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Abstract. Dry-grind technology has become the dominant method for ethanol production. During dry-
grind ethanol production, roughly one-third of the dry grain mass resides in the dried distillers grains
with solubles (DDGS) as by-products (i.e., ~0.8 kg/L ethanol). The energy content residing in the 0.8
kg DDGS is about 20 MJ, compared to the consumption of 1 MJ electricity and 10 MJ thermal energy
for production of each liter of ethanol. A sequential supercritical fluid process with solvents including
carbon dioxide, water and ethanol was used to recover high-value chemicals from DDGS.
Thermochemical conversion methods were used to convert the DDGS residue after extraction to
gaseous and liquid fuels.
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Introduction

Ethanol production continues to expand in the United States. Approximately two-thirds of the
current ethanol production capacity is based on dry-grinding technology. Nearly all of the fuel
ethanol currently produced in the United States uses corn as a feedstock. During dry-grind
ethanol production, approximately one-third of the mass of grain feedstock (i.e., ~0.8 kg/L)
resides in the dried distillers grains with solubles (DDGS) as by-products. DDGS are composed
of 30-35% crude protein, 40-45% carbohydrates and 15-20% extractives by dry basis (Tucker et
al., 2004). The extractives are mainly lipid materials, which can be extracted and refined to high-
value nutraceuticals such as policosanols, phytosterols and free fatty acids (Singh et al., 2003;
Wang et al., 2005; Wang et al., 2007). The carbohydrates include 10-15% nonstarch glucan, 10-
15% xylan, 5-10% arabinan and 5-10% starch, which can be extracted for additional fuel alcohol
production (Tucker et al., 2004). For dry-grind production of each liter ethanol, the energy
content residing in the 0.8 kg DDGS is about 20 MJ, compared to the consumption of ~0.3 kwWh
(or 1 MJ) electricity and 10 MJ thermal energy (Eggeman and Verser, 2006). The use of fossil
fuels in an ethanol plant not only decreases the sustainability credit of the ethanol industry but
also increases its financial risk due to the soaring price of fossil fuels. Thus, DDGS is a potential
renewable resource for production of high-value chemicals, and heat and power to an ethanol
plant.

Extraction techniques have been investigated widely to obtain valuable natural compounds such
as lipids, phytochemicals, pharmaceuticals, flavors, fragrances and pigments from plants (Wang
and Weller, 2006). Traditional methods, such as solid-solvent extraction, which have been used
for many decades, are very time-consuming and require relatively large quantities of solvents
(Luque de Castro and Garcia-Ayuso, 1998). Lipids from plant sources usually are extracted
using organic solvents such as n-hexane. The EPA is pushing the industry to develop a viable
non-hexane substitute for biomass oil extraction. There is an increasing demand for new
extraction techniques with shortened extraction time, reduced organic solvent consumption, and
increased pollution prevention (Wang and Weller, 2006). Supercritical fluids are excellent
solvents for dissolving organics and biological molecules from biomass. Thus, it is possible to
use a series of supercritical fluids to dissolve high-value chemicals from DDGS. A fluid becomes
supercritical after it passes its vapor-liquid critical point. A supercritical fluid has both gaseous
properties such as high diffusivity, low viscosity and high compressibility, and liquid properties
such as high density. The unique properties of supercritical fluids can enhance heat and mass
transfer, reaction kinetics and equilibrium between solid biomass and supercritical fluids.
Furthermore, due to the high compressibility of supercritical fluids, their solvent properties can
be easily adjusted by changing the pressure and temperature. Thus, the products can be
recovered easily from the fluids by the reduction of the dissolving power (Wang and Weller,
2006). Supercritical CO, (critical point: 73 MPa and 31°C) is an attractive alternative to organic
solvents for extraction of high-value non-polar chemicals from plant materials because it is
nonexplosive, nontoxic and cheap, and it can be removed easily from the final products (Wang
and Weller, 2006). Water (critical point: 21.8 MPa and 374°C), at near- or super- critical
conditions, and supercritical ethanol (critical point: 6.1 MPa and 241°C) can liquefy biomass into
bio-oil, which can be further refined to sugars, organic acids and other valuable products (Saka,
2006).

Thermochemical conversion provides another competitive way to produce chemical and energy
products from low-value and highly distributed biomass resources with large variations in
properties (Caputo et al., 2005). Combustion, pyrolysis and gasification are three main
thermochemical conversion methods. Biomass pyrolysis converts solid biomass to bio-oil in the
absence of an oxidizing agent. Biomass combustion converts biomass into CO, and H,O and



while generating heat by fully oxidizing the biomass. Biomass gasification converts biomass into
a gaseous mixture of syngas consisting of H,, CO, CH4 and CO, by patrtially oxidizing biomass
(Demirbas 2004; Yoshioka et al., 2005).

The objective of the research reported herewith was to recover high-value chemicals from
DDGS using supercritical fluids including supercritical CO,, super or sub-critical water and
supercritical ethanol, and further convert the DDGS residue, after extraction, to gaseous and
liquid fuels using thermochemical conversion methods.

Materials and Methods

DDGS and reagents

Corn DDGS were obtained from a local ethanol production facility in Nebraska. Particle size was
calculated from the weight and the average particle size of each fraction obtained using a sieve
shaker (Ro-TAP, W.S. Tyler, Cleveland, Ohio) equipped with six sieves (U.S. standard sieve
Nos. 12, 14, 16, 20, 35 and 140) and a pan. The moisture content of DDGS before and after
extraction of their lipids were measured using a moisture analyzer (HG 53 moisture analyzer,
Mettler-Toledo GmbH, Laboratory and Weighing Technologies, Greifensee, Switzerland) at a
chamber temperature of 105°C (Wang et al., 2005). The heating value of DDGS and their
residues after processing were determined using an oxygen bomb calorimeter (Parr Instrument
Company, Moline, IL). The density of samples was calculated by dividing the mass of a sample
by the sample volume.

Supercritical fluid processing of DDGS

Supercritical fluid processes were carried out in a lab-scale unit equipped with a 300 ml high-
pressure processing vessel as shown in Fig. 1.

Fig. 1. Supercritical fluid processing unit.



Temperature of the processing vessel was maintained using a heating tape with a maximum
temperature output of 760°C (Extreme-Temperature Heat Tape, McMaster, Atlanta, GA)
wrapped around the vessel and regulated with a temperature controller. Pressure was
measured using a pressure transducer (Model: PT 420A, Dynisco LLC, Franklin, MA).
Temperature was measured using a J-type thermocouple (Newport Scientific, Inc, Jessup, MD).
The yield of extract (weight of extracted materials per original weight of DDGS patrticles) was
determined through weight difference of DDGS particles in the processing vessel before and
after extraction.

For supercritical CO, extraction of lipids, raw DDGS were fed into the supercritical fluid
processing vessel. Liquid CO, was pumped into the processing vessel with a high-pressure
pump (Model 46-1341102, Newport Scientifice Inc., Jessup, MD) at a set pressure and flow
rate. The lipid compounds in the DDGS were dissolved into the supercritical CO,. The mixture of
lipids and CO, was transferred into the lipid separator, where the pressure of CO, was
decreased to evaporate the CO, from the lipids. The exit fluid of CO, from the separator was
expanded to ambient pressure through a flow meter (Series 10A3500, Fischer and Porter,
Warminster PA) and a gas totalizer (Singer Model DTM-200, Singer American Meter Division,
Philadelphia, PA). The flow meter, calibrated in standard liters per hour of CO,, was used to
determine average flow rates through the extraction system. The gas totalizer was used to
measure the total volume of the CO, that passed through the extraction system over time.

For sub-critical water processing, a given amount of water and DDGS residue remaining, after
supercritical CO; extraction, were placed into the high-pressure processing vessel. The
temperature of the mixture of DDGS residue and water was increased to 225°C at a heating rate
of 5°C/min and the pressure was increased to 24 MPa. The temperature was maintained at the
set value for 30 min and then decreased to ambient for about 1 hour. Meanwhile, the pressure
was released. After processing, the mixture was filtered through two No. 2 filtration papers. The
solid residue was washed using distilled water and the wash water was added into filtrate
solution. The solid residue was dried in a vacuum oven at 60°C. The weight of the dried residue
was measured at the end of drying. The extract-water solution was concentrated using a
vacuum evaporator at 60°C for further composition analysis.

For supercritical ethanol processing, a given amount of ethanol and DDGS residue remaining,
after supercritical CO, and sub-critical water extraction, were placed into the high-pressure
processing vessel. The temperature of the mixture of DDGS residue and water was increased to
250°C at a heating rate of 5°C/min and the pressure was increased to 10 MPa. The temperature
was maintained at the set value for 30 min and then decreased to ambient for about 1 hour.
Meanwhile, the pressure was released. The mixture after processing was filtered through two
No. 2 filtration papers. The solid residue was washed using ethanol and the washing ethanol
was added to the filtrate solution. The solid residue was dried in a vacuum oven at 60°C. The
weight of the dried residue was measured at the end of drying. The extract-ethanol solution was
concentrated using a vacuum evaporator at 40°C for further composition analysis.

Thermal degradation of DDGS residue in nitrogen and air

The DDGS residue was thermally degraded in a thermogravimetric analyzer (Perkin-Elmer TGA
7, Norwalk, CT). Approximately 15-25 mg of DDGS residue, after extraction of lipids, was
placed in the microbalance of the thermogravimetric analyzer for each analysis. Nitrogen and air
were used as the purging gases for pyrolysis and combustion analyses, respectively. The flow
rate of purging gas was set at 20 ml/min. The temperatures of DDGS samples were increased
from the ambient temperature of 20°C to 650°C for the pyrolysis analysis and from 20°C to



850°C for the combustion analysis. The heating rate was set at 30°C/min. Dynamic residual
weight of DGS and temperature were recorded and analyzed by a computer using TGA7
software. The TAG data were used to determine the initial degradation temperature of pyrolysis
and combustion, degradation rate, residual weight at the end of degradation and kinetic
parameters.

Results and Discussion

Super- or sub-critical fluid processing of DDGS

The yields of supercritical CO, solubles, sub-critical water solubles, supercritical ethanol
solubles and undissolved solid residue are given in Fig. 2. It can be seen from Fig. 2 that 12.8%,
53.1% and 13.6% of the raw materials, on wet basis, were dissolved in supercritical CO,
(extraction temperature of 70°C, extraction pressure of 27.5 MPa, mass ratio of solvent to solids
of 45, extraction time of 4 hr), sub-critical water (extraction temperature of 225°C, extraction
pressure of 24 MPa, mass ratio of water to solids of 5, extraction time of 30 min) and
supercritical ethanol (extraction temperature of 250°C, extraction pressure of 10 MPa, mass
ratio of ethanol to solids of 5, extraction time of 30 min), respectively. Only about 20.5% of raw
DDGS mass was undissolved by the three solvents under the given operating conditions.
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Fig. 2. Yields of supercritical CO, solubles, near- or super- critical water solubles and
supercritical ethanol solubles.

The properties of solid residues after each process are given in Table 1. The average particle
size of the DDGS, before and after supercritical CO, extraction, was 800 um. There was no
significant change in average particle size during supercritical CO,. However, most of the
particles became powders during sub-critical water and supercritical ethanol extraction. The raw
DDGS feedstock had 4.01% moisture and 7.51% ash, on a dry basis. The moisture and ash
contents of the DDGS residue, after supercritical CO, extraction, were 1.62% and 5.68%,
respectively, on dry bases. Parts of the water and ash were dissolved into the supercritical CO..



The sub-critical water and supercritical ethanol further dissolved part of ash. At the end of the
sub-critical water and supercritical ethanol extraction, the ash contents were 2.75% and 2.25%,
on a dry basis. There were slight decreases in the bulk density of DDGS residue from 525 kg/m
to 487 kg/m?® during supercritical CO, and from 173 kg/m® to 129 kg/m?® during supercritical
ethanol processes. However, the bulk density decreased significantly from 487 kg/m? to 173
kg/m?® during sub-critical water extraction. The decreases in the bulk density were almost
consistent with the weight losses of DDGS patrticles during extraction. This means that the
release of solubles into the processing fluids did not reduce the volume of the DDGS particles
and the processing fluids meanwhile might cause the swelling of the particles. The heating
value of raw corn DDGS was 27.2 MJ/kg (dry basis). The heating value of DDGS residue after
supercritical CO, extraction decreased to 21.8 MJ/kg because lipid components with high
heating values were extracted out of the DDGS. After sub-critical water and supercritical ethanol
extraction, the heating values of DDGS residue increased due to the increase of char content in
the residue, which has a high heating value.

3

Table 1. Properties of raw DDGS and DDGS residue after supercritical fluid processing

Raw Residue Residue after Residue after
corn after CO, CO,and H,O CO,, H,O and

DDGS extraction extraction C,HsOH extraction
Moisture content (%, wet basis) 4.01 1.62 0 0
Particle size (um) 800 800 - -
Bulk density (kg/m°) 525 487 173 129
Ash content (%, dry basis) 7.51 5.68 2.75 2.25
Heating value (MJ/kg, dry basis) 27.2 21.8 28.3 31.1

Thermal degradation of DDGS residue after CO, extraction in nitrogen and air

Thermogravimetric analyses of pyrolysis of DDGS residues in nitrogen at a heating rate of
30°C/min are given Fig. 3. The pyrolysis of DDGS with 1.62% moisture (dry basis) in nitrogen
occurred in the temperature range from 200°C to 650°C at the heating rate of 30°C/min as
shown in Fig. 3. Before pyrolysis, drying occurred to remove the water in DDGS. The maximum
pyrolysis rate of DDGS with 1.62% moisture in nitrogen at the heating rate of 30°C/min was
13%/min (wet basis), which was achieved at the temperature of 375°C. The residual weights of
DDGS in nitrogen at 650°C almost became constant at 27% of the original dry mass of DDGS
with 1.62% moisture as shown in Fig. 3.

Thermogravimetric analyses of oxidation of DDGS residue with 1.62% moisture in air at a
heating rate of 30°C/min are shown in Fig. 4. There were two obvious oxidation zones as shown
in Fig. 4. The starting temperatures of the first and second oxidation zones were 200°C and
470°C, respectively. As shown in Fig. 4, the maximum oxidation rate in the first zone was much
higher than that of the second zone. In the first zone, some volatiles in DDGS were released
and oxidized at a low temperature and high rate. In the second zone, the char and more
thermally stable components, such as lignin, continued to be oxidized at higher temperatures
and lower rates. For the DDGS with 1.62% moisture, the maximum oxidation rates of the first
and second zones at the heating rate of 30°C/min were 22.5 and 4.6 %/min (wet basis),
respectively, as shown in Fig. 4. The temperatures for the maximum oxidation rates of the first
and second zones were 405°C and 720°C, respectively. As shown in Fig. 4, the residual weight
of DDGS in air at the end of the first oxidation zone was about 43% of the original dry mass of
DDGS with 1.62% moisture. The remaining solid residue at the end of the first oxidation zone
may have been char and more thermally stable components such as lignin in the DDGS. With a
further increase in temperature to 850°C, the residual weight became almost constant at 5.5%



of the original dry mass of DDGS. The remaining solid residue at the end of the second
oxidation zone was ash. The ash content of the DDGS sample, after extraction of their lipids,
was 5.68% on a dry basis as given in Table 1.
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Conclusions

Supercritical fluid processing and thermochemical conversion technologies have been used to
recover high-value chemicals and energy products from DDGS. During a sequential
supercritical fluid process, 12.8%, 53.1% and 13.6% of the raw DDGS with 4.01% moisture and
7.51% ash on wet basis were dissolved in supercritical CO, at 70°C and 27.5 MPa, sub-critical
water at 225°C, and 24 MPa and supercritical ethanol at 250°C and 10 MPa, respectively. Only
about 20.5% of raw DDGS mass was undissolved by the three solvents under the given
operating conditions. Parts of the water and ash were dissolved into the supercritical CO,. The
sub-critical water and supercritical ethanol further dissolved part of ash. There were slight
decreases in the bulk density of DDGS residue during supercritical CO, and supercritical
ethanol processes. However, the bulk density decreased significantly during sub-critical water
extraction. The heating value of raw corn DDGS was 27.2 MJ/kg (dry basis). The heating value
of DDGS residue after supercritical CO, extraction decreased to 21.8 MJ/kg. However, the
heating values of DDGS residue increased to 31.1 MJ/kg after sub-critical water and
supercritical ethanol extraction.

The pyrolysis of DDGS with 1.62% of moisture (dry basis) in nitrogen occurred in the
temperature range from 200°C to 650°C at the heating rate of 30°C/min. The maximum pyrolysis
rate of DDGS with 1.62% moisture in nitrogen at the heating rate of 30°C/min was 13%/min (wet
basis), which was achieved at the temperature of 375°C. The residual weights of DDGS in
nitrogen at 650°C almost became constant at 27% of the original dry mass of DDGS with 1.62%
moisture. There were two obvious oxidation zones during thermal degradation of DDGS residue
in air. The starting temperatures of the first and second oxidation zones were 200°C and 470°C,
respectively. The maximum oxidation rates of the first and second zones at the heating rate of
30°C/min were 22.5 %/min (wet basis) at 405°C and 4.6 %/min (wet basis) 720°C, respectively.
The residual weight of DDGS in air at the end of the first and second oxidation zones were
about 43% and 5.5% of the original dry mass of DDGS, respectively.
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