
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Ralph Skomski Publications Research Papers in Physics and Astronomy 

March 2006 

Nanomagnetic Models Nanomagnetic Models 

Ralph Skomski 
University of Nebraska-Lincoln, rskomski2@unl.edu 

Jian Zhou 
University of Nebraska-Lincoln 

Follow this and additional works at: https://digitalcommons.unl.edu/physicsskomski 

 Part of the Physics Commons 

Skomski, Ralph and Zhou, Jian, "Nanomagnetic Models" (2006). Ralph Skomski Publications. 40. 
https://digitalcommons.unl.edu/physicsskomski/40 

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ralph Skomski Publications 
by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/physicsskomski
https://digitalcommons.unl.edu/physicsresearch
https://digitalcommons.unl.edu/physicsskomski?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/physicsskomski/40?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages


I. INTRODUCTION

Nanomagnetism involves both atomic and macroscopic features, but it cannot 
be reduced to a superposition of these two limits. Macroscopic interactions, 
as exemplifi ed by the compass needle and the geomagnetic fi eld, and atomic-
scale magnetic phenomena, such as quantum-mechanical exchange [1–4], are 
necessary but not suffi cient to understand nanomagnetism. Solid-state mat-
ter is made from atoms, and the corresponding length scale, Bohr’s radius ao 
= 0.52 Å, determines the range of the exchange responsible for bonding and 
magnetism. On the other hand, Maxwell’s equations are macroscopic, that is, 
they do not correspond to any characteristic length. Why are the phenome-
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Abstract – The atomic-scale and mesoscopic physics of magnet-
ic nanostructures is reviewed. Emphasis is on the description of mag-
netic phenomena and properties by analytical models, as contrasted 
to numerical approaches. Nanostructuring affects the magnetic prop-
erties on different length scales, from a few interatomic distances 
for intrinsic properties such as magnetization and anisotropy to more 
than 10 nm for extrinsic properties, such as coercivity. The consider-
ation includes static and dynamic mechanisms, as well as nanoscale fi -
nite-temperature effects. Some explicitly discussed examples are Cu-
rie-temperature changes due to nanostructuring, the effect of narrow 
and constricted walls, the potential use of magnetic nanodots for fi -
nite-temperature quantum computing, and exchange-coupled hard-soft 
nanocomposites. The temperature dependence of extrinsic properties 
refl ects the atomic-scale static or ‘intrinsic’ temperature dependence of 
the free-energy barriers and thermally activated dynamic or ‘extrinsic’ 
jumps over metastable free-energy barriers. 
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na considered in this book realized on a length scale of a few nanometers, as 
contrasted to, for example, a few meters? 

An answer is provided by the relativistic nature of many magnetic phe-
nomena of importance in nanomagnetism [5, 6]. For example, typical domain 
walls have a thickness of few nanometers. This length refl ects the competition 
between nonrelativistic exchange and relativistic magnetic anisotropy. A sim-
ple but qualitatively correct picture is obtained from the relativistic electron 
energy mc2 √ 1̄̄ +̄̄  ̄ v̄̄ 2̄/ c̄̄2, where v is the electron velocity. Expanding the ener-
gy into powers of v/c yields the rest energy mc2, the electrostatic or ‘nonrela-
tivistic’ energy mv2/2, and the lowest-order relativistic correction (α/2)2mv2/2, 
where α = 4πεoe

2/ħc is Sommerfeld’s fi ne-structure constant. Here we have 
exploited that typical electron velocities in solids are of order v = αc. Respec-
tive examples of nonrelativistic and relativistic magnetic interactions are ex-
change, which has the character of an integral over electrostatic interactions, 
and spin-orbit coupling, which leads to magnetocrystalline anisotropy [7, 8]. 
On an atomic scale, relativistic interactions are unable to compete against 
atomic-scale exchange effects. For example, Heisenberg exchange may ex-
ceed 1000 K, whereas typical anisotropies are less than 1 K. However, elec-
trostatic and relativistic contribution become comparable on length scales of 
order ao/α = 7.25 nm [5, 6, 9]. 

In addition to the range of interactions, there is the question of interfer-
ence with structural length scales. For example, Bloch wave functions, which 
form the basis for the band-structure theory of itinerant magnetism, require 
infi nite crystals with perfect periodicity. How does nanostructuring interfere 
with this requirement? Similarly, from a thermodynamic point of view, ferro-
magnetism is limited to infi nite crystals. It fact, the spontaneous magnetiza-
tion of any fi nite magnet is zero, because thermal fl uctuations cause the mag-
netization to average. This leads to the next consideration, the dependence of 
equilibration or averaging times on structural length scales. 

There is a fundamental distinction between intrinsic and extrinsic prop-
erties. Examples of intrinsic properties are the spontaneous magnetization 
Ms, the Curie temperature Tc, and the anisotropy Kl. Intrinsic properties de-
scribe perfect crystals or surfaces, but their physical origin is atomic and 
involves quantum phenomena such as exchange, crystal-fi eld interaction, 
interatomic hopping, and spin-orbit coupling [1, 2, 8, 10, 11]. Intrinsic prop-
erties tend to approach their bulk values on fairly small length scales. For 
example, ‘long-range’ thermodynamic fl uctuations, as involved in the real-
ization of the Curie temperature, and deviations from the Bloch character 
of metallic wave functions yield only small corrections when the size of 
the magnetic particle exceeds about 1 nm. The dynamics is characterized by 
fast equilibration times which means that intrinsic properties can be treated 

by equilibrium statistical mechanics. This makes it possible to treat intrinsic 
properties as local parameters. For example, Ms(r) and Kl(r) refl ect the local 
chemistry, and the unit vector n(r) of the easy magnetization direction cor-
responds to the local c-axis orientation of the crystallites. 

Extrinsic or hysteretic magnetic properties, such as the coercivity Hc and 
the remanence Mr, refl ect the magnet’s real-structure [12–16]. For example, 
the coercivity of technical iron doubles by adding 0.01 wt.% nitrogen [15]. 
Such small concentrations have little effect on the intrinsic properties but 
lead to inhomogeneous lattice strains that affect the propagation of magnet-
ic domain walls and explain the observed coercivity increase. The hyster-
etic character of extrinsic properties means that equilibration times may be 
very long. At room temperature, the switching of a single atomic moment is 
a frequent event, but the thermally activated switching of nanoscale cooper-
ative units, such as domain-wall segments, is very rare. This is the thermo-
dynamic origin of hysteresis, enabling us to build permanent magnets and to 
store information on magnetic disks. 

This chapter investigates how intrinsic and extrinsic properties are affect-
ed by nanostructuring. Emphasis is on model calculations and analytical ap-
proximations, as contrasted to Chapter 2 by Kashyap et al. which focuses on 
numerical calculations, and Ch. 4 by Schrefl  et al., where emphasis is on mi-
cromagnetic models and simulations. Section 2 is devoted to static properties, 
whereas section 3 is concerned with magnetization dynamics. Finally, section 
4 presents a number of case studies. 

2. MESOSCOPIC MAGNETISM

2.1. Nanoscale Spin Structure

2.1.1. Magnetic moment

The magnetic moment nearly exclusively originates from the spin and orbit-
al moments of transition-metal electrons. The magnetic moment of iron-series 
transition-metal atoms in metals (Fe, Co, Ni, YCo5) and nonmetals (Fe3O4, 
NiO) is largely given by the spin, and the moment, measured in μB, is equal to 
the number of unpaired spins. The orbital moment is very small, typically of 
the order of 0.1 μB, because the orbital motion of the electrons is quenched by 
the crystal fi eld [16–18]. By contrast, rare-earth moments are given by Hund’s 
rules, which predict the spin and orbital moment as a function of the num-
ber of inner-shell electrons [17]. In some cases, atoms are spin-polarized by 
neighboring atoms. An example of importance in nanomagnetism is L10 mag-
nets such as FePt, where the Pt carries a magnetic moment. 
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The spin moment is largely determined by intra-atomic exchange. It is an elec-
trostatic many-body effect, caused by the 1/|r - r’| Coulomb interaction between 
electrons located at r and r’. Physically, ↓↑ electron pairs in an atomic orbital are 
not forbidden by the Pauli principle but are unfavorable from the point of view 
of Coulomb repulsion. Parallel spin alignment, ↑↑, means that the two electrons 
are in different orbitals, which is electrostatically favorable. However, the corre-
sponding gain in Coulomb energy competes against an increase in one-electron 
energies, because one of the two electrons must occupy an excited state. 

The magnetic moments of insulating transition-metal oxides and rare-earth 
metals are located on well-defi ned atomic sites. However, in Fe, Co, and Ni, 
as well as in many alloys, the moment is delocalized or itinerant. Nonmag-
netic metals, or Pauli paramagnets, have two equally populated ↑ and ↓ sub-
bands; and an applied magnetic fi eld transfers a few electrons from the ↓ band 
to the ↑ band. The corresponding spin polarization is very small, of the or-
der of 0.1 %, because the Zeeman interaction is a small relativistic correction 
[19]. Itinerant ferromagnetism is realized by narrow bands, where the intra-
atomic exchange is stronger than the band-width related gain in single-elec-
tron hybridization (Stoner criterion). 

The Bloch character of itinerant wave functions means that the wave func-
tions extend to infi nity. This is not realistic for two reasons. First, magnets en-
countered in reality, in particular nanomagnets, cannot be considered as infi -
nite. Second, fi nite-temperature excitations create spin disorder and break the 
Bloch symmetry of the ↑ and ↓ wave functions. The problem of nonequivalent 
sites can be tackled, for example, by real-space approaches [16, 20–23]. Re-
stricting the consideration to nearest neighbors yields the correct band width, 
but details of the band structure, such as peaks in the density of states, are ig-
nored. Increasing the number of neighbors improves the resolution of the den-
sity of states and makes it possible to distinguish between bulk sites and sites 
close to surfaces. As a consequence, magnetic moments are determined by the 
local atomic environment, typically without major nanoscale corrections. 

2.1.2. Interatomic exchange

The spin structure of a magnetic moment is the relative orientation of the 
atomic magnetic moments. It includes types of zero-temperature magnetic or-
der, such as ferromagnetism, ferrimagnetism, and antiferromagnetism, and fi -
nite temperature magnetic order. However, micromagnetic structures, such as 
domains and domain walls, are usually excluded from the consideration. Fig-
ure 1 shows some spin structures of interest in the present context. 

To a large extent, the spin structure of bulk and nanomagnets is deter-
mined by the interatomic Heisenberg exchange, J(Ri - Rj) Si·Sj = Jij Si·Sj. For 

positive and negative values of Jij it favors parallel and antiparallel spin align-
ment, respectively. In ferromagnets, such as Fe, Co, and Nd2Fe14B, all spins 
are parallel and the atomic moments add. Ferrimagnets, such as Fe3O4 and 
BaFe12O19, and antiferromagnets, such as CoO and MnF2, are characterized 
by two (or more) sublattices with opposite moments. This amounts to a ferri-
magnetic reduction or antiferromagnetic absence of a net moment. Sublattice 
formation may be spontaneous, as in typical antiferromagnets, or imposed by 
the atomic composition, as in ferrimagnets [24] [25]. In metals, the interatom-
ic exchange may be positive or negative and depends on the atomic environ-
ment, on the interatomic distance, and on the band fi lling. 

Figure 1. Spin structures (schematic): (a) ferromagnetism, (b–c) antiferromagnetism, and (d) 
noncollinear structure. The shown structure of the L10 type; the small atoms (with the large mag-
netization arrows) the iron-series transition-metal atoms, as compared to the bigger 4d/4f atoms. 
Examples of L10 magnets are CoPt and FePt. 

A simple and asymptotically correct [26–28] model is the Ruderman-Kit-
tel-Kasuya-Yosida or RKKY exchange between two localized moments in a 
Pauli-paramagnetic matrix. For a free-electron gas of wave-vector kF, 

The interaction is obtained by second-order perturbation theory, that is, the 
embedded magnetic moments lead to a mixing of one-electron wave func-
tions. The origin of the oscillations is the sharp Fermi surface, which means 
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that spatial features smaller than about 1/kF cannot be resolved with avail-
able zero-temperature wave functions. 

RKKY interactions were fi rst considered on an atomic scale, where the 
oscillation period is on an Å scale. In nanostructures, the fast oscillations do 
not average to zero but increase with the size of the embedded clusters or 
nanoparticles. However, the increase is less pronounced than that of magneto-
static interactions, and for particles sizes larger than about 1 nm, the magne-
tostatic interactions become dominant [27, 29]. In semiconductors and semi-
metals, such as Sb, the low density of carriers means that kF is small, and the 
period of the oscillations is nanoscale [16, 28]. This contributes to the com-
plexity of the physics of diluted magnetic semiconductors [30, 31]. 

Figure 2. Carrier mediated exchange in dilute semiconductors (schematic). The mechanism is 
similar to RKKY interactions, but due to the essential involvement of donor or acceptor orbitals, 
J(ri , rj ) can no longer be written as J( |ri - rj | ) .

In a strict sense, the RKKY interaction is mediated by free electrons, but 
there exist similar effects in other regimes, for example in the tight-binding 
scheme [32]. Figure 2 shows the example of a dilute magnetic semiconduc-
tor where localized impurity spins are coupled by shallow donor or acceptor 
carriers. The carrier orbitals have a radius of the order of 1 nm, hybridize, and 
yield an RKKY -type coupling. A simple case is the exchange mediated by a 
two weakly overlapping s-orbitals, centered at R1 and R2. The overlap leads 
to bonding and antibonding orbitals, and the exchange. Jij is obtained from 
the hybridized electrons by second-order perturbation theory. In terms of lo-
cal electron densities ρ(r) = ψ*(r)ψ(r), the exchange Jij scales as (ρ(ri – R1) 
– ρ(ri – R2)) (ρ(rj – R1) – ρ(rj – R2)). This means that the exchange is ferro-

magnetic if the magnetic ions are located in the same shallow s-orbital and 
antiferromagnetic if they are in different s-orbitals. Correlations (the Hubbard 
or ‘Coulomb-blockade’ energy of the orbitals) can be shown to reduce the fer-
romagnetic exchange while leaving the qualitative picture unchanged. 

One effect of competing RKKY exchange is noncollinear spin structures, 
as illustrated in Fig. 1(d). Noncollinearity due to competing exchange is en-
countered, for example, in some elemental rare earths (helimagnetism), where 
it refl ects different exchange interactions between nearest and next-nearest 
rare-earth layers [33]. Note that the corresponding magnetization wave vector 
is generally incommensurate with lattice spacing, not only in nanostructures 
but also in perfect crystals. Furthermore, the effect is relatively strong, with 
angles between neighboring atomic spins from 0 to 180°. This is in contrast to 
the relativistic effects considered in the next subsection. 

2.1.3. Exchange stiffness

On a continuum level, the Heisenberg exchange energy of a cubic material is

where A is the exchange stiffness. More generally, Heisenberg exchange is de-
scribed by

A well-known derivation of Eq. (2) is in terms of magnetization angles. It, 
assumes φ = 0, so that Eex = ∫A(∇θ)2dV, and takes into account that Σij Jij 
cos(θi – θj) ≈ Σij Jij (1 – (θi – θj)

2/2). Using the expansion θj = θi + ∇θ · (rj 
– ri) and comparing the result with Eq. (2) then yields A ~ Σij Jij (ri – rj)

2. 
This result is meaningful for nearest-neighbor interactions, but it diverges 
for long-range interactions Jij. An example is the RKKY interaction, where 
integration over all neighbors yields A ~ ∫ 1/R3 R2 R2 dR = ∞. This is be-
cause θj = θi + ∇θ · (rj – ri) breaks down for large distances R = | ri – rj |. 

A more general derivation of A is based on Fourier transformation, which 
diagonalizes J(|r – r’|) and yields a representation in terms of Jk. Since 
∫A(∇θ)2dV = ∫ Jk θk

2 dk and ∫ A(∇θ)2dV = – ∫ A k2 θk
2 dk, A is given by the 

quadratic coeffi cient of the expansion of Jk with respect to k. Putting k = kek, 
R = R cosθ’ek + R sinθ’e⊥, and dV = 4πR2 sinθ’ dθ’ dR yields
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Here Jk = F(|k|) is the Lindhard screening function [26, 34]. Note that noncol-
linear or incommensurate spin states then correspond to a minimum of J(k). 

Figure 3. Exchange energy as a function of the wave vector of the magnetization inhomogenity: 
Lindhard function (solid line) and exchange-stiffness or continuum approximation (dashed line). 
For late 3d elements (Cu), k/2kF = 1 corresponds to modulation wavelength of 0.23 nm.

Figure 3 compares the Lindhard function (solid line) with the exchange- stiff-
ness approximation (dashed line). We see that the exchange-stiffness approxi-
mation works well unless k is comparable to kF. 

In noncubic materials, A must be replaced by the 3 × 3 exchange-stiff-
ness tensor Aμν, and the energy is Σμν ∫ Aμν ∂M/∂xμ · ∂M/∂xν dV. Here the indi-
ces μ and ν denote the spatial coordinates x, y, and z of the bonds. The energy 
is anisotropic with respect to the nabla operator ∇μ = ∂/∂μ (bond anisotropy) 
but isotropic with respect to the magnetization M. By contrast, the relativistic 
anisotropic exchange Σαβ ∫ Aαβ ∇Μα ∇Μβ dV is isotropic with respect to ∇ but 
anisotropic with respect to M. 

2.1.4. Curie temperature

Thermal disorder competes against interatomic exchange and causes the mag-
netization of ferromagnets to vanish at a well-defi ned sharp Curie temperature 
Tc. In a strict sense, ferromagnetism is limited to infi nite magnets, because 
thermal excitations in fi nite magnets cause the net moment to fl uctuate be-
tween opposite directions. The Curie temperature is determined by the site-re-
solved exchange coeffi cients. Jij, and since Ms and Tc are equilibrium proper-
ties, it is suffi cient to know the partition junction Z = Σμ exp(–Eμ/kBT), where 
the summation includes all microstates or spin-confi gurations μ. However, the 
number of terms in Z increases exponentially with the size of the magnet, and 
there exist exact solutions only in a few cases [35]. The simplest approxima-
tion is the mean-fi eld approximation, where the interactions are mapped onto 
a self consistent fi eld. The homogeneous nearest-neighbor Heisenberg ferro-
magnet has the mean-fi eld Curie-temperature Tc = (S + 1)zJ/3kBS, where S is 
the spin quantum number and z is the number of nearest neighbors. 

The mean-fi eld model is easily generalized to two or more sublattices. This 
site-resolved or lattice mean-fi eld theory includes the case of nanomagnets, 
which have a very large number N of non-equivalent atomic sites or ‘sublattic-
es’. Since the Jij form an N × N matrix, there are N coupled algebraic equations, 
and Tc is given by the largest eigenvalue of the matrix. Jij/kB [24, 36]. Using av-
eraged exchange constants < Jij> fails to properly account for the spatial disper-
sion of the exchange. An extreme example is a mixture of two ferromagnetic 
phases with equal volume fractions but different Curie temperatures T1 and T2 > 
T1. In the above approximation, Tc = (T1 + T2)/2, but in reality Tc = T2 [36]. 

Note that mean-fi eld theory is unable to describe the long-range correla-
tions aspect of the problem, but the involved energy contributions are small, 
and the long-range features of the thermodynamics are not affected by the 
nanoscale effects [36]. 

In practice, it is diffi cult to distinguish the magnetism of particles or nano-
structural features larger than about 1 nm from true ferromagnetism, because 
interatomic exchange ensures well-developed ferromagnetic correlations on a 
nanoscale. For example, when the radius of a particle is larger than a few in-
teratomic distances, then the Ms(T) curve is diffi cult to distinguish from a fer-
romagnet. Disordered two-phase nanostructures have a single common Cu-
rie temperature close to the Curie temperature of the phase with the strongest 
exchange coupling [5, 36, 37]. Similar considerations apply to multilayers 
[38–42] and to systems such as magnetic semiconductors [30]. Figure 4 il-
lustrates that it is not possible to enhance the fi nite-temperature magnetiza-
tion of a phase having a low Curie temperature by exchange-coupling it to a 
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phase with a high bulk Curie temperature [36]. This is clear contrast to the na-
noscale improvement of extrinsic properties (§2.3.5). 

Figure 4. Spontaneous magnetization of inhomogeneous magnets: (I) macroscopic mixture, (II) 
nanostructure, and (III) alloy. In alloys and nanostructures, there is only one Curie temperature, 
although the Ms(T) curves of nanostructures exhibit a two-phase like infl ection whose curvature 
may be diffi cult to resolve experimentally [36]. 

Heisenberg interactions require well-defi ned atomic magnetic moments. 
where S2 = So

2. In insulators, So
2 = S (S+ 1), whereas in metals, So is an expec-

tation value and S/So has the character of a unit vector that describes the lo-
cal magnetization direction. The assumption of a constant magnetic moment 
is often justifi ed, because the total interatomic exchange per atom, of order 
100 meV, tends to be much smaller than typical intra-atomic exchange ener-
gies of about 1000 meV [43]. Some exceptions are L10 magnets, where the 4d 
or 5d moments (Pd or Pt) are spin-polarized by the 3d atoms (Fe or Co) [44], 
and very weak itinerant ferromagnets, such as ZrZn2 [16, 45]. Simplifying 
somewhat, the overall situation is intermediate between Heisenberg magne-
tism with stable local moments and a Stoner-like behavior where the moment 
vanishes at Tc. However, itinerant magnets such as Fe tend to be close to the 

Heisenberg limit (Ch. 2), which establishes the spin-fl uctuation picture of fi -
nite-temperature magnetism [16, 34]. 

2.1.5. Anisotropic Exchange

Heisenberg exchange is magnetically isotropic, that is, coherent rotation of a 
magnet’s spin system does not change the Heisenberg exchange energy. For 
example, layered structures, such as YCo5 and L10 magnets, tend to exhibit 
different intra- and interlayer interactions [44, 46], but the exchange does not 
depend on whether the magnetization is in-plane or normal to the layers. This 
exchange-bond anisotropy affects the spin structure of a magnet at both zero 
and nonzero temperatures. For example, it is the main source of spin noncol-
linearities encountered in elemental rare earths [33] and in magnetoresistive 
materials, such as NiMnSb [47]. Figure 1 shows some spin structures. 

The bond anisotropy must not be confused with the relatively weak rela-
tivistic exchange anisotropies, which involve spin-orbit coupling and depend 
on the angle between the magnetization and the crystal axes. Examples are the 
exchange interactions assumed in the Ising and XY models, the magnetocrys-
talline anisotropy, and the unidirectional Dzyaloshinskii-Moriya exchange. 
For example: the exchange anisotropies Jxx - Jzz and Jyy - Jzz are small correc-
tions to the isotropic exchange J = (Jxx + Jyy + Jzz)/3. Another example is the 
Dzyaloshinskii-Moriya (or DM) interaction HDM = – ½ Σij Dij · Si × Sj, where 
the vector Dij = – Dji refl ects the local environment of the magnetic atom [48]. 
Net DM interactions require local environments with suffi ciently low sym-
metry and occur, for example, in some crystalline materials, such as α-Fe2O3 
(hematite), amorphous magnets, spin glasses, and magnetic nanostructures 
[5, 33, 48]. Micromagnetic noncollinearities, such as domain walls, also stem 
from relativistic effects, because they involve magnetocrystalline anisotropy, 
but their domain is nanoscale rather than atomic, and they are traditionally 
treated in the context of micromagnetism (§2.3). Compared to Heisenberg ex-
change, relativistic contributions are smaller by a factor of order α2, where α 
= 1/137 [5]. For example, typical DM canting angles are about 0.1°.

2.2. Magnetic Anisotropy

The dependence of the magnetic energy on the orientation of the magnetiza-
tion with respect to the crystal axes is known as magnetic anisotropy. Per-
manent magnets need a high magnetic anisotropy, in order to keep the mag-
netization in a desired direction. Soft magnets are characterized by a very 
low anisotropy, whereas materials with intermediate anisotropies are used 
as magnetic recording media. In terms of the magnetization angles φ and θ, 
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the simplest anisotropy-energy expression for a magnet of volume V is Ea = 
K1V sin2θ . This anisotropy is known as lowest-order (or second-order) uni-
axial anisotropy, and K1 is the fi rst uniaxial anisotropy constant. It is often 
convenient to express anisotropies in terms of anisotropy fi elds. For exam-
ple, the expression Ea = K1V sin2θ yields Ha = 2 K1/μoMs. 

For magnets of low symmetry (orthorhombic, monoclinic, and triclinic), 
the lowest-order anisotropy energy is

where K1 and K’1 are, in general, of comparable magnitude. This expression 
must also be used for magnets having a low-symmetry shape, such as ellip-
soids with three unequal principal axes, for a variety of surface anisotropies, 
such as that of bcc (011) surfaces [49], and for nanoparticles with random sur-
faces. Equation 5 can also be written as Ea = – M·K·M/Ms

2, where K is a 3 × 
3 tensor. It obeys TrK = 0, and the two independent eigenvalues of K corre-
spond to K1 and K’1. Higher-order anisotropy expressions contain, in general, 
both uniaxial and planar terms. For example, Ea/V = K1 sin2θ + K2 sin4θ con-
tains second- and fourth-order uniaxial anisotrop terms and describes hexago-
nal and rhombohedral crystals [16, 50]. 

2.2.1. Origin of anisotropy

Figure 5 illustrates that there are two main sources of anisotropy: shape an-
isotropy and magnetocrystalline anisotropy. Shape anisotropy is important in 
magnetic nanostructures made from soft-magnetic materials, for example in 
Fe, Co, and Ni particles [16, 51] and in nanowires [52–55]. However, the an-
isotropy of most materials is of magnetocrystalline origin, refl ecting the com-
petition between electrostatic crystal-fi eld interaction and spin-orbit coupling 
[7]. Note that the same mechanism is responsible for the quenching (or un-
quenching) of the orbital moment and for phenomena such as magnetic circu-
lar dichroism and anisotropic magnetoresistance. 

For shape anisotropy, K1 = μo(1 – 3D)Ms
2/4, where D is the demagnetiz-

ing factor (D = 0 for long cylinders, D = 1/3 for spheres, and D = 1 for plates) 
[56]. It is important to note that shape anisotropy is limited to very small par-
ticles (§2.2). In large particles, shape anisotropy is destroyed by internal fl ux 
closure, indicated at the bottom of Fig. 5(a). 

The crystal fi eld [57], which contains both electrostatic and hopping contri-
butions [58], acts on the orbits of the inner d and f electrons. That is, the elec-
tron orbits refl ect the anisotropic crystalline environment, and adding spin-orbit 
coupling translates this anisotropic electron motion into magnetic anisotropy. 

Figure 5. Physical origin of magnetic anisotropy: (a) compass-needle analogy of shape anisotropy 
and (b–c) magnetocrystalline anisotropy. In (b) and (c), the anisotropy energy is given by the elec-
trostatic repulsion between the tripositive rare-earth ions and the negative crystal-fi eld charges. 

The magnitude of the magnetocrystalline anisotropy depends on the ratio 
of crystal-fi eld energy and spin-orbit coupling. As a relativistic phenomenon, 
spin-orbit coupling is most pronounced for inner-shell electrons in heavy el-
ements, such as rare-earth 4f electrons. This leads to a rigid or ‘unquenched’ 
coupling between spin and orbital moment, and the magneto-crystalline an-
isotropy is given by the relatively small electrostatic crystal-fi eld interaction 
of the 4f charge clouds [59] with the crystal fi eld [16, 60, 61]. This largely 
electrostatic mechanism, illustrated in Fig. 5(b) and 5(c), is responsible for the 
high room-temperature anisotropy of rare-earth permanent magnets, K1 ~ 10 
MJ/m3 (see Appendix). 

In 3d atoms, the spin-orbit coupling is much smaller than the crystal-fi eld 
energy, and the magnetic anisotropy is a perturbative effect [7, 8, 16]. Typi-
cal second- and fourth-order transition-metal anisotropies are of the orders of 
1 MJ/m3 and 0.01 MJ/m3, respectively. A manifestation of magnetocrystalline 
anisotropy is magnetoelastic anisotropy, where the crystal fi eld is changed by 
mechanical strain [5, 16]. 

2.2.2. Surface and interface anisotropy

To realize second-order anisotropy, the atomic environment of the transi-
tion-metal atoms must have a suffi ciently low symmetry [49, 62 –65]. Figure 
6 illustrates that this is often, but not always, the case for surface atoms. Mag-
netic surface anisotropy, fi rst analyzed by Néel [62], is important in compli-
cated structures and morphologies such as ultrathin transition-metal fi lms [66], 
multilayers [67], rough surfaces [65], small particles [68], and surface steps 
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[69]. In a variety of cases it has been possible to calculate surface anisotropies 
from fi rst principles [64, 67, 70–72]. The same is true for some other low-ge-
ometries, such as Fe wires embedded in Cu [73] and free-standing monatom-
ic Co wires [74]. An interesting point is that surface anisotropies easily dom-
inate the bulk anisotropy of cubic materials. From the tables in the appendix 
we see that bulk anisotropies are about two orders of magnitude smaller than 
lowest-order anisotropies. Due to the comparatively large number Ns of sur-
face atoms of small particles, the surface contribution dominates the bulk an-
isotropy in particles smaller than about 3 nm, even if one takes into account 
that the net surface anisotropy is not necessarily linear in Ns but tends to scale 
as Ns

½ due to random-anisotropy effects. 

Figure 6. Surface anisotropy: (a) atomic origin and (b) realization in a nanoparticle. Lowest-or-
der biaxial anisotropy is realized for bcc (011) but not for bcc (001) and bcc (111). The large sur-
face-to-volume ratio of clusters leads to a comparatively strong diameter dependence of the in-
trinsic properties such as anisotropy [68] and magnetization. 

Magnetocrystalline anisotropy is characterized by a pronounced temper-
ature dependence [16, 61, 75–77]. For example, the leading rare-earth an-
isotropy contribution of permanent magnet intermetallics such as SmCo5 and 
Nd2Fe14B scales as 1/T2 [78]. The main reason is that typical anisotropy ener-
gies per atom are quite small, Ea ranging from less than 0.1 K to a few K. The 
realization of room-temperature anisotropy requires the support of the inter-
atomic exchange fi eld, which suppresses the switching of individual atomic 
spins into states with reduced anisotropy contributions [16,79,80]. 

Magnetocrystalline anisotropy is, essentially, a single-ion property, re-
alized by embedding the atom in a metallic or nonmetallic crystalline envi-
ronment [16, 58]. This must be compared to the popular Néel model [62], 
which ascribes anisotropy to pair interactions. Figure 7 illustrates the dif-
ference. The Néel model requires two interacting magnetic atoms (black), 
whereas the single-ion or crystal-fi eld model amounts to hopping or crys-

tal-fi eld interactions with atoms that are not necessarily magnetic (white). 
The principal failure of the Néel model is seen by comparing Sm2Fe17 and 
Sm2Fe17N3, where the electronegative nitrogen is nonmagnetic but strongly 
affects the crystal fi eld and changes the room-temperature anisotropy from –
0.8 MJ/m3 to 8.6 MJ/m3 [16]. 

Figure 7. Models of magnetic anisotropy: (a) Néel model and (b) single-ion crystal-fi eld mod-
el. Both models reproduce the correct symmetry, but (b) is physically more adequate for most 
systems. 

2.2.3. Temperature dependence of anisotropy

In most materials, including nanostructures, the magnetocrystalline anisot-
ropy is strongly decreases with increasing temperature. This is due to intra-
atomic excitations. The strong temperature dependence of the leading rare-
earth anisotropy contribution of hard-magnetic materials such as SmCo5 and 
Nd2Fe14B refl ects intramultiplet excitations [16, 60, 61]. The excitations may 
be visualized as changes between Fig. 5(b) and 5(c). The fi gure indicates that 
these excitations compete against the crystal fi eld. However, the crystal fi eld 
is only one consideration; the main contribution is from the inter-sublattice 
exchange, which dominates thermal spin disorder. 

For one-sublattice magnets, such as Fe and Co, the Akulov or Callen and 
Callen theory [81] relates the temperature dependence of the anisotropy to 
the spontaneous magnetization and yields M3 and M10 power laws for uniax-
ial and cubic magnets, respectively. This theory has become popular far be-
yond its range of applicability [82] but is unable to describe structures such 
as rare-earth transition-metal magnets [16, 60], actinide magnets [83], and 
L10 type compounds [44, 84]. 
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Figure 8. Nucleation mode in a small L10 particle. Due to reduced anisotropy at the surface, the 
reversal starts at the surface [89]. 

An interesting example is the fi nite-temperature magnetization of L10 mag-
nets [44, 84, 85]. Elemental 4d/5d magnets, such as Pd and Pt, are ex-
changed-enhanced Pauli paramagnets, but in a ferromagnetic environment 
they are easily spin-polarized by neighboring 3d atoms. [86, 87]. The 4d/5d 
moment contributes little to the magnetization and Curie temperature, but it 
plays a key role in the realization of magnetic anisotropy, which is of the or-
der of 5 MJ/m3 at room temperature [88]. 

The temperature dependence of the anisotropy is refl ects the collapse of 
the 4d/5d moment. The result of the calculation is an M2 law [44], as com-
pared to the Callen-Callen prediction M3 and to refi ned simulations that yield 
an M2.08 dependence [84]. By comparison, for uniaxial 3d magnets, such as 
Co and YCo5, m = 3 [81], cubic and noncubic actinide magnets exhibit m = 1 
[83], and for cubic 3d magnets, such as Fe and Ni, m = 10 [81]. Finally, rare-
earth transition-metal intermetallics exhibit m ≈ 0, that is, the 4f sublattice 
anisotropy is largely independent of the leading 3d magnetization [16]. The 
exponents m = 2 and m = 3 are not very dissimilar [85], but the different phys-
ics—the crucial involvement of two sublattices—speaks in favor of m = 2. In 
fact, recent calculations by Mryasov et al. have yielded m = 2.08, amounting 
to a single-sublattice contribution of the order of 8%. As also pointed out in 
[84], the reduction of the number of 3d neighbors in magnetic nanoparticles 
has a very similar surface-anisotropy reduction effect. 

2.3. Hysteresis of Magnetic Nanostructures

Magnetic anisotropy yields easy magnetization directions corresponding to lo-
cal energy minima and energy barriers that separate the easy directions. On an 
atomic scale, the barriers are easily overcome by thermal fl uctuations, but on 

nanoscale or macroscopic length scales the excitations are usually too weak to 
overcome the barriers. This is observed as magnetic hysteresis. 

Zeeman and selfi nteraction (demagnetization) magnetic fi elds, interatom-
ic exchange, and magnetic anisotropy all contribute to the rotation, which 
occurs on a mesoscopic scale and has been known historically as micromag-
netism [90], although nanomagnetism would be a better name to character-
ize the involved length scales. Magnetic nanostructures exhibit a particu-
larly rich extrinsic behavior, but even traditional ‘microstructured’ magnets 
exploit nanometer-scale features for performance optimization [91]. For ex-
ample, the best room-temperature permanent magnets are now made from 
Nd-Fe-B [92], but as-cast samples with the correct stoichiometry exhibit a 
disappointingly low coercivity unless the grain-boundary structure is opti-
mized by a specifi c heat treatment. 

Figure 9 shows a typical hysteresis loop and illustrates how magnetic 
hysteresis is realized in real space. In the example of Fig. 9, the hysteresis 
refl ects domain-wall pinning in a small particle. This means that magnetic 
domains are separated by domain walls (dotted lines) whose motion is im-
peded by real-structure defects or ‘pinning centers’ in the bulk or at the sur-
face. Aside from a few basic hysteresis mechanisms, such as pinning, coher-
ent rotation, curling, and localized nucleation, there exist many variations 
and combinations. The reason is the real-structure dependence of magnetic 
hysteresis, which makes it necessary to consider each material or each class 
of materials separately. 

Figure 9. Magnetic hysteresis: origin and phenomenology of hysteresis. The coercivity of the 
particles shown in this fi gure is caused by domain-wall pinning at the grain- boundary phase. 
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2.3.1. Micromagnetic free energy

A key theoretical problem is to derive magnetization curves by simulating 
or modeling the magnet’s nanostructure. This requires the determination of 
the local magnetization M(r), from which the hysteresis loop is obtained by 
averaging. The large strength of the intra-atomic exchange means that typ-
ical magnetization changes in magnetic solids are caused by moment rota-
tions rather than by changes in the moments’ magnitude. The result is the 
complicated nonlinear, nonequilibrium, and nonlocal problem of hysteresis. 
In addition, there is a strong real-structure infl uence. Properties related to 
hysteresis (extrinsic properties) are also known as micromagnetic properties 
[90], but this term is somewhat unfortunate, because most micromagnetic 
phenomena are nanoscale. 

Hysteresis problems are usually treated on a continuum level [16, 90, 93]. 
Narrow-wall phenomena, which have been studied for example in rare-earth 
cobalt permanent magnets [94] and at grain boundaries [95, 96], involve indi-
vidual atoms and atomic planes and lead to comparatively small corrections to 
the extrinsic behavior (§4.2). Furthermore, in contrast to the intrinsic phenom-
ena considered in Section 2, which affect the spontaneous magnetization Ms = 
|M|, micromagnetic phenomena are realized by local rotations of the magneti-
zation vector. This is because typical micromagnetic energies are much small-
er than the quantum-mechanical energy contributions that establish Ms. 

To explain the hysteresis loop of magnetic materials one needs to trace the 
local magnetization M(r) = Mss(r) as a function of the applied fi eld H. This is 
achieved by considering the free-energy functional

Here Ms(r) is the spontaneous magnetization, K1(r) is the fi rst uniaxial anisot-
ropy constant, A(r) denotes the exchange stiffness, and n(r) is the unit vector 
of the local anisotropy direction. H is the external magnetic fi eld, and Hd is 
the magneto static self-interaction fi eld. The latter can be written as

The free-energy character of F refl ects the intrinsic or equilibrium tempera-
ture dependence of the parameters A, K1, and Ms. Furthermore, these parame-

ters are local parameters, because they depend on chemistry, crystal structure, 
and crystallite orientation. 

Depending on the considered system, additional terms must be added to the 
micromagnetic equation. In lowest order, DM interactions amount to a random 
fi eld Σj(Dij,yex – Dij,xey)/2 where the summation (or integration) over j includes 
all atomic neighbors; the resulting structure may be called a ‘spin colloid.’ 

2.3.2. Micromagnetic length scales

Equation (6) yields not only the hysteresis loop but also the underlying micro-
magnetic spin structure. This includes features such as domains and domain 
walls. An aspect of great importance in nanomagnetism is the length scales on 
which these features are realized. Dimensional analysis of Eq. (6) yields two 
fundamental quantities, namely the wall-width parameter ∂o = √

―
A
―
/
―
K1 and 

the exchange length lex = √
―
A
―
/
―
μ
―
o
―
M
―
s
2 . Other length and dimensionless parame-

ters are derived from ∂o and lex. 
The wall-width parameter ∂o varies from about 1 nm in extremely hard 

materials to several 100 nm in very soft materials. It determines the thick-
ness ∂B = π∂o and energy γw = 4K1∂o of Bloch domain walls [13, 14, 97, 
98], and describes the spatial response of the magnetization to local per-
turbations [95]. Essentially, the thickness of the walls is determined by the 
competition between exchange, which favors extended walls, and anisotro-
py, which favors narrow transition regions. 

The exchange length lex is the length below which atomic exchange in-
teractions dominate typical magnetostatic fi elds. It determines, for example, 
the particle cylinder radius Rcoh ~ 5lex above which curling is more favor-
able than coherent rotation {§2.3.3). It also yields the thickness of soft-mag-
netic fi lms below which Néel walls are energetically more favorable than 
Bloch walls. For a broad range of ferromagnets, lex ~ 2 nm [16]. Note that 
the wall-width parameter ∂o is sometimes interpreted as an exchange length. 
If this were a valid consideration, then ideally soft materials, where K1 = 0 
and ∂o = ∞, would realize exchange coupling on a truly macroscopic scale. 
This is at odds with experiment. 

Compared to domain-wall thicknesses, the determination of domain siz-
es tends to be very complicated [13, 14, 51, 93, 99–101]. This is because do-
mains are caused by the strongly geometry- and size-dependent magnetostatic 
selfi nteraction. An exception is the critical single-domain radius
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of spherical particles, above which a two-domain state is more favorable than 
the single-domain state. This expression refl ects the competition between do-
main-wall energy, 4π√

—
A

—
K1 R

2, and gain in magneto static energy μo Ms
2V/12 

[97]. In soft magnets, the critical single-domain size is only a few nanome-
ters, but in very hard magnets it exceeds 1 μm. 

It is important to emphasize that the critical single-domain radius is an 
equilibrium property. It involves the comparison of the of single-domain and 
multi-domain energies but is independent of the energy barriers separating 
the states. It determines, for example, the initial or virgin state after thermal 
demagnetization. By contrast, hysteresis is a nonequilibrium phenomenon 
caused by energy barriers. Furthermore, equilibrium domains are qualitative-
ly different from the nonuniform (incoherent) magnetization states occurring 
during magnetization reversal (§2.3.3). The popular but incorrect equating of 
single-domain magnetism and coherent rotation has its origin in the focus on 
soft and semi-hard magnets in the fi rst half of the 20th century. 

Note that typical domain-wall widths are much smaller than the domains 
themselves. When the size of a magnetic particle is smaller than the domain-
wall width ∂B, as encountered for example in small soft-magnetic nanodots, 
then the distinction between domains and domain walls blurs, and the deter-
mination of the micromagnetic spin structure requires additional consider-
ations [102]. One example is curling-type fl ux-closure or ‘vortex’ states. 

2.3.3. Exact solutions

In small particles, the exchange is suffi ciently strong to ensure that M(r) is 
constant throughout the magnet, that is, ∇M in Eq. (6) is zero. Depending on 
the context, this regime is called coherent rotation, uniform rotation, or Ston-
er-Wohlfarth reversal [90, 103, 104]. For perfect uniaxial ellipsoids of revolu-
tion having the symmetry axis parallel to the external fi eld H = Hez, the ener-
gy (Eq. (6)) then becomes 

Expanding this equation into powers into powers of θ and analyzing the sta-
bility of the local free-energy minimum at θ = 0 yields the Stoner-Wohlfarth 
coercivity

This coercivity is a simple example of a nucleation fi eld. In micromagnetism, 
the term nucleation refers to the instability of the remanent state in a reverse 
magnetic fi eld Hz = –HN. It does not necessarily imply localization effects 
[16, 93], although localized nucleation is frequently encountered in practice. 

Increasing the radius of the particle leads to a transition from coherent ro-
tation to curling. Figure 10 compares coherent-rotation and curling nucleation 
modes. Curling is favorable from the point of view of magnetostatic selfi n-
teraction, because the vortex-like mode yields some fl ux closure, but it costs 
some exchange energy, because ∇M ≠ 0. The derivation of the curling mode 
involves the exchange term in Eq. (6). After some calculation [16, 90, 93, 
104] one obtains the nucleation-fi eld coercivity

Here the radius R refers to the two degenerate axes of the ellipsoid, and c = 
8.666 for spheres (D = 1/3) and c = 6.678 for needles (D = 0). In (11), the 
magneto static contribution, –DMs, is always negative, in contrast to the term 
(1 – 3D)Ms/2 in (10). This means that there is no shape anisotropy in large 
magnets, although the exchange term in (11) partly compensates the absence 
of the exchange fi eld [105]. 

Figure 10. Nucleation modes in homogeneous magnets: (a) coherent rotation in a sphere, (b) 
curling in a sphere, and (c) curling in a cylinder. The arrows show the local magnetization M = 
Mz ez + m, where ez is parallel to the axis of revolution of the ellipsoid (cylinder). 

Comparison of Eqs. (10) and (11) yields the radius Rcoh for the transition 
from coherent rotation to curling. For R < Rcoh, the exchange energy dom-
inates, and the nucleation is realized by coherent rotation, whereas for R > 
Rcoh the nucleation behavior is dominated by fl ux closure and realized by 
curling. For spheres and wires (cylinders), one obtains Rcoh = 5.099 lex and 
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Rcoh = 3.655 lex, respectively [16, 90, 93]. These radii are typically of the or-
der of 10 nm. In thin fi lms with perpendicular anisotropy (D ≈ 0), curling oc-
curs when the cross section of the fi lms exceeds some value scaling as lex [9]. 
Note that Rcoh is anisotropy-independent, in contrast to the critical single-do-
main radius RSD. Since Rcoh « RSD in hard magnets, there is a broad region 
Rcoh ≈ 10 nm and RSD ≈ 1 μm where hard-magnetic single-domain particles 
demagnetize incoherently. The popular but incorrect equating of single-do-
main magnetism and coherent rotation, as epitomized by the unfortunate 
term ‘elongated single-domain particle’ (ESD), has its origin in the focus on 
soft and semi-hard magnets in the fi rst half of the 20th century. 

2.3.4. Localized nucleation

The Stoner-Wohlfarth approach works fairly well for very small particles, 
where ∇M = 0 is a good approximation. However, it has been known for de-
cades that neither the Stoner-Wohlfarth theory nor the additional consider-
ation of the curling mode account for the coercivity of real materials. For ex-
ample, the coercivity of optimized permanent magnets is only 20–40% of the 
anisotropy fi eld 2K1/μoMs, and only a part of the discrepancy can be ascribed 
to the curling terms in Eq. (11). The reason is that real-structure imperfections 
make it impossible to consider the magnets as perfect ellipsoids of revolution. 

Figure 11. Pinning and nucleation. Pinning means that coercivity is created by trapping the do-
main wall at pronounced inhomogenities (pinning centers). In the absence of pinning centers, the 
coercivity is determined by the reversal fi eld at which the original magnetization confi guration 
becomes unstable (nucleation). 

Figure 11 illustrates that there is an important distinction between domain-
wall pinning and localized nucleation. Domain-wall pinning [15, 51, 99, 106], 
as illustrated in Fig. 11, requires relatively strong inhomogenities. For exam-
ple, the high coercivity of Sm-Co-Cu-Zr permanent magnets refl ects domain-
wall pinning at a Cu-rich grain-boundary phase with strongly reduced anisot-
ropy and domain-wall energy [5, 16, 77, 107, 108]. 

In nearly perfect magnets, pinning is unimportant, and the coercivity is 
determined by the stability of saturated (or nearly saturated) original magne-
tization state. This scenario is similar to coherent rotation and curling, except 
that a single nanoscale inhomogenity may initiate the magnetization reversal 
of a macroscopic magnet. This localized nucleation leads to strong reduction 
of HN and solves Brown’s paradox [90, 109], according to which the observed 
coercivities are often much smaller than predicted by (10). 

To determine the nucleation fi eld, we write the local magnetization as

where m is the perpendicular magnetization component ( |m| = sinθ). Taking 
into account that n = ez for aligned magnets, and expanding the free energy 
Eq. (6) into powers of m yields the quadratic expression

Here we have incorporated the magnetostatic selfi nteraction into K1 and H, 
which is a good approximation for many systems [5]. Eigenmode analysis of 
(13) yields the differential equation

where we have assumed that A is constant throughout the magnet. 
In terms of (14), imperfections appear as a modifi cation of the local an-

isotropy K1(r) and lead to a nucleation-fi eld and coercivity reduction [105, 
110–112]. The solution of the nucleation problem is simplifi ed by the fact that 
Eq. (14) has the same structure as the single-particle Schrodinger equation, 
K1(r) and Hc being the respective micromagnetic equivalents of V(r) and E. 
Consider, for example, an imperfection in form of a cubic soft inclusion of 
volume L3 in a hard matrix. The corresponding wave functions are particle-in-
a-box states, and the nucleation fi eld is [5] 

Analyzing this expression in terms of the exchange length reveals that im-
perfections are harmful if their size is comparable to or larger than a few 
nanometers. 
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In the past, nucleation fi elds such as Eq. (15) have been obtained for sever-
al cases: spherical particles in an infi nitely hard matrix [110], small inclusions 
in a matrix of arbitrary anisotropy and exchange stiffness [105] [111], various 
types of multilayers [111, 113], and some core-shell and nanowire confi gura-
tions [105, 114, 115]. For a discussion of the unphysical limit of very small 
inclusions, L = 0, see e.g. [5]. 

2.3.5. Nanostructured magnetic materials

There are various classes of magnetic materials (see Appendix), and both tradi-
tional materials and novel nanostructures exploit nanoscale phenomena [5]. An 
example of improving the performance of magnetic materials by nanostructur-
ing is hard-soft permanent-magnet composites [16, 111, 116–120]. As analyzed 
in [16, 111], atomic-scale magnetism doesn’t support substantial improvements 
of permanent magnets beyond existing intermetallics such as SmCo5, Sm2Co17, 
and Nd2Fe14B. However, adding a soft phase to a hard phase in a suitable nano-
structure can improve the permanent-magnet performance beyond that of the 
hard phase. In these structures, the hard phase acts as a skeleton to ensure a co-
ercivity of the order of Hc/2, whereas adding the soft-magnetic high-magnetiza-
tion phase enhances Ms and Mr [111]. This materials-by-design or ‘metamateri-
als’ approach makes it possible to produce materials not encountered in nature. 

Note that isotropic single-phase and two-phase permanent magnets are 
comparatively easy to produce. Examples are nanocrystalline Nd2Fe14B/Fe3B-
Fe and Sm2Fe17N3/Fe composites produced by melt-spinning [116] and me-
chanical alloying [121], respectively. However, the remanent magnetization 
Mr of randomly oriented grains with uniaxial anisotropy is only half the satu-
ration magnetization Ms. Since the energy product of highly coercive perma-
nent magnets scales as Mr

2, this amounts to a reduction of this key fi gure of 
merit by a factor of 4. Intergranular exchange improves the remanence by fa-
voring parallel spin alignment in neighboring grains [116, 121–125]. Howev-
er, this remanence enhancement is accompanied by a cooperative coercivity 
reduction, which limits the achievable energy product. 

Magnetic nanostructures with c-axis alignment do not suffer from mag-
netization reduction due to random anisotropy. Examples of structures are 
multilayers [111, 113, 117], which are now widely associated with Kneller’s 
concept of exchange-spring magnetism, and three-dimensional two-phase 
nanostructures [110, 111]. The model predictions by Skomski and Coey [16, 
111] have been verifi ed in Fe-Pt nanostructures [5, 119], but the experimental 
realization of high-performance multilayered [118, 120, 126–130] and granu-
lar [16, 95, 105, 111, 116, 119, 123–125, 131, 132] rare-earth transition-met-
al structures has remained a demanding challenge. The main reasons are dif-

fi culties in aligning the easy-axis of hard-phase grains, maintaining a uniform 
phase mixture on the scale of ~ 5 nm, and real-structure imperfections, which 
make it diffi cult to maintain coercivity. 

3. MAGNETIZATION DYNAMICS

Magnetization processes are generally time-dependent, even if the external 
magnetic fi eld is kept constant. For example, freshly magnetized permanent 
magnets lose a small fraction of their magnetization during the fi rst few hours. 
In nanomagnets, the oscillation and relaxation times vary from less than one 
nanosecond to millions of years. 

Atomic processes are very fast, so that intrinsic properties obey equilibri-
um statistics. An intermediate regime is characterized by typical magnetostatic 
and anisotropy energies per atom, about 0.1 meV, which correspond to times 
of order τo ~ 0.1 ns. Examples are ferromagnetic resonance and related pre-
cession and damping phenomena. When energy barriers are involved, thermal 
excitations lead to a relatively slow relaxation governed by the Boltzmann-
Arrhenius law [99, 133–137] 

This relation, known as the Néel-Brown law [135, 137], goes back to the 
1930s [99]. Due to the exponential energy dependence, extrinsic equilibration 
times vary over many orders of magnitudes, from nanoseconds or millisec-
onds in superparamagnetic particles to decades in permanent magnets and re-
cording media and millions of years in magnetic rocks. 

3.1. Fundamental Equations

The time-dependent Schrodinger equation can, in principle, be used to predict 
the evolution of any physical system, but this method is not feasible in prac-
tice. First, the deterministic character of the Schrodinger equation forbids irre-
versible processes. Second, the many-body character of the Schrodinger equa-
tion, and the large number of degrees of freedom, such as lattice vibrations, 
complicate the description of real magnetic systems. 

To make meaningful predictions about the relevant magnetic degrees of 
freedom, such as the position of a domain wall, one must treat the irrelevant 
atomic degrees of freedom as a heat bath, thereby introducing irreversibility. 
A simple classical analogue of this ‘coarse graining’ [5, 138–140] is a system 
of masses coupled by harmonic springs. The system has a recurrence time τrec 
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scaling as 1/Δω, where Δω is the system’s smallest eigenfrequency difference. 
For any fi nite system the recurrence time is fi nite, but for an infi nite number 
of degrees of freedom, corresponding to a heat bath, the solution yields a con-
tinuum of eigenvalues, Δω = 0 and τrec = ∞. 

The coarse-graining procedure simplifi es the picture and provides the jus-
tifi cation for various nonequilibrium approximations. One example is the Lan-
dau-Lifshitz equation

where γ is the gyromagnetic ratio and μoHeff = – ∂E/∂M(r) is a local effective 
fi eld [93, 141–143]. This equation—and similar relations, such as the Gilbert 
and Bloch-Bloembergen equations—describe the precession of the magneti-
zation around Heff and its relaxation towards the local or global energy mini-
ma associated with Heff. However, they are not able to describe thermally ac-
tivated jumps over energy barriers. 

There are several ways of describing thermal activation. Without loss of 
generality, we can restrict ourselves to a single magnetic degree of freedom s, 
such as a single magnetization angle or projection [144]. The relevant equa-
tion is the Langevin equation, 

where ξ(t) is a random force obeying < ξ(t) > = 0 and < ξ(t) ξ(t’) > = δ(t – t’). 
Physically, the force – ∂E/∂s drives the magnetization towards the local (free) 
energy minimum but competes with the random force ξ(t). Figure 12 com-
pares the two regimes describes by Eqs. (17) and (18). For the numerical real-
ization of Landau-Lifshitz and Langevin equations see Ch. 4. 

The probability distribution belonging to Eq. (18) obeys the diffusion-type 
magnetic Fokker-Planck equation [137, 140, 145] 

This equation can also be written in form of a continuity equation, τo∂P/∂t = 
– ∂P/∂s. In equilibrium, ∂P/∂t = 0 and P = Z1 exp(–E(s)/kBT), justifying the 
magnitude of the source term in Eq. (18). For energy barriers Ea » kBT, Eq. 
(19) essentially reduces to Eq. (16) [145, 146]. 

Figure 12. Magnetization dynamics of a nanoparticle: (a) damped precession and (b) random 
thermal motion. The curves are simulations for typical but not critical parameters, covering a 
time of order 0.1 ns. In both polar plots, the direction of the motion is from the white circles to 
the black circles. 

A third and largely equivalent approach is the master or rate equation 

where the W(s, s’) = W(s’→ s) are transition rates. For example, describing 
the system by Fermi’s golden rule yields 

where Wij is the transition rate between two quantum states si and sj. Specify-
ing V relates the dynamics of a system to quantum mechanics, and Kramers-
Moyal expansion of Eq. (20) with respect to small magnetization changes si – 
sj reproduces the diffusive Fokker-Planck equation (19). 

3.2. Spin Waves in Nanostructures

Since Bloch’s 1930 article on the temperature dependence of the spontane-
ous magnetization of ferromagnets [147], spin waves or magnons have attract-
ed much attention in the solid-state and magnetism communities [50, 148, 149]. 
In particular, Bloch’s spin-wave arguments indicate that there is no long-range 
isotropic ferromagnetism in two or fewer dimensions [10, 16,26, 35, 48, 147, 
150]. In Bloch’s original approach, the long-wavelength magnetization reduction 
due to spin waves is proportional to the integral ∫ kd–3 dk, which exhibits a long-
wavelength divergence for d ≤ 2. However, as explained in §2.1, the behavior of 
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experimental nanostructures is reminiscent of bulk ferromagnets. In a spin-wave 
picture, the energy of long-wavelength magnons is too small to interfere with the 
exchange energies that control moment formation and local magnetic order. 

Ignoring the damping term in Eq. (17), the resonance is described by dM/
dt = γ(M × Heff). For homogeneously magnetized ellipsoids of revolution, the 
effective fi eld is equal to the applied fi eld H = H ez plus the anisotropy fi eld 
Ha, and the resonance problem is solved by the diagonalization of a 2 × 2 ma-
trix. This uniform or ferromagnetic resonance (FMR) yields resonance fre-
quencies determined by [17] 

where ex and ey correspond to the principal axes of the 2 × 2 matrix. In sys-
tems with rotational symmetry, such as perfect nanowires aligned parallel to 
the external magnetic fi eld, this equation degenerates into 

where Keff = K1 + μoMs
2/4. 

Figure 13. Spin-wave modes in nanowires: (a) is the coherent mode (k⊥ = 0) and (b) is of the 
curling type. When k⊥ » 1/R, then the perpendicular spin waves are essentially superpositions 
of plane waves exp(ikxx) and exp(ikyy). Since the diameter of typical nanowires is much larger 
than interatomic distance, there are many excited perpendicular modes, and the fi nite-temperature 
magnetization Ms(T) is reminiscent of bulk magnets. 

Recent research has largely focused on spin-wave excitations in per-
fect nanostructures [151–156]. In addition, real-structure effects have been 
considered [5, 153]. In macroscopic systems, the superposition of individu-
al lines leads to a line broadening due to real-structure inhomogenities and 
fi eld gradients. In nanostructures, the superposition of resonance lines is 

a poor approximation, because the modes are coupled by interatomic ex-
change. Since the nucleation mode is essentially an ω = 0 spin-wave mode 
[93], the considerations of §2.3.4 carry over to the problem of spin waves in 
real nanostructures [5, 153]. 

Figure 13 shows various types of spin-wave modes in long nanowires. In 
very thin nanowires, where R < Rcoh, curling-type modes can be ignored [55, 
114], and the perpendicular magnetization components obey Mx = Ms m(z) 
cos(ωt) and My = Ms m(z) sin(ωt). Note that both curling and the radial spin-
wave quantization in terms of Bessel functions [153] leads to very high level 
splittings and can be ignored in lowest order. The function m(z) obeys 

For ω = 0, this equation reduces to (14), whereas dm/dz = 0 reproduces (23). 
Mathematically, Eq. (24) is a well-known random-potential eigenvalue prob-
lem, which can be solved numerically or by transfer-matrix methods [5, 153]. 

Figure 14. Localization of spin-wave modes with k vectors along the wire axis. All modes are lo-
calized, but the localization length is smallest for low-lying modes. 

Figure 14 shows some examples. An interesting point is that all modes 
are localized [105], as one expects from the quantum-mechanical analog of a 
one-dimensional electron gas in a random potential [157]. Alternatively, from 
a localized ‘tight-binding’ point of view, micromagnetic delocalization can 
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be interpreted as a tunneling through hard-magnetic regions. The localization 
length depends on ω and is largest for high frequencies. 

A major source of real-structure inhomogenities are wire-thickness fl uc-
tuations and polycrystallinity, and geometrical features at wire ends [54, 55, 
114, 158]. As expected from §2.3.4, the localization of the modes is accompa-
nied by a coercivity reduction [54, 55, 114]. 

3.3. Magnetic Viscosity 

The extrinsic time dependence of the magnetization is known as magnetic vis-
cosity. The magnetic viscosity determines, for example, the stability of the in-
formation stored in magnetic recording media [159] and the time-dependent 
decay of the remanent magnetization of permanent magnets. From a thermo-
dynamic point of view, this is the origin of hysteresis, and similar magnetic 
freezing processes are the superparamagnetic freezing of small particles and 
ferrofl uids [160–162] and Spill glasses [33, 48, 140, 163, 164]. A related ef-
fect is the dependence of the coercivity on the sweep rate dH/dt of the ex-
ternal magnetic fi eld [16, 99, 134]. As illustrated in Fig. 15, both effects are 
caused by thermal activation and involve jumps over (free) energy barriers. 
Thermally activated jumps yield only small corrections, because typical ener-
gy barriers in ferromagnets are much larger than kBT. 

Figure 15. Dynamic hysteresis-loop effects: (a) magnetic viscosity and (b) sweep-rate depen-
dence. The sweep-rate dependence amounts to a fl uctuation-fi eld [165] or sweep-rate correction 
to the static coercivity Hco. 

Experiment shows that the time dependence of the magnetization is of-
ten logarithmic rather than exponential [16, 99, 136, 159, 166, 167]. As point-
ed out long ago [99], a logarithmic time dependence is obtained by averaging 

over exponential relaxation processes M(t) = – Ms + 2Ms exp(–t/τ). The key 
assumption is that the distribution of the relaxation time or refl ects an energy-
barrier barrier distribution much larger than kBT. 

In [99], a rectangular energy-barrier distribution was used, but this is an 
unnecessary and rather complicated assumption. In fact, introducing an ener-
gy-barrier distribution P(Ea) leads to the integral 

and to [5, 168] 

where t and t’ are two arbitrary reference times. Phenomenologically, the log-
arithmic law is often written as M(t) = M(t) – S ln(t/t’), where S is the magnet-
ic-viscosity constant. Note that the logarithmic law breaks down for t = ∞. An 
expression with improved asymptotics is [168] 

However, since (xε – 1) = εln x for small exponents, this expression is not 
very different from the logarithmic law. 

An important aspect of magnetic viscosity is its fi eld dependence. For ex-
ample, S(H) tends to exhibit a maximum near the coercivity. This refl ects the 
close relationship between the energy-barrier distribution and the irreversible 
part χirr of the susceptibility, and leads to S = χiir Sv, where the viscosity pa-
rameter Sv is only weakly fi eld-dependent [5, 133, 159, 167, 169–172]. 

An effect closely related to magnetic viscosity is the dependence of the 
coercivity on the sweep rate η = dH/dt: Hc is largest for high sweep rates, that 
is, for fast hysteresis-loop measurements (Fig. 15). Sweep-rate and magnetic-
viscosity dynamics have the same origin, but there is a very simple way of de-
riving a relation for the sweep-rate dependence. Let us assume that the energy 
barriers exhibit a power-law dependence 
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where Ko, Vo, and m are micromagnetic parameters. This law is not restricted 
to aligned Stoner-Wohlfarth particles, where Ko = K1, Vo = V, and m = 2, but 
also describes a broad range of pinning and nucleation mechanisms. 

Putting Eq. (28) into Eq. (16) and identifying H with reverse fi eld at which 
the magnetization state escapes the local energy minimum yields [134, 140] 

where τ ~ 1/η. A slightly more sophisticated calculation, fi rst published in 
the 1960s [134] and popularized by Sharrock more than ten years ago [173], 
yields a relatively unimportant factor of ln2 = 0.693, which is usually incor-
porated into τo. 

An experimental approach to analyze the resulting sweep-rate dependence 
of the coercivity is to exploit the phenomenological relation [159] 

Linearizing Eq. (30) with respect to ln(η/ηo) = – ln(τ/τo) [16] 

This equation shows that the activation volume V* is only loosely related to 
the ‘physical’ or ‘Barkhausen’ volume Vo. Furthermore, Vo is not necessarily 
the volume of a single particle-due to cooperative and localization effects its 
may be smaller or larger than the particle volume. 

The exponent m cannot be regarded as a fi tting parameter but depends on 
the symmetry of the system. In most cases, m = 3/2 [16, 140, 158, 166, 167, 
174, 175], but m = 2 for highly symmetric systems, such as aligned Stoner-
Wohlfarth particles. In particular, the m = 3/2 law is realized for misaligned 
Stoner-Wohlfarth particles and for most domain-wall pinning mechanisms 
[5]. Experimental values of m tend to vary between 1.5 to 2 [136, 158]. Lin-
ear laws, where m = 1, are sometimes used in simplifi ed models, but so far it 
hasn’t been possible to derive them from physically reasonable energy land-
scapes [5, 16, 176]. The same is true for dependences such as 1/H – 1/Ho 
[177], where series expansion yields an m = 1 power law. 

Figure 16. Multidimensionality of the coercivity problem: Only the trajectory corresponding to 
the lowest-lying mode contributes to the switching. 

It is important to keep in mind that there are many possible magnetiza-
tion-reversal modes, including modes whose energy scales as 1/H, but only 
the lowest-lying one—that with the smallest nucleation or propagation fi eld 
Ho—is of importance for the magnetic-viscosity and sweep-rate corrections 
to zero-temperature magnetization reversal [5, 37, 93, 175]. Other reversal 
modes are not forbidden, but typical energy-barrier differences are much larg-
er than kBT and make the associated ‘giant fl uctuations’ very unlikely. Fig. 16 
illustrates the underlying energy landscape by schematically comparing the 
lowest-lying mode (solid line) with an excited mode (dashed line). The ther-
modynamically preferred direction is along the solid line, whereas excited 
modes are suppressed by a Boltzmann factor exp(–ΔEa/kBT). An explicit ex-
ample is shown in Fig. 17. The pinning and giant-fl uctuation mechanisms (a) 
and (b) obey m = 3/2 power and 1/H laws, respectively. At low temperatures, 
magnetization reversal requires Ea = 0, and Eq. (29) yields some fi nite coer-
civity Hc = Ho. By contrast, the activation energy for the droplet confi guration 
of Fig. 17(b), described by an 1/H law, amounts to the unphysical prediction 
of an infi nite zero-temperature anisotropy. 

Figure 17. Coercivity mechanisms in thin fi lms: (a) power-law type pinning and (b) 1/H-type 
spontaneous reversal. 



74 SKOMSKI & ZHOU IN ADVANCED MAGNETIC NANOSTRUCTURES (2006) NANOMAGNETIC MODELS 75

The above consideration requires energy barriers much larger than kBT, as en-
countered in most nanostructures. An exception is very small particles, where 
KoVo is comparable to kBT, exhibit a rapid decay of the magnetization, which 
is known as super paramagnetism [160, 178, 179]. Defi ning superparamag-
netism by a waiting time of τ = 100 s yields the zero-fi eld stability condi-
tion KoVo/ kBT ≥ 25, where KoVo/kBT ≡ ξ is referred to as the stability param-
eter. Thermal stability for 10 years corresponds to ξ = 40 [55, 159]. Other 
exceptions are atomic wires and monatomic thin fi lms, where corrections to 
the power law of Eq. (28) must be considered. 

Equation (29) amounts to a T 1/m dependence of the coercivity [16], but 
this is only one consideration. In many cases, the biggest contribution to the 
temperature dependence of the coercivity is from the intrinsic K1(T) behavior 
(§2.2.3). This mechanism amounts to explicit changes in the energy landscape. 
The leading contribution is static, involving thermal averages < K1(T) >, but 
there is also a dynamic correction, with fl uctuating saddle-point energies. 

4. CASE STUDIES

4.1. Magnetic Localization and Cooperativity

From an atomic point of view, all nanostructures are cooperative, because 
interatomic exchange ensures well-defi ned local spin correlations. In oth-
er words, nanoscale magnetization processes involve blocks of spins rath-
er than individual spins. The sizes of the correlated regions are nanoscale, in 
agreement with the analysis in §2.3, but vary from system to system [180]. 
The coherent-rotation and curling modes are delocalized, that is, they extend 
throughout the magnet. Delocalized magnetization states are favorable from 
the point of view of interatomic exchange, because the magnetization gradient 
is small. However, exchange is not the only consideration, because local vari-
ations of the magnetization cost some exchange energy but may be favorable 
from the point of view of local anisotropy inhomogenities. 

The localization length and the coercivity reduction depend on the ra-
tio of exchange and anisotropy energies. The stronger the anisotropy inho-
mogenity, the smaller the localization length L, and for a soft inclusion in a 
very hard matrix, as considered in §2.3, the localization length reduces to 
the size of the inclusion. For zero disorder, that is, for perfect ellipsoids of 
revolution, the localization length goes to infi nity and the reversal degener-
ates into coherent rotation. 

Cooperative effects are of great importance in advanced technology. For 
example, in high-density magnetic recording media they lead to the forma-
tion of interaction domains, which may improve the thermal stability but re-

duce the storage density. In permanent magnets the vanishing of the two-
phase shoulders in hysteresis loops can be considered as a cooperative effect 
[180, 181], as is the above discussed low coercivity of soft-magnetic ran-
dom-anisotropy magnets (Ch. 13). Similar arguments apply to fi nite-tem-
perature phenomena (Fig. 18). On a local scale, the spin alignment remains 
largely ferromagnetic but thermal excitations and local perturbations break 
the cooperativity on a nanoscale. 

Weakly interacting particles and grains are noncooperative. In this lim-
it, one can use micromagnetic mean-fi eld theories, the Preisach model [182, 
183], and approaches based on Wohlfarth’s remanence relation [184], such as 
Henkel [185], delta-M [186, 187], and delta-H [188] plots. When the inter-
actions exceed a certain threshold, the behavior of the magnet changes from 
noncooperative to cooperative. In this regime, the above-mentioned approach-
es are no longer applicable. For example, the exchange fi eld of strongly cou-
pled small particles exceeds 100 T. In the mean-fi eld approximation, this fi eld 
adds to the external fi eld and yields an unphysically high coercivity [122, 
180]. In reality, the strong exchange fi eld does not translate into a high coer-
civity, and cooperativity may even reduce the coercivity. This is because two 
strongly interacting particles behave like one particle, and there is no point in 
adding any strong internal interaction to the external fi eld. 

A rough criterion for the applicability of interaction-fi eld models is ob-
tained from the slope of the hysteresis loop at coercivity, χc = dM(Hc)/dH. 
When Ms/χc is smaller than the interaction fi eld, then the behavior of the mag-
net is governed by cooperative effects [180]. In terms of Fig. 14, this is not 
surprising, because broad switching-fi eld distributions correspond to pro-
nounced inhomogenities and therefore to strong localization. 

Figure 18. Cooperative spin blocks. When the size N of the particle becomes too big, then ther-
mal activation leads to the formation of cooperative units of size No. 



76 SKOMSKI & ZHOU IN ADVANCED MAGNETIC NANOSTRUCTURES (2006) NANOMAGNETIC MODELS 77

4.2. Narrow-Wall and Grain-Boundary Effects

Typical domain walls are smooth and extend over many interatomic distanc-
es. However, deviations from this continuum picture occur in very hard ma-
terials (narrow walls), at grain boundaries and in the case of geometrical 
constraints. Narrow-wall phenomena, which have been studied for example 
in rare-earth cobalt permanent magnets [189] and at grain boundaries [95, 
96], involve individual atoms and atomic planes and lead to comparatively 
small corrections to the extrinsic behavior. 

The nanoscale spin structure at grain boundaries and nanojunctions af-
fects the performance of permanent magnets, magnetic recording media, soft 
magnets, and structures for spin electronics (Chs. 11–14). In permanent mag-
nets, it is often necessary to maximize [16, 111] or minimize the intergranu-
lar exchange, depending on the desired reversal mechanism. Strong intergran-
ular exchange reduces the coercivity of isotropic soft-magnetic nanostructures 
but is undesired in magnetic recording, where it negatively affects the storage 
density [159, 190], and the resistance of spin-electronic structures depends on 
the local magnetization at interfaces and at junctions [95, 96, 191]. Some as-
pects of grain-boundary magnetism were anticipated long ago [94, 111, 113, 
192], but polycrystalline granular interfaces and constrained domain walls 
was fi rst investigated have been investigated only recently. 

We start from Eq. (6) and restrict ourselves to linear case of weakly tex-
tured systems, so that we can use a linear approach similar to that in §2.3.4 
[5]. The corresponding equation for the local easy axis is n(r) = √¯ ¯1¯ ¯–
¯ ¯a¯2¯ (¯r¯) ez + a(r), where a(r) is the transverse vector components of n. 
Linearization yields [5] 

As in Eq. (32), the magneto static selfi nteraction is incorporated into K1 
and H. To minimize F with respect to m(r) we exploit that the minimum of 
any functional F = ∫ f dV is given by the functional derivative δF/δm(r) = 0. 
Explicitly, 

so that 

This equation means that the polycrystalline easy-axis disorder a(r) acts as a 
random inhomogenity. 

The term ∇(A∇m) refl ects due to local character of exchange stiffness A(r) 
[111]. For sharp phase boundaries, the exchange term reduces to the boundary 
condition 

Figure 19 illustrates the physical meaning of this boundary condition. A jump 
in A(x) leaves the magnetization continuous but yields a change in the slope 
of the perpendicular magnetization component m(x). The solutions of (34) are 
exponentially decaying in the adjacent grains and nearly linear in the interface 
region [95, 96]. 

Figure 19. Boundary conditions and exchange: (a) hard-soft interface with common A, (b) inter-
face between two ferromagnetic phases with different A, and (c) quasi-discontinuous magnetiza-
tion due to strongly reduced exchange between grains I and II. Note that the perpendicular mag-
netization component m(x) can be interpreted as a magnetization angle. 

When the exchange stiffness in the grain-boundary region is much lower 
than that of the two adjacent phases, then one encounters a quasi-discontinu-
ity of the magnetization [95, 96], as shown in Fig. 19(c). Experimentally, re-
duced interface exchange refl ects real-structure features such as impurity at-
oms diluting the interatomic exchange, oxide layers covering the grains, and 
interface amorphization. Putting calculated spin structures m(x) into Eq. (32) 
and evaluating the integral as a function of the misalignment vector a yields 
the effective intergranular exchange 
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where So is the interface area [96]. This equation shows that the effective ex-
change can never be larger than the value So(AK1)

½, which scales as Bloch-
wall energy of a perfect magnetic crystal. By contrast, the widely used ‘hard 
interface’ approach, which assigns bonds of strength J’ ≈ A’/a to each of the 
N ≈ So/a

2 adjacent pairs of atoms, yields Jeff ≈ SoA’/a and generally overes-
timates the effective exchange. The explicit dependence of A on R modifi es 
the scaling behavior to L ~ R(2–d)/(4–d) and Hc ~ Rd/(4–d). Note that the expo-
nent for L changes sign for d ≤ 2. In this case, the exchange through the grain 
boundary is not able to overcompensate the reduction of grain size, and there 
are no correlated grains with L > R. 

In the limit of vanishing anisotropy, the situation remains similar to Fig. 
19(c), because the anisotropy changes the curvature of the magnetization 
angle. Solving Eq. (34) for this special case yields the following relation for 
the effective exchange Aeff : D/Aeff = (D – t)/A + t/AI. This is of practical im-
portance in soft magnetism (Ch. 13). 

In a layer-resolved or atomic analysis, the ∇ operator in Eqs. (32–35) 
must be replaced by magnetization-angle differences, but a comparison with 
the continuum solution [95, 96] reveals only minor corrections due to the dis-
crete nature of the layers. Note, however, that the layer resolved anisotropies 
and exchange constants may deviate from the respective bulk values. 

Using the integral ∫(∇M)2dx ≈ Ms
2 ∫(∇m)2dx as a crude measure to gauge 

the spin-dependent scattering ability of an interface we fi nd that the scatter-
ing is maximized for interface thicknesses of the order of D = δoA’/A. Com-
pared to the relatively small Bloch-wall scattering, where ∫(∇m)2dx ≈ 1/δo, 
the maximum scattering is enhanced by a factor A/A’. Unfortunately, strong 
reductions of A’ are likely to negatively affect the spin injection through the 
boundary region, thereby reducing the magnetoresistance. Another way of en-
hancing the scattering is using very hard materials, where δo is small, but this 
requires large fi elds to switch the magnetization direction [95]. 

Random-anisotropy contributions, as epitomized by the a(r)-term in Eq. 
(34), are an important aspect of nanomagnetism, but their detailed treatment 
goes beyond the scope of this chapter. Some aspects of random-anisotropy 
magnetism will be treated in the chapter on soft magnets, and we also rec-
ommend reading or consulting the rich original and review literature [16, 
48, 116, 124, 189, 193–197]. 

4.3. Quantum Entanglement between Magnetic Nanodots

The use of quantum bits or qubits is a promising way to meet the ever-increasing 
needs of information technology, with various advantages over classical informa-
tion processing in areas such as factorization and cryptography [198–200]. Most 
systems considered at present, including magnetic structures such as spin chains 
and spin clusters, operate at very low temperatures, typically much smaller than 1 
K [201–203]. The smallness of Bohr’s magneton, μB/kB = 0.672 K/T, makes it dif-
fi cult to exploit magnetic fi elds [201] at temperatures signifi cantly above 1 K. Su-
perconducting magnets are able to create fi elds much larger than 1 T (10 kOe), but 
they are very cumbersome and may not establish a practical alternative. Exchange 
anisotropy is, in principle, an alternative [201, 202], but lowest-order exchange is 
isotropic, and the exchange anisotropies are small and diffi cult-to-realize relativ-
istic corrections to the isotropic exchange (§2.1.5). However, anisotropic magnet-
ic nanodots may open the door for quantum information processing signifi cantly 
above 4.2 K. The idea is to exploit the quantum entanglement of the dots [204]. 

Figure 20 shows a model of two coupled and generally nonequivalent 
magnetic nanodots or clusters. The dots’ total spins S and S’ can be written as 
S = N So and S’ = N’ S’o, where N and N’ are the respective numbers of mag-
netic atoms per dot. The Hamiltonian of the fi rst dot contains the Zeeman en-
ergy – gμoμBHŜz and the anisotropy term 

where K is the anisotropy energy per atom. Analog relations exist for the sec-
ond dot. There are two reasons for considering nonequivalent dots. First, real 
nanomagnets tend to have imperfections, and it is extremely diffi cult to pro-
duce identical dots. Second, nonequivalent dots may exhibit unequal level 
spacings, which simplifi es the addressing of well-defi ned quantum states, for 
example in resonance experiments. 

The energy difference (level spacing) between the lowest two eigenvalues 
of Eq. (37), KN(2S–1)/S2, determines the maximum operation temperature. 
We assume that the two dots are coupled by a Heisenberg-type exchange J. It 
may be realized, for example, by Ruderman-Kittel-Kasuya-Yosida (RKKY) 
interaction through a substrate or medium [27, 205], by a nanojunction, or by 
magnetostatic interactions. The interaction is the basis for entanglement of the 
dots’ wave functions, which is a precondition for quantum computing. 

Schrodinger’s verschränkung or entanglement is a quantum effect, with-
out classical analog and plays a key role in quantum computing [201, 206]. 
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In a simple two-particle interpretation, the spin of a given particle depends on 
that of the second spin (entangled state) or is independent of the second par-
ticle’s spin (nonentangled or separable state). In the Schmidt decomposition, 
the two-particle wave function can be written as 

For example, the four maximally entangled Bell states are proportional to 
|00> ± |11> and |01> ± |10>. To describe low-temperature entanglement, we 
construct a Schmidt basis from the two lowest-lying single-dot states |0> and 
|1>, which have |Sz| = S and |Sz| = S – 1, respectively. Note that higher excita-
tions do not affect the entanglement of the low-lying states [204]. The right-
hand side of Fig. 20 illustrates the physical meaning of this basis for ferro-
magnetic and antiferromagnetic couplings. 

Figure 20. Quantum states of interacting nanodots. The dots (left) may be coupled ferromagnetic 
(top right) or antiferromagnetic (bottom right). The labels |0> and |1>, denote states where |m| = S 
and |m| = S – 1, respectively. 

A quantitative entanglement measure is the concurrence C [206]. For non-
entangled (separable) states, C = 0, whereas the maximally entangled Bell 
states exhibit C = ± 1. The concurrence is obtained by evaluating the matrix 
elements of the total Hamiltonian and examining the lowest-lying two-dot 
eigenstates [204, 207]. It depends on whether the coupling is ferromagnet-
ic (FM, J > 0) or antiferromagnetic (AFM, J < 0). The ferromagnetic ground 
state and the fi rst two excited AFM states are separable, that is, C = 0. Nonze-
ro entanglement is encountered in the AFM ground state and between low-ly-
ing ferromagnetic excitations [204]. 

Figure 21 shows C as a function of the anisotropy of the second dot. The 
entanglement of the low-lying FM excitations exhibits a resonant peak whose 
width depends on the interaction strength. Since a local magnetic fi eld shifts the 

single-dot energies, a fi eld gradient can be used to tune the entanglement. The 
dashed line in Fig. 21 shows that there is no peak in the antiferromagnetic case. 

Figure 21. Entanglement as a function of the anisotropy K’ of the second dot. The solid and dashed 
lines denote FM and AFM couplings, respectively. The parameters are So = So’ = 1, N= 1000, N’ 
= 1100, K= 50 K, and J = 0.005 K. For simplicity, H = 0 and H’ = 0. The FM maximum is a reso-
nance effect involving |01> and |10> states; there is no similar resonance in the AFM case. 

Since the basic level splitting and the maximum operating temperature are 
proportional to the anisotropy, it is necessary to use dots with high magnetocrys-
talline anisotropy. Dots with shape anisotropy and semihard dots, such as Co, can-
not be used, because they correspond to temperatures of one kelvin or less. 

Much higher temperatures are achievable for SmCo5 and other highly 
anisotropic materials. However, typical hard-magnetic materials have temper-
ature-dependent anisotropies that are maximized at or above room tempera-
ture [16, 77]. Little work has been done to optimize anisotropies at low tem-
peratures, although it is known that some compounds with Tc < 300 K have 
huge anisotropies of 100 to 1000 MJ/m3 [83, 208]. 

In suffi ciently small dots, the maximum operating temperature is propor-
tional to the magnetocrystalline anisotropy of the dot material. An upper lim-
it of the operation temperature is signifi cantly above 10 K but probably below 
100 K. An upper limit to the temperature above which spin-wave-like excita-
tions and magnetic domains destroy quantum coherence is given by the ener-
gies of the lowest-lying spin-wave states. They scale as Aa3/L2, where A is the 
exchange or spin-wave stiffness of the dot material [16], a is the interatom-
ic distance, and L is the dot size. For typical materials at temperatures signif-
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icantly higher than 1 K, this quantity does not exceed a few nanometers. In 
bigger dots, low-lying spin-waves excitations have energies comparable to K 
and decoherence occurs very fast. 

5. CONCLUDING REMARKS

From a scientifi c point of view, nanomagnetic effects are intermediate be-
tween atomic-scale magnetism and macroscopic phenomena but cannot be re-
duced to a mixture of the two limits. The main reason is the competing in-
volvement of relativistic interactions, which give rise to an additional length 
scale of ao/α = 7.25 nm. Intrinsic properties, such as spontaneous magneti-
zation, Curie temperature, and magnetocrystalline anisotropy, refl ect compar-
atively strong quantum-mechanical and spin-orbit interactions. They are re-
alized on atomic length scales and therefore well-defi ned for nanostructures. 
However, surface and interface contributions such as magnetic interface an-
isotropy may be strong and outweigh bulk contributions on a nanoscale. Ex-
trinsic properties, such as coercivity, are realized on larger length scales and 
exhibit a pronounced real-structure dependence. 

A particularly subtle property is the Curie temperature, which describes 
the onset of ferromagnetism and involves long-range thermodynamic fl uctu-
ations. In a strict sense, the Curie temperature of fi nite bodies is zero, but the 
nonequilibrium character of practically encountered magnetic phenomena and 
the low energy differences associated with long-range thermodynamic fl uctu-
ations mean that particles or grains larger than about 1 nm., are virtually in-
distinguishable from true ferromagnets. For this reason, nanostructuring can-
not be used to improve the Curie temperature. 

It is important to distinguish between equilibrium and nonequilibrium ex-
trinsic properties. The equilibrium behavior of magnetic nanostructures, as 
epitomized by the critical single-domain radius, is largely irrelevant to hys-
teresis. For example, in highly anisotropic rare-earth transition-metal perma-
nent magnets, the critical single-domain size is of the order of 1 μm, but this 
does not mean that the magnetization reversal in such a particle is Stoner-
Wohlfarth like. In fact, the reversal is localized, and typical coercivities are 
realized on a length scales of a few nanometers. 

From a structural point of view, surfaces, interfaces, and bottlenecks (junc-
tions) have a strong impact on nanomagnetism. One issue is that exchange at 
grain boundaries affects the coupling between nanograins and, indirectly, the 
extrinsic properties of the structures. Reduced grain-boundary exchange leads 
to a quasi-discontinuity of the magnetization. By contrast, anisotropy changes 
in the grain-boundary region have no major effect on the spin structure. 

Intrinsic properties correspond to a very fast equilibrium, whereas the 
equilibration times of extrinsic properties cover a broad range, from a about 
one nanosecond in soft-magnetic resonance experiments and to millions of 
years in magnetic rocks. The slowest mechanism is thermally activated jumps 
over nanomagnetic energy barriers. This results in small low-temperature 
magnetic-viscosity corrections to the leading intrinsic contribution. Since the 
phase-space trajectories responsible for thermally A activated magnetization 
reversal are very close to static trajectories, ‘giant’ thermodynamic fl uctua-
tions involving arbitrary modes can safely be ignored. 

In conclusion, magnetic nanostructures exhibit various scientifi cally inter-
esting and technologically important deviations from bulk and thin-fi lm mag-
nets. For example, there is a resonant quantum entanglement of the low- lying 
states of coupled hard-magnetic dots, which may be exploited in future quan-
tum-information processing above 4.2 K. Some others examples, mentioned 
or elaborated here and throughout this book, are the energy-product enhance-
ment in nanostructured two-phase magnets whose hard-magnetic performance 
is improved by adding a soft-magnetic phase, multilayered and granular spin-
valve structures, nanostructured soft magnets, and magnetic recording media. 
The principles and mechanisms outlined in this chapter make it possible to re-
alize properties not achievable in single-phase bulk and thin-fi lm materials, 
and form a basis for future experimental, technological and theoretical devel-
opments in the fascinating fi eld of nanomagnetism. 
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