation from each effect; and

evaluating the range of these semivariograms and

obtaining a general idea of the size of objects in the

images.

4. Determining where to collect field measurements and

how to sample measurement points over the 10 by 10 km

area based on the analysis from step 3, making certain

that the major class types have a dozen or more regions

of field measurements; the minor class types should also

have several regions in order to stratify the whole area.

5. Taking ground measurements of LAI.

6. Validating the MODIS LAI algorithm with the ETM+

image first, either based on the region level or pixel level,

and producing a 10� 10 km LAI map using the validated

algorithm.

7. Comparing the MODIS 1 km LAI products to the ETM+

retrievals.

5. Concluding remarks

Validation of global satellite data products is crucial, both

to establish the accuracy of the products for the science-user

community and to provide feedback to improve the data

processing algorithms (Cohen & Justice, 1999). The devel-

opment of appropriate ground-based validation techniques

is therefore important to assess the uncertainties associated

with such data products. In this two-part series, we attemp-

ted to assess the uncertainty of the MODIS LAI product via

comparisons with ground and high-resolution satellite data,

and developed guidance for field data collection and sam-

pling strategies.

This paper (Part II) attempted to define sampling strat-

egies based on hierarchical analysis of LAI fields retrieved

from 30-m resolution ETM+ data by the MODIS algorithm.

With a hierarchical scene model, we divided LAI and NDVI

images from Maun (Botswana), Harvard Forest (USA) and

Ruokulahti Forest (Finland) into individual scale images of

class, region and pixel. Isolating the effects associated with

different landscape scales through decomposition of semi-

variograms not only showed the relative contribution of

different characteristic scales to the overall variation, but

also displayed the spatial structure of the different scales

within a scene. We found that (1) patterns of variance at the

class, region and pixel scale at these sites are different with

respect to the dominance in order of the three levels of

landscape organization within a scene; (2) the spatial

structure of LAI showed similarity across the three sites,

that is, ranges of semivariograms from scale of pixel, region

and class are less than 1000 m. (3) validation needs to be

performed over smaller regions or patches, with more field

Table 4

Coefficients of variation of NDVI and LAI from different biome types and

sites

Site Name Biome Type NDVI LAI

Maun shrubs 0.0953 0.3596

savanna 0.1314 0.4622

Farvard Forest grasses 0.1104 0.2438

shrubs 0.0601 0.1474

broadleaf forests 0.0260 0.1423

needleleaf forests 0.0561 0.2756

Ruokolahti Forest grasses 0.1502 0.2566

total needleleaf forests 0.1066 0.4306

young needleleaf forests 0.1187 0.4357

regular needleleaf forests 0.1230 0.5271

dense needleleaf forests 0.0806 0.3181
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measurements and at smaller intervals; (4) the spatial

structure of the NDVI is not the same as that of LAI; and

(5) the absolute magnitudes of variance vary significantly

across the three sites.

Knowledge gained from these analyses aids us in for-

mulation of sampling strategies for validation of biophysical

products derived from moderate resolution sensors. For a

homogeneous (within class) site, where the scales of class

and region account for most of the spatial variation, a

sampling strategy should focus more on using accurate land

cover maps and selection of regions. However, for a

heterogeneous (within class) site, accurate point measure-

ments and GPS readings are needed. For field validation of

LAI, due to the fine resolution of LAI-2000 measurement

and georegistration accuracy, it is difficult to quantify the

relation between field measurements and 30-m resolution

satellite retrievals. One should either increase the number of

point measurements within 30-m resolution, or use a region-

by-region comparison for validation of heterogeneous sites.

These constraints imply that for validation activity, selecting

the sample scale on the basis of the underlying spatial

structure of the landscape (as understood through hierarch-

ical decomposition of semivariograms) is necessary and in

general, patches are better than individual pixels unless

sample and registration accuracy are outstanding.
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