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Heterogeneous nucleation on mesoscopic wettable particles: A hybrid
thermodynamic /density-functional theory

T. V. Bykov and X. C. Zeng®
Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588

(Received 15 February 2002; accepted 23 April 2002

A hybrid thermodynamic and density-functional theory for heterogeneous nucleation on mesoscopic
wettable particles is developed. The nonlocal density-functional th@T) is on basis of the
weighted-density approximatiofWDA) of Tarazona. The model system consists of a
Lennard-Joned.J) fluid and a 9—3 LJ wall for the solid particle. Effects of the droplet curvature and
compressibility are accounted for in the theory. A by-product of this work is the calculation of the
Tolman length using the WDA-DFTAppendix A). Important characteristics of the heterogeneous
nucleation, including the chemical potential of the liquid condensate, the free energy of droplet
formation, and the barrier height to nucleation, are obtained.2002 American Institute of
Physics. [DOI: 10.1063/1.1485733

I. INTRODUCTION proaches infinity(or the coefficient of spreading of the con-

Heterogeneous nucleation is the most common mechaf1ensate IS ppsmve in the planar lifit ) )
nism in initiating a first-order phase transition. For example, As mentioned above, the thermodynamic properties of

from a metastable supersaturated vapor to the bulk liquid, thE'€ iquid condensate on the mesoscopic particles strongly
nucleation process often proceeds with the formation of &€pend on the nature of the su_rfag:e force. In the classical
liquid-like film on the surface of foreign particles. Many theory of heterogeneous nucleatl?oﬁ,s.everal empirical pa-
kinds of particles can act as heterogeneous-nucleation cefdmeters were introduced to describe the surface forces.
ters. These include ions, droplets of acid, solutable or unsolhese parameters are generally taken either from experi-
lutable sols, and dust particles. It is known that thermody-nents or from other microscopic theories or molecular simu-
namic properties of the liquid film formed on the surface oflations, for example, the molecular theory of capillarity and
a particle depend strongly on the nature of the surface forcdhe density-functional theory, or molecular dynamics and
A general feature for heterogeneous nucleation is the exigMlonte Carlo simulations. Molecular simulations have been
tence of a threshold supersaturation beyond which the saised extensively to explore various wetting phenomena on a
called barrierless nucleation can take place. In comparisolanar solid surfack;® and have yielded important results
the homogeneous nucleation which occurs only in arsuch as the dependence of wetting temperature and the sur-
impurity-free environment, is much less common in natureface critical temperature on the surface force, as well as the
In fact, the homogeneous nucleation always requires a highelensity profiles of the liquid film near the solid surface.
value of supersaturation than that for heterogeneous nucl®ensity-functional theoryDFT) has also been employed by
ation. This was first recognized by Volnteén 1939. Since many workers to study behavior of a fluid near a solid
then, studies of heterogeneous nucleation have received cosurface'®~#In most studies, the so-called weighted density
siderable attention. Recent reviews on this subject can bapproximation (WDA) developed by Tarazofa!! is
found in Refs. 2—4. adopted. The WDA has been shown to be very accurate for
In this paper we consider the heterogeneous nucleatiodescribing highly nonuniform solid—liquid interfacial
on mesoscopic spherical particles. Droplet formation on theystem$:°*4Both DFT and molecular simulations have their
particles can be developed in two ways, depending on thewn advantages and shortcomings. In molecular simulations,
wettability of the liquid on the surface of the particle. The the number of molecules in the simulation cell is fintypi-
first possible way is the formation of a liquid film on the cally, a few thousand whereas a typical mesoscopic size of
entire surface of the particlcomplete wetting The film  droplet possesses at least millions of molecules. Although
then grows into a large liquid droplet with the foreign par- DFT is free from such size limitation, it requires certain ap-
ticle at the center. The second way is via forming micro-proximation in the correlation function and free-energy func-
lenses of liquid on the surface of the particle with a nonzergional, which renders the calculation less accurate. Here, we
contact angle. These separate microlenses then grow in sizgse the DFT because we are interested in the formation of
collapse into a thick film which covers the entire surface Ofliquid droplets on mesoscopic particles. Moreover, the DFT
the particle, and then develop into a large liquid droplet. Inh35 peen used in many previous studies of homogeneous
this study, we consider only the first possibility. A sufficient  cleationt®
condition for this possibility _is that the liquid condensat.e will As discussed above, a planar surface can be considered
wet the surface of the particle completely as the radius apsg the Jimiting case for a mesoscopic particle when its diam-
eter approaches infinity. For the planar surface, the complete
dElectronic mail: xzengl@unl.edu wetting may occur when the nucleating vapor is undersatu-
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rated. Towards the complete wetting, the disjoining potential
changes monotonically as a function of the thickness of the
liquid film (see, for example, Fig. 1 in Ref. 4while it is
nonmonotonic for the incomplete wetting. Thus far, most
DFT studies on the heterogeneous nucleation focus mainly
upon systems involving partially wettable partictés’
namely, the second possible way of heterogeneous nucleation
described above. In that case, the line tension of the three-
phase interface on the solid surface must be considered. The
solid surface can be either platfhor curved!®?° DFT with

a local gradient expansion was the basis for all these studies.
It is well known that the local density approximati@nDA )
cannot qualitatively describe the structure of the density pro-
file near the solid surface. Thus, we will use the nonlocal
WDA-DFT.2%We will present a hybrid approach by com-
bining the DFT with a classical nucleation thed#/The
latte”* yields general relations among thermodynamical and
kinetic properties of the system, while the DFT provides im-FIG. 1. A schematic plot of a liquid droplet forming on a mesoscopic wet-
portant properties of the liquid droplet, such as the depentable solid particle.

dence of the chemical potential of the liquid droplet on the

droplet size. Outcomes of the hybrid theory include the

threshold value of the chemical potenti@r the threshold vapor as phase 1, the liquid film as phase 2, and the solid
value of the supersaturatipffor barrierless nucleation, the particle as phase 3. In describing the thermodynamics of this
height of the activation barrier to nucleation, the half-width nonuniform system, we use the Gibbs method of dividing
of the barrier, as well as the position of the minimum andsyrfaces to replace(r) by a step-like density profile, similar
maximum on the curve of free energy of droplet formationto the sharp-kink model introduced by Getta and Diettfth.
versus the droplet size. This new density profile consists of the solid particle with
This paper is organized as a follows: In Sec. Il severaldensityp,, the liquid film with densityp, which equals the
main aspects of the thermodynamics of heterogeneous nuclgulk density of liquid at the current supersaturation, and the

ation are discussed. In Sec. lll the DFT with the WDA of yan0r with density op, . The solid particle has a radit, .
Tarazona is briefly discussed and the application to a wetting, (=

R ) X : e useR, to represent its physical radius aRj for the
liquid film on the planar solid surface is reviewed. Charac-.,iys of the solid—liquid dividing surfacek, may differ

) ) . S §rom R, by few molecular diameter, depending on the thick-
described and chemical potential of the liquid condensate ess of the solid—liquid interface. Following Ref. 18, we set

a function of molecular number in the liquid film is given in . . o
Sec. IV. Key properties of heterogeneous nucleation, such azszr%rdgnsg.}:] bitv\:?:(z“ .2n§eﬁg'te-ghe r?r(::uz ?Iw;hteh'“cil::s_s
the free energy of droplet formation and the barrier height toV]c [t)he i M'dl fgljm l.Js ) erl1 byh—R— Igy(se; F 1 Fl'naII
nucleation, are presented in Sec. V. Final conclusions ar lquid Tim IS giv o n \S€€ FIg. inatly,
denotes the outmost radius of the entire systernan be

given in Sec. VI. In Appendix A, we present generalized . . .
Blokhuis-Bedeaux formulas for the surface tension and thé:hosen in such a way that beyohdhe physical density of

Tolman length by accounting for the effect of the nonlocal V#P9" 1S nearly unlfor.nﬂ.e., py). . .
WDA. The supersaturation of the vapor is characterized by the

chemical potentialu. At the fixed temperature, the vapor
densityp, is determined solely by, and so is the density of
the bulk liquid p,. For the open system, the grand thermo-
dynamic potential is given by
Several main thermodynamic equations such as the
Laplace equation and Gibbs—Duhem equation form the basis () — _ pzﬁ(RL R3)— plﬁ(Ls_ R3)
for the description of any droplet-like object in the classical 3 " 3
nucleation theory.In this section we formulate generalized
version of these equations for the description of heteroge-
neous nucleation on mesoscopic wettable particles. wherep, is the normal pressure of the uniform liquid film
The system considered here is an open system whictwith the densityp,), p; is the pressure of the vap@with
consists of a mesoscopic wettable solid particle and a metdhe densityp,), o3,(R,,) is the surface tension of the solid—
stable vapor at a fixed temperature and volume. Upon coriquid interface, which depends on the curvature and the
densation, a liquid film with a uniform thickness will form choice of the dividing surfacR,,, ando,4(R) is the surface
on the surface of particlecomplete wetting Assuming the tension of the liquid—vapor interface, which also depends on
system has spherical symmetry, the density profile of théhe curvature and choice of the dividing surfaRe Both
system is given byp(r), wherer is the distance from the o3(R,) ando,(R) are defined such that they are indepen-
center of the solid particle. Hereafter, we refer the metastabldent of the thickness of the liquid film. In reality, this would

II. THERMODYNAMICS OF HETEROGENEOUS
NUCLEATION

+47R205)(Ry) + 47R205,(R) + Q(h), (1)
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be true only if the film is thick so that the physical density of — (p,—p,)47R2dR+ 47R2do 3+ 4mR2d oy, + 8mRa»,dR

the film is nearlyp,. Equation(1) does not include the ther-

modynamic potential of the solid particle since it stays con-

stant for all changes in the system.

The last term in Eq(l), Q2(h), is a function of the thick-
ness of liquid filmh. It approaches zero &sgoes to infinity.
Assuming the spherical symmetf}(h) can be written as the
integral from some volume density(r)

~ L L
Q(h)=47rJRr23)(r)dr=4rrfR r2o(r)dr, 2

hth

where the integration is taken froR to L, due to the re-
moval of the bulk liquid fromR to L, which creates the liquid
film with a finite thickness. Thus, E@l) can be rewritten as

4

0+ =

3 4ar 3 4 3
Lp=— 3 R (pg—p1)+?Rnp2

+47R%203(R,) +47R%054(R)

L
+47rf r2a(r)dr. 3
R
Taking a partial derivative oveR on Eq.(3) under the con-
dition of fixed u» andR,,, and noting that2, p;, p,, and
o3(Ry) do not depend olr, we obtain

0')0'21
JR

0=—47R%(p,—p;) +87Ro»(R) +47R?

J (L 5
+a4m— @
477(9R Rr o(r)dr,

(4)

or

22(721(R)
R

72 o B(R+h
+ﬁ( )—@(R,+h).

©)

P2—P1

—47R?®(R,+h)dh+ Ndu+ Ny du=0. (8)

Substituting the generalized Laplace equati®nnto Eq.(8)
results in the generalized Gibbs—Duhem equation

29021 2 2
_47TR (9R dR+47TR d0'21+ 47TRn d0'32+ N32d,bL
Equation(9) can be further separated into two equations
d0'32=—l_'32d,u,, (10)
and
(?0'21
dO'Zl—(?_RdR:—FZJ_d,LL, (11)

by defining two adsorptiond;s, andl',; . T 3= N3/4mR? is

the adsorption of the liquid on the surface of the solid par-
ticle, andI',;=N,,/47R? is the adsorption at the liquid—
vapor interface.

The generalized Laplace equatidd) and generalized
Gibbs—Duhem equation§l0) and (11) are key thermody-
namic equations for the study of heterogeneous nucleation.
We note that in our consideratiar;, and o5, in these equa-
tions depend only on the curvature of the droplet, but not on
the thickness of the liquid film. Only(R,+h) in Eq. (5
depends on the thickneks The physical significance of the
free-energy densit¥(R,+h) can be better illustrated from
the limiting case of the liquid film{with thicknessh) near a
planar solid surface. In this limit the radial variabllean be
replaced byz=r —R,, where thez axis is perpendicular to
the solid surface with the origin at this surface. Thgr)
becomes?o(z)=lim§nﬁwz)(r). In fact, we will restrict our
attention to that type of particles for which the solid—liquid
interaction potential depends only on the distance from the

Equation(5) can be considered as the generalized Laplacearticle surface. For these particles, the replaceméntz is

equation in the case of heterogeneous nucleation.

The second important thermodynamic equation is the

always valid.
Note that in the limiting case of planar liquid—vapor in-

generalized Gibbs—Duhem equation, which can be deriveterface o,, is independent of the curvature, namely,

by taking the differential of) [Eq. (1)], under the condition
of fixed temperature and total volume of the system

dQ=—4mp,(R?dR—R2dR,)—V,dp,+47p,;R?dR
_Vldp1+ 8’7TRnO'32an+47TRﬁdO'32

+87Ro, dR+47R? doy— 47R?*®(R)AR,  (6)

whereV, andV, are the volume of the vapor and the liquid,
respectively. On the other hand, we have

dQ=—Ndu=—(Ngp+Na+Np+Ny)du, (7

whereN is the total number of moleculdsxcluding that of
the solid particlg in the system, which is the sum of the
molecules in the liquid filmN,, vaporN,, and two interfa-
cial regionsN3, and N,;. Combining Eq.(6) with Eq. (7)
and noting thatdR,=0 (for fixed solid—particle size
Vodp,=Nydu (or dp,=p,du) and Vi dpy=N;du (or
dp;=p;du), we obtain

901/9R|g ..=0. Let zo=|R,—R,|. Equations(5), (10),
and (11) then become

P2—pP1=—w(Zo+h), (12

dos=—T'5du, (13
and

doy=—T,du, (14)

respectively. Here, the bulk vapor pressyrgis also the
normal component of pressure tensor at the interfacepand
is the pressure of the bulk uniform liquid at the samelhis
means thap, — p, is just the Derjaguin’s disjoining pressure
I1(h)?* for the planar liquid film; thus@®(zo+h)=TII(h)
according to Eq(12). IT(h) can be considered as a sum of
several components: some due to the overlapping of the
interfacial layers of the thin liquid film while others due to
the interactions between the solid surface and the liquid film.
Theh dependence dil is the key characteristic of the liquid
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film needed to develop theory of heterogeneous nucleatior
on solid surface. This dependence cannot be given from the
classical nucleation theofyDFT, on the other hand, can
yield II(h), and numerical results will be given in the next
section.

N(z/d)

Ill. PROPERTIES OF THE LIQUID FILM NEAR
PLANAR SOLID SURFACE: DFT, MODEL SYSTEM,
AND THICKNESS DEPENDENCE

05 |

Let us first briefly summarize several main aspects of the
WDA-DFT.2 etw(ry,r,) =w(r,) represent the pairwise RSO N
interaction molecular potential for the simple nonpolar mol- 0 5 1o zd ©
ecules. In this case the free-energy functional of nonuniform

: [ . . _ s o
system near planar solid surfageith the random-phase ap- 'G: 2. The scaled density profilg(z/d) =p(2/d) =d*/6 of LJ fluid films

. . S 2-14 near an LJ 9—-3 smooth planar wall locatedat0, for various given chemi-
proximation is given by

cal potentialu at T* =kgT/€ ;= 0.9. The vertical dotted line represents the

. positionz, /d.
F[p]=f drfid(P(Z))_"f dr p(2)A¢n(p(2))
1 . . .
+ 5 j f dry drowpy(ri9)p(z1)p(2,), (15) _determmed by solving the E§18). To this end, we used an
iteration method suggested by Tarazdha.
wherez is the distance from the solid surface,(r;,) is the The model system is chosen to be the Lennard-Jones

small attractive part of interaction potential, ahg(p) is the  (LJ) fluid near a 9-3 LJ smooth solid surface. In the frame-
free-energy density of the ideal gasi«(p) is the excess Work of Weeks—Chandler—Andersdrperturbation scheme,
free-energy density, and it can be calculated accurately vi#e have

the Carnahan—Starlifg formula Ay,(p)=ksT7(4

_ Y : :
3n)/(1—n)°, wherekg is the Boltzmann constant, is —ey, <2V,

the temperature, ang= mpd®/6 (d is the hard-sphere diam- W (rq,)=
eter andp is the density. In Eq. (15), A¢,«(p) is a function o112 de (olr )= (0lr12)°], 11>2%0,
of the weighted density(z). The latter can be determined (19)
by averaging the true local densip(z) over certain local
volume. Following Tarazon®*! we have wheree ; ando are the LJ parameters. The diameter of hard
spheres(reference systemis related too, i.e., d=(a;T
;(Zl):f dr, p(za) (1 15,p(21)), (16)  +ag)/(a,T+as)o, where the constants;, a,, as, anda,

are given in Ref. 24. The solid-surface poterfia given by
where the weighting functiom is chosen in the same way as
in Refs. 10 and 11.
In the grand canonical ensemble, the grand thermody- Vexd(2)=~ps3
namic potential is given by

Uz Ug
+
20

: (20

where p;=12/d% is the density of the solid surface and co-
Q[P]=F[P]+f dry P(Zl)vext(zl)_ﬂf dryp(zy), efficientsu; andug can be found as a result of summation
(17) for pairwise liquid—wall interactions over lattice structure of

_ _ the wall. Following Getta and Dietrich we use us
where Vq,(z,) is the external potentialhere, due to the =2.34& ,0° andug= — 5.326¢, ;0. *2 For the numerical cal-

solid surfacg The equilibrium density profile is determined ¢jation, v, (2) is set to be infinity forz<0.84d. The two

from the variational principleX}[p)/5p=0, which gives reduced temperatures considered here @fe=kgT/e
1 . =0.7 and 0.9; both are above the wetting temperature of the
p(Zl)ZeXD{ - ﬁ[f dry p(Z2) Ag(p(Z,)) system as well as the surface critical temperature.
B Using the iteration procedure, we have calculgiéd)
(r15,p(22)) _ for several given chemical potential The density profiles
Xl—ﬁ(zz)—ZFz(zz)F(zz) +A¢ns(p(z1)) are shown in Fig. 2, which all exhibit the well-known oscil-

latory behavior near the solid surface. ko= w.. , the thick-
nessh becomes infinity. Note that., can be determined
from the conditionp;=p,. In the DFT, the bulk pressure is
written as

wherep, andp, are defined in Refs. 10 and 11. The density

profile p(z) of the liquid film near a solid surface can be p=pn(p)— 3¥p2, (21

+f drzwp(rlz)P(Zz)"‘Vext(zl)_,u“y (18
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where pp(p) the pressure of the hard sphéfesnd ¥ %
=—[drwgy(r). For u<u., the liquid film has a finite
thicknessh, andp; andp, differs byIl, that is, the disjoin-

ing pressure. 06 Vo Eq29
Given the density profiles of the liquid films, we are . EF;““me“cal data
ready to determine the thickness of the liquid film. For a ) 4
planar liquid film near the solid surface, Ed) can be writ- o4
ten as
Q= —psh—pi(L—h—2zp)+ o3+ a1+ Q(h)/A, (22 0.2

whereA is the surface ared)=Q/A, L denotes the outmost
boundary of the system, arg is the distance between the
solid—liquid dividing surface and the solid surface. The last
term in Eq.(22) is

0 5 1I0 15 20
B 4r L (@) z/d
_-" 2~
Q(h)/A= A J’Rﬁhr o(r)dr 04 :
m
4 L o~ E \
= (Rh—2p+2)w(2z)dz 03 r y + DFT numerical data
A Jzgen L Eq.29
47TR§ 1 L —eee Eq:31
- f (1+(z—20)/Ry)*(2)dz o2
A z5+h
_>J‘L @(2)d7g %=fL’Z°H(F1)dTu. (23) T
Zg+h n h
Using p;—p,=1I(h) and Eq.(23), we rewrite Eq.(22) as 0
Q+py(L—20) =TI(h)h+ oyt o1+ fL‘Z"H(E)dﬁ. N , | , . . , .
h 0 2 4 6 8 10 12 14
(24) b) z/d

Although the left-hand side of Eq24) can be determined ;5 e scaled disjoining pressuié = ITmd%/6ksT of the liquid film.

from the DFT, o3;, 021, andh on the right-hand side are the vertical dotted line represents the positiggvd. (@) T*=0.7, z,

strongly dependent on the choice of the dividing surface. =2.3%, B*=xB/6kgT=16.9, andl=1.6d; (b) T*=0.9, z,=3.0&d, B*
For the liquid—vapor interface, we have chosen the=7B/6kgT=12.5 and=1.7d.

equimolar dividing surface as the dividing surface so that

I',;=0. Thus, according to Eq14), o,; will have a constant

value regardless of, and this value is equal to the surface ] -

tension of the liquid—vapor interfacg;;= Q..+ p,..L in the J;P(Z)dZM:MS:TszJF Pl u=p (L= 20). (26)

absence of the solid surface. For the solid—liquid interface,

we have chosen the position of the dividing surface such thathe left-hand side of both Eq§25) and (26) can be evalu-

I'3, is a constant. However, unliké,;, I'5, cannot be zero ated using the DFT. Thus, the two unknowng andz, can

because there is always some liquid or vageren wherh ~ be determined by solving the coupled E¢85) and (26).

=0) adsorbed on the solid surface. To deternfingandz,, Oncel 3, andzy are known, we can define the thickness of

we have used two limiting cases lof one forh approaching the film h for a givenu(us<p<w..), thatis,

infinity and the other foh approaching zero. The first case 1 ~

occurs whemu = u.. (see Fig. 2 The number of particles per h— Jop(2)dz— T3y~ py(L —2o) _ 27

unit surface area is given by pP2—pP1

. - With h defined, we turn to the main objective of this

J;P(Z)dZM:M:FszJF p2-(L—2p), (25  section, the thickness dependencevgf andIl. Integrating

Eq. (13) with I'3, fixed, we obtain

where p,., is the bulk density of the liquid git= ... The o _
second limiting case occurs when= u, the chemical po- T3~ T3z~ Fsz(M~ Hee), 28)
tential at liquid spinodal. The value @f; can be calculated whereo3,=Q+p,..(L—2p) is the solid—liquid surface ten-
from the DFT. Foru<pus the bulk liquid phase does not sion whenh— .
exist, and thug,, p,, andlI(h) are not defined. This means The dependence dfl on h for a given u (betweenug
one has to set the thicknelss- 0. In this case the number of and w..) is shown in Fig. 3. Indeed[I(h) is an essential
particles per unit surface area is given by input in the heterogeneous nucleation theory. In the classical
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heterogeneous nucleation thebrjwo commonly used ap- that (i) o2(R) is not a monotonic function oR, (i) oy
proximations tolI(h) are the power-law approximation and approaches zero &&—0, (iii) Eq. (32) is applicable only
the exponential approximation. The former is for relatively \whenR is at least greater thand5 and (iv) 8., is a small

thick liquid films, while the latter is for the thin structural negative constant. For the mesoscopic solid particle consid-
films? In the case of nonpolar LJ fluid, the power-law ap- greq here, the conditioR>5d is well satisfied.

proximation tolI(h) is given by Taking the dividing surface to be the equimolar dividing
surface so thdf',;=0, and substituting Eq32) into Eq.(11)
II(h)~ (Zor )% (29 gives
where B is the Hamaker constant. However, the classical =~ 7921 _ d021:igx( 204 _ 20210 33
nucleation theory does not give this constant. In Ref. 18,a JR dR dR % R R

formula is given to estimat® based on the sharp-kink ap-
proximation to the density profile. According to this formula

and in our notationB is given by 205 O
po-pi=—g | 1~ & |~ M(h). (34

Substituting Eq(33) into the Laplace equatio(b) gives

B=(p2=—p1=)(p3Us— p2xts), (30
where the subscript refers to w=pu., and t; Itis well known that the compressibility correction is in the
= —2W/3ma3=64\2/270%€ ; [using Eq.(19)]. To compare Same order as the curvature correction. Therefore, we should
our result of1(h) to that of the power-law approximation, @lso take into account the compressibility corrections which
we setB as an independent parameter to fit the calculatedvere not included in the classical consideraffon.
II(h). The fitting shows thaB is about 10% larger than that In Eq. (34), the pressure difference,—p, can be cal-
calculated from Eq(30), indicating that Eq(30) gives quite culated via the compressibility route. We start from the den-
a good estimation oB. We conclude that the power-law Sity of the liquid, which can be given approximately by

approximation is in good agreement with the DFT result for = 402 vaA 35
relatively thick liquid films, e.g.z>5d (see Fig. 3. P2 pz.m Pa=X2 'u . o (39

On the other hand, the exponential approximation tovherep,., is the density of the uniform liquid gt = .., x>
I1(h) is given(in our notation by is the compressibility of the liquid, and u=pu— u... We

) | can show from the DFT that E¢35) provides an accurate
LI(h)~IIsexp(—(z=2o)/1), (32) estimation forp, except whenu is very close tous where
whereHsz(pl—pz)|”:MS is the disjoining pressure at the the dependencp, on u becomes nonlinear. Integrating Eq.
zero thicknessZ=z,), and| is the correlation length for the (35 over u yields the pressure of the liquid
film near the solid particle. Clearly,cannot be given from =00t oo A+ 202 v A 2 36
the classical heterogeneous nucleation theory. A fittofthe P2 ng-c P2l 2= X2 1 _ (3
DFT calculation yieldd ~1.5d. We also findl slightly in- ~ Wherep,.. is the pressure of the liquid at= .., andpa.
creases with the temperature. Figure 3 shows that the exp&=P1.. - Thus, the second formula fqr,—p; is
nential approximation tdI is in good agreement withl

& approximat s g g W P2—P1=P1— P1t P2 At 3p5. oA . (37)

calculated from the DFT fory<<z<<5d.
In Eq. (37), the termp,..,— p; can be neglected compared to
the next two terms ap,<<p,. The latter condition is satis-
IV. CHEMICAL POTENTIAL OF THE LIQUID fied for the LJ system at the reduced temperatures 0.7 and
CONDENSATE 0.9 since both are far below the critical temperature.
Combining Eq.(37) with Eq. (34) and neglectingo;..

Calculation of the barrier height to nucleation requires i v \
results in a quadratic equatidB8) for Au

the chemical potential of the liquid condensate as a function” P1

of the droplet’s sizeR as well as the number of particles in 1 205, -
the droplet or in the adsorbed film, In this section, we will EpngZA,U,Z-i- PoAp— R 1- r +II(h)=0.
find the R- and v-dependence based on the DFT model. (39)

A. Chemical potential of liquid condensate

and R dependence Since 6. /R, o51x2/R, andIly, in Eg. (38) are all small

parameters due to the mesoscopic size of the drdplas
We start from Egs(5) and (11). The surface tension well as the small value of compressibility of the liquid, the
o,1(R) appears in both equations. Since we consider onlsolution of the quadratic equation Afuw can be expressed in
the condensation on mesoscopic solid particRss large  terms of these small parameters to the first order, that is
enough to warrant the use of the Tolman formtila

20,
R

A 1
w=—
: (32 P2

207 8.t 051X X2 5
R (1— R +1Ix, —H—7H .

(39
where o3, is the surface tension of the planar liquid—vapor Equation(39) is an important result of this paper. It gives the
interface in the absence of the solid particle, @ands the the  chemical potential of liquid condensate as a function of the
Tolman length wherR— . Previous DF®~28 has shown droplet sizeR, which will be used later to calculate the bar-

1_

. o0
021= 0y
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FIG. 4. Dependence of the scaled chemical poteb(i&) = A u/kgT of the
liquid gondensate on the scaled radEJs of the droﬁ!«xat~ for various given
radiusR,, of the solid particle; curve IR,,=5d, curve 2:R,,=10d, curve 3:

R,=15d, and curve 4R,=20d. (8) T*=0.7; (b) T*=0.9.
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DFT, the chemical potential of the liquid condensate as a
function of droplet radiuf can be evaluated from E(39).
Results are shown in Fig. 4 f&,>5d. We find that theR
dependence is not monotonic but has a maximum at a scaled
chemical potentiab,, at R=R,, (hereafter, we use the di-
mensionless chemical potentias=A w/kgT). Similar R de-
pendence was found from the classical heterogeneous nucle-
ation theony/* although empirical parameters were used.
Let b; be the dimensionless chemical potential of the

metastable vapor. If €b;<b,,, the equationb(R)=b;

has two solutions. One solution iR=R,, for which
db(R)/dR>0. It corresponds to a stable droplet of the liquid
condensate forming on the solid particle, and this droplet is
in chemical equilibrium with the surrounding supersaturated
vapor. Another solution is @®=R., for which db(R)/dR

< 0. It corresponds to the critical droplet of the liquid con-
densate with the solid particle at the center, and this droplet
is in unstable equilibrium with the surrounding supersatu-
rated vapor. The equilibrium droplet cannot grow in size. To
grow, the droplet size should be larger tHanto overcome

the barrier to nucleation. Finally, ib;>b,, the equation

b(R)=b, does not have any solutions and the heterogeneous

nucleation becomes barrierless.

We close this subsection by noting that at the maximum
value ofb the corresponding droplet sig, is always in the
region of thick films(see Fig. 4for all solid particle sizeR,
considered. Therefore, B, the disjoining pressurd (R,
can be well described by the power-law approximation

[Eq. (29)].

B. The number of molecules » in the liquid

condensate and adsorbed film
Calculation of the barrier to droplet formation requires

rier to nucleation. It can be reduced to the classical equationot only theR dependence of the chemical potential, but also
by removing curvature and compressibility corrections.the chemical potential as a function of the number of mol-

Comparing the DFT results df . (h) in the planar limit with

eculesv in the liquid condensate or the adsorbed film as

those by using Eq(39) (analytical planar expression based well.>* In general, this number is given by

on the disjoining pressure and compressibility correclions
indicates that Eq(39) provides quite a good estimation of
the chemical potential as function of the film thickness. In-

47

v= ?(R‘?— R3)pp+4mRT 50+ 47R%T 5y, (40)

deed, at low temperatures the difference is negligible except
for h<1.5d, for which the difference is still less than a few where p, can be determined from E@35). Note that we

percent.

have chosen the liquid—vapor dividing surface such that

Note that several quantities in E(®R9) can be obtained TI',;=0. We have also chosen the solid—liquid dividing sur-

directly from experiments. These include the disjoining presface such thal 5, is a constant foR>R,,. This constant can
surelI(h),? the liquid compressibility,, the liquid density  be found from Eqs(25) and(26). For mesoscopic solid par-

p2, and the planar surface tensior};. Only the Tolman

ticles, we assume the adsorptibg, is the same as that in the

length 6., has not yet been measured because it is on thplanar case. However, f{®®=R,,, we know thath=0 and
order of molecular length scale. Of course, all these quantit 3,=10"5; at u= us. If u<us, the adsorptiol’s, is not well
ties can also be calculated from the DFT. Appendix A de-defined and3; cannot be considered as a constant. In fact,
scribes how the surface tension and the Tolman length can eheneveru< ug and the film has a zero thickness=0),
determined based on the WDA-DFT. On the other hand thevhich means that the liquid condensate no longer exists ex-
classical nucleation theory can only provide some estimatiorept for an adsorbed film on the surface of the solid particle.

for the chemical potentiahu; neitherII(h) nor o3, and 8.,

can be determined in the framework of this theory.

Combining Eqgs(35), (39), and(40) and taking into account
both liquid condensate and adsorbed film and keeping only

Once theos, and §,. are determined from the WDA- first-order terms, we obtain
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4 3 03 205, I3
V(R)= % (R°=Ry)pae| 1+ poexo| —5 — () 9(lz)=———, (47)
3 R dz,
+47RT3,, R>R, sincep;=g(I'3;). Combining Eq.(47) with Eq. (45) gives
_ 2 _ (41) 2 ~
v(Ta)=4mRia1, R=R. pr=— 22+ o(Ry9(Ty). (48)

Consequently, fop< ug, v no longer depends dR but only "

h=0. sorbed film, we have,=p;.. expb(v)), assuming the vapor

is an ideal gas. Herd(v) is the scaled chemical potential of
the adsorbed film. Combining the equilibrium equation with
Eq. (48), we obtain

C. Dependence of » on the gas adsorption I'3; ~
203 n c(Rn9(I'39)

For the planar solid surfacd— ), the gas adsorption b(v)=In| — (49
I'5; can be calculated for given< u from the equation RnP1 P1-

i 5 In Eq. (49L two unknowns remain to be determinégi)

Fa(p)= fop(z)dz— p1(L—2p), (42) o4 and(2) c(R,). First, combining Eqs(44) and (45) with

the thermodynamic relatiodQ2=—N du=—(N;+N3)du
wherez, is the position of the dividing surface. Meanwhile, anddp,=p; du results in
the pressure of an undersaturated vapqr, can be calcu- Joay
lated from Eq(21), or approximately from the ideal-gas law dgglz&Tan—Fgld,u_ (50)
because; is very small. Combining Eg21) with Eq. (42) 0
for u gives the gas-adsorption isothepp=g(I'3;), whereg
is some function of"'5;. Figure 5 showd 5, versusp, (for
the ideal gasp; and the scaled pressum /kgT are the =
same, which showsl 5, is a stepwise monotonic function.
This type of isotherm has been classified by earlier workers
as one of the several typical isothefthfor the gas adsorp-
tion on the solid surface. The stepwise nature of this iso-
therm stems from the oscillatory behavior of the density pro-
file of the adsorbed film. Note that in the classical theory the
linear or Henry’s law isotherm was usedhat is,

I'31=Krpa, (43

whereKy is the Henry’s law constant.
In the case oR=R,, and u< us, the grand potential of
the system is given by

0.6

04 -

0.2 |

0 5e-05 0.0001 0.00015

AT s o3 2
Q:_plT(L _Rn)+4’7TRnO'31, (44) n,

(a)
whereosy(R,) = 031(Ry . Zp) is the surface tension of solid— |+
vapor interface, which depends on both the curvature of the Y
particleR, and the position of the dividing surfaeg. Since 1F
Q) itself is independent on the choice zyf, taking derivative
overz, on Eq.(44) gives

B 20'31 &0’31
N A

(45)
05 +
Equation(45) is analog to the Laplace equation for liquid—
vapor surfaces. We assume the two variables 9fR, o)
are separable, i.eq3i(R,,20) =031(20)c(Ry), which be-
comes exact aR,,— o where the functiort(R,) approaches
1. Thus, for the planar solid surfac®{— =), Eg. (45) be- 0 Sooas e o o
comes (b) ,

- do3y 4 FIG. 5. Adsorption isotherms for the LJ fluid near the planar solid surface.
P1=— 9zp (46 The scaled adsorption'%,=T'5,md%/6 vs scaled vapor densityy;
=p,md%/6. The horizontal line shows the value Bt,. (8 T*=0.7; (b)
or T*=0.9.
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Because the size of the solid particle and the position of thé,,, at R, or v,,. For the purpose of discussing heteroge-
dividing surface is fixed, Eq50) is reduced to neous nucleation, let us define the threshold valye b, of
-~ chemical potential of the vapor. In the overthreshold region
dog1=~TsiksT db(v). (52) b,;>b,,, the heterogeneous nucleation process becomes bar-
Using Egs.(49) and (51), we eliminate the first unknown, rierless. In the underthreshold regior:®,<b,,, the barrier
031, and obtain a differential equation fo(v) height to nucleation depends on the valuépf In practice,
~ however, the near-threshold region in whibh is close to
db(») = ¢(Rn) dg(I's) L by, has received more attentfobecause in this region the
dl3;  pre  dlg expb(v)) =251/ Ropyss’ rate of nucleation can be conveniently measured.

(52 A description of the near-threshold region has been
where v=47-rRﬁI“31 [see EQ.(41)]. Next, we determine given in Refs. 2 and 4. Following Ref. 2, we will use an
¢(R,)- To this end, we follow the method introduced in Ref. parametef0<e<1) to characterizes how fdr, is from by, ,

5 by wusing the so-called patching condition that is,
de(v)/dv|F31432=db(v)/dv|R:Rn. The derivation of by=by(1—e). (55)
c(R,) is given in Appendix B. _ ) _
Note that if the Henry’s law isotherm is substituted for 1he barrierless nucleation occurs when0 while the near-
g(T'sy) (which was used in the classical nucleation thgory threshold nuclegtlon is dgnolted ley<1. In this region the
Eq. (520 will have a simple analytic solutionp(») chemical potential of the liquid cqndensatg can be expanded
= = d upto the second ordéthe parabolic approximatiéf) about

=In(a(R,)I'31), where the constart(R,) can be determine

with the same patching conditiqsee Appendix B In real- ¥m

ity, however,g(I"3,) is not exactly a linear function but can 1|d?b(v)

be viewed approximately as some weak oscillations about a  P(¥)=bw=5|—5>— (v— vm)?, (56)

straight line (see Fig. % With this picture in mind, it is m

reasonable to express the solution of Ep) as where the first-order term vanishes becadd®v)/dv|,
b(v)=ln(a(§n)F31)+K(F31), (53 =0. Validity of the parabolic approximation can be exam-

ined from the condition
wherex(I'3;) represents a perturbation function which gives
(v—vm)d30(v)/dvd| -

rise to the oscillations about the straight line. Let 1
K(r31)|r31=F32:0; the constant(R,) can then be deter- 3 d2b(v)/dv?],
mined from patching condition, that is,b(v)lRZRn "
=In(a(~Rn)F32). Taking the assumed perturbative solution
(53) into the differential equatio52) leads to a differential
equation forx(I'3q)

de(Ts) _ 1 [c(Ry) dg(Tsy
dl's; 31| P dlgy

‘<1, (57)

that is, when the third-order term is much smaller than the
second one. With the parabolic approximation, the number of
molecules for a givema in the equilibrium and critical droplet
are given by

Ve=Vm— (2€byy, /| dzb( V)/dV2| Vm)1/2,

1 Vo= Vm+(2€bth/|d2b(1/)/d1/2|,,m)llz, (58)

ARy expx(T30)—2(Ropr)

1. 64 respectively, and with which the condition E&7) becomes

This equation is easier to solve than Ef2) as the latter 1 " d3b( V)/dV3|Vm ‘

contains a near-divergent term &@R)I's;). Numerical solu- 3 (2¢€byy) (@b(v)/d1?), | <l (59
tion of Eq. (54) is obtained as well as that ob(v)) of m

Eq. (53). Equationg55)—(59) form the basis for the description of the

With both Eq.(39) for v>47-rRﬁl“32 and Eq.(53) for v near-threshold region in the classical theory of heteroge-
=47RT'3,<47RT'3,, we obtain the chemical potential neous nucleation.
b(v) over the entire range aof. Figure 6 shows a plot db Let us first determine,, or R,, from db(v)/d V|Vm:0 or
versusw for given R, and temperatures, where=0 corre-  from db(R)/dR|r_=0 with using Eq.(39). Note again that
sponds to the bare solid particle. For adsorbed films, wea|gq. (39) involves a zero-order term as well as first-order

oscillations appear on the(v) curves[see Figs. @ and  terms of compressibility and curvature. To separate their con-
6(c)], due to the stepwise structure of the adsorption isoyipytion toR,,, we write

therm. For thicker liquid films, these oscillations do not ap-

pear. Ry=Riy'(1+¢), (60)
WhereRST?) denotes the solution of the equation with only the
D. Chemical potential for barrierless and near- zero-order term, that is,

threshold nucleation
=0. (61

As mentioned above, a key feature in theR) or b(v) dr
curves[Figs. 6b) and &d)], is the existence of a maximum
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FIG. 6. Dependence of the scaled chemlcal potebtja) of the liquid condensate on the number of particléa the condensate; curve I&1 5d, curve
2: R =10d, curve 3:R,=15d, and curve 4R =20d. (a) and(b): T* =0.7; (c) and(d): T* =0.9. Curve 5 in@ and(c) represents the classical approximation
b(v)—ln(a(Rn)FSI). The thinner curves iith) and (d) represent the parabolic approximation.

¢ is a small correction tR\?) by including the first-order
terms in Eq(39). Substituting Eq(60) with the solutionR'®’
from Eq. (61) into db(R)/dR|g_=0 gives

405,65,
(405 /RO 5211/ 97| RO)

{=~- Rﬁr? (62)

Next, sinceR,, is in the region of thick filmgSec. IV A),
the power-law approximatiofEq. (29)] can be used to
evaluatell in Eq. (61). As a result, the positive solution of
the quadratic equatio6l) is

SN NN

Substituting this zero-order solution into E@2) gives the
first-order correction

5, RO-R,

= 64
¢ RY RY+R, 4

Finally, substituting Eqs(60) and (64) into Eq. (41) gives

A
v=47R g+ — 3 pan(ROP—R3+3/R©3)

20
R(O) —1I|p= RO

2+(Ry° = RY)

1+X2

5 4
:47TRnF32+ -

3 P
3(RY-R,RQ?
X +
(R + n><R$1?>3—R§>
205 2RO+ R,
+X27R§Tc])) 73R(”?) (65)

Using Rf,?) [Eqg. (63)] and Eq.(29), we obtain the threshold
chemical potential
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30,

1 205 2RY+R, .
2RO+ R,

b =
th p2:>ckBT R#I)) 3 RE]?)

5 [T 47 (R
W(v)=4=R; . b(v)dF31+kB—T RdR

305> 4RVZ+4ROR +R2

_ (66) x| R? 2021(1— - 1/3021)(2—21_[)(2)—1'[
2RO+ R, 9RO R R 3
3 3 ©
Having derivedv,,, the validity condition of the para- + EH2> + (R _R“)Xz( dil 20z d_H>
bolic approximatiorf Eq. (56)] can be examined by calculat- 2 3 dR R dR
ing the second and third derivative b{v) at v,,. Detailed R3X22 o3 (205,
expressions are given in Appendix C. Moreover, given Egs. ”3R2 ( R H) —byv. (70

(66) and(C2), we can calculate the size of equilibrium clus-
ter v, and critical clusterv, using Eq.(58). In Fig. 6, the . : .

parabolic approximation di(v) [Eq. (56)] is also shown for I;i tv‘;ﬁ;}ﬁg?gg‘:ﬂ“”gggdtﬁa(ﬁg be further evaluated
the givenR,, and temperatures. One can see that the approxi- 9 9 y pares, '
mation is quite good, particularly near= v,,,, which is the R R dII
near-threshold region in which we are interested. 477X2j R2—II —

V. FREE ENERGY OF DROPLET FORMATION
AND THE BARRIER HEIGHT (71)

2 _dII

The free energy of droplet formation and barrier height R o
gy p g —477 Zj R2§0'21d—R

are key characteristics that control the rate of nucleation. In
the last section we have derived the chemical potential as a
function of the number of moleculdx v). This relation will _ —4770?1)(23 R2I1|R +47TU§1X22 fRZRH dR.
be used to calculate the free energy of droplet formation. 3 n 3 Jr,

A. Free energy of droplet formation ~ W(v) With Eq. (71), Eq. (70) becomes
On the basis of nucleation thermodynami®sye know

that if a liquid droplet is in mechanical and thermal equilib- 5 [T=2 AmR%*c, 26,
rium with the surrounding vapor, we have W( V):477Rnf b(r)dlg+ — |1~ &
O B Rn

IW/dv=Db(v)—by, (67) . . - v 205, . 2
whereW is the free energy of droplet formation in unit of 3 ( ) 2kgT| R lh:R‘Rn
kgT. Integrating Eg.(67) using the boundary condition 4 R
W(0)=0 (the formation free energy is zero for a bare solid _ 0T R dR— byv. (72)
particle gives kgT Jr,

Vo~ This expression ofV(») can be reduced to the classical 6ne
W V):jo dv(b(v)=by). (68 it the first-order curvature and compressibility corrections
are removed and if the adsorption term is includedllin

Note that our definition of differs slightly from that in Ref.  Finally, we obtain the following expression for the free en-
2 by a valuer,,. The latter is the number of molecules of the ergy of droplet formation on the solid particle in the case of
liquid condensate required to fill the volume of solid particle. v> 4R3I 5,:
Because we consider liquid compressibility, cannot be
treated as a constant. Substitutidg [from Eq. (41)] into

Eq. (68) gives W()=47R2| TaIn(a(Ry)T35) — 1)
I R r 2500 R
W(V)=477Rﬁf b(v)dl“31+47rf dRp,.b(R) +f R (T dl gy + o 028 20
0 R, 0 kBT R R
1 R®=R3 db(R) w 2
X 1+X2kBTP2x(b(R)+——2— AT s ey X2 2021
3 R dR + 3 (R Rn) 2kBT R H|h=R*Rn
—byv, (69)
- A [ Rer R by, (73
where b(R) is given by Eq.(39) and b(») by Eq. (53). keT JR,
Again, keeping only the first-order terms of curvature and
compressibility, we have For v<477RﬁF32, we have
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FIG. 7. Dependenc~e of the scaled free~energy of droplet form&¥p#) on the number of moleculesfor various given chemical potentialer supersatu-
rations. (a) and(c): R,=5d; (b) and(d): R,=15d. (a) and(b): T*=0.7; (c) and(d): T* =0.9. The thicker curves represent the region where the power-law
approximation is applicable.

~ heterogeneous nucleation. Similar behavior has been pre-
I'zy(In(a(Rn)T'31)—1) dicted from the classical theory, but only qualitatively be-
cause the theory utilizes numerous empirical parameters. The
Fan ~ = minimum on these curves corresponds to the equilibrium
+ J'o K(I‘3]_)dl_‘31} —byv. (74) sizev,, at which the solid particle is covered by a liquid film
with a finite thickness and in stable equilibrium with the
For the limiting case oR,=0 andII=0, Eq.(73) will be  syrrounding supersaturated vapor. The vaie=W(v,) is

W(v)=4mR>

reduced to negative, which means the formation of the equilibrium lig-

4R, 26, uid film is spontaneous but it cannot grow further into a

Whomod ¥) = v( - ?) liquid droplet. The maximum at, on theW(v) curves cor-
B responds to the peak of the barrier.
Am . X2 205, 2

* 3 2kgT (T) ~bu, 79 B. The barrier height to nucleation AW
which indeed is the free energy of droplet formation for ho-  The height of the barrier is defined asW=W(v,)
mogeneous nucleation. Therefore, the differend& ) —W(v,). Typically, AW is no greater than several tens of
—Whomod ¥) Can be identified as the work of wetting, which kgT for which the nucleation rate is measurablev v, the
is entirely due to the presence of the solid particle. size of the droplet is large enough to overcome the barrier to

To calculate the integrals in E¢73) we used numerical nucleation. As;— by, from below, bothyv, andv. approach
results forlI(h) up to a certain value dR, and beyond that to v,,. As we know,v,, depends orR,, but not on the super-
R we used the power-law approximatipgqg. (29)]. Results  saturation characterized Ry,. This means that whenever
of W(v) for given b; and R, are shown in Fig. 7. All the b;=by,, AW(»,)=0, that is, the nucleation becomes barri-
W(v) curves exhibit the “loop” behavior which is typical for erless.
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As discussed in Sec. IV, we are particularly interested in 8
the near-threshold region, where the nucleation barrier is lesaw
than a few tens dkgT (see Fig. 7. It has been shown in Ref.

2 that in the near-threshold region the parabolic approxima- ¢ |
tion [Eq. (56)] to b(v) is valid, and thus Eq(68) becomes

40 +

AW= chdv(b(v)—b)

4 2 1/2
_ 3121312 20 L
3¢ Pin {|d2b(v)/dvz|ym} ' (76
Moreover, in the region near, and v, one has o i
(a)
V—V 2 V—V 2
wewot |22 w [T o s S

Avg Av, AW /

whereAv, andA v, are the half width of the minimum and
maximum on theN(») curve, respectively, and are given by o | /

(78)

2 1/4
Ave=Av.=

ebyd®(v)/d 17,
Usingby, [Eq. (66)] and|d*b(v)/dv?|, [Eq.(C2)] obtained

in this work and substituting them into E¢76), keeping
only first-order terms of curvature and compressibility, gives

g <32 2RO R, | % RO R, | 2
AW= - —47R9252 | — 0T m__0 ier hei :
TRy 021 0 FIG. 8. Dependence of the scaled barrier heigh¥ on the e parameter;
3 kgT 3R RO4R = ~ = =
m m n curve 1:R,=5d, curve 2:R,=10d, curve 3:R,=15d, and curve 4R,
(0)3 025 _ 052 153 =20d. (@ T*=0.7; (b) T*=0.9. The thicker curves result from E9),
w| 1+ o 7Rm + 2Rm Rn 11Rm Rn 4Rn whereas the thinner curves result from numerical integration of the chemical
2R§r?) (Rg?)—i- RH)Z(ZRET?)—’_ R, potential shown in Fig. 6.

ooxe 4RO?+4ROR +R?
T 5R02 ©
2R, 2R+ R,

(79

1/4

p2RO2 (27ksT\ 2 3RO RO+R,
Ave=Av,=—Tp ) ©)_
€ 2RO+ R, RO-R,

g
In Fig. 8 we plotAW as a function of parameter for 2

givenR,. Two sets of curves can be seen in Fig. 8. The first

is obtained by usind W=W(v.) —W(v,) with the numeri-

cal results shown in Fig. 7. The second is obtained by using

5. 1R+ 26ROZR +RORZ-4R?
RO 42RO R (RO+ Ry
m (2R’ + Rn)(Ryy '+ Rp)

Eq. (79) with €<0.08(in the near-threshold regigrThe fact oix2 28RO3+56ROZR +35ROR+ 7R3
that both sets of curves show very good agreement indicates + 4R0)2 32RO+ R.)(RO+R

Eq. (79 indeed gives quite accurate prediction on the barrier m (2R’ Ro) (R + Ro)

height in the near-threshold region. Furthermore, if the cur- (80)

vature and compressibility corrections are negle¢tecEqg.

(79)] and if Eq.(79) is expanded over the small thickness of Figure 9 shows th.e calculated, andA v, as funct|on_of
= e parameter for giverR,, and temperatures. The magnitude

the film, Ry, =Ry, t_he classical formul7.16 in Ref. 2 wil of Av, andA v, is important to the kinetics of heterogeneous

be reproduced. This result shows that our approach can re- . . :
. nucleation. On one hand, we notice from Fig. 9 that

cover not only results of the classical theory, but also evalu-

ate the extent to which those approximations underlying the Ave>1, Av>1, (81)

classical theory are applicable.

The half-widthAv, and Av, can be calculated for our for given e in the near-threshold region. This condition has
model via combining Eqs(66) and (C2) with Eq. (798), been invoked in the classical theory because it allows the

which gives number of particles to be used as a continuous variable.
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Av,, ' ' the classical approach is that the hybrid approach takes into
' | account the first-order curvature and compressibility correc-
190001 ] tions. Such corrections cannot be given in the classical

\ S theory because parameters such as the compressibility and

‘ ~ the Tolman length cannot be known without employing cer-

10000 N ] tain models for the microscopic structure of the liquid. The

. use of DFT allows us to find these important characteristics

' DR of the fluid, which are neglected or treated with empirical

e parameters in the classical theory.

5000 -, I 1 Our results(Fig. 2) show that the disjoining pressure

e II(h) of the LJ liquid film near the solid surface is a mono-
B tonic function of the film’'s thicknesh. We have confirmed
several approximations td(h) used in the classical nucle-

% 002 004 0.06 ation theory? These include the power-law approximation

for thick films and the exponential approximation for thin

films. Several key constants involved in these approxima-
tions, such as the Hamaker constant and the correlation

e length in the exponential approximation, have been evalu-

ated directly from the DFT. In the classical theory, however,

30000 ¢ 2 1 those constants were not known. That theory could only es-

i ——4 timate them based on either experiments or other micro-

scopic theories.

In this study we consider heterogeneous nucleation on
mesoscopic wettable particles. Because of the mesoscopic
size, only the first-order corrections due to the curvattire
Tolman length and compressibility have been taken into ac-
count. Again, these corrections can be obtained in the frame-
work of DFT but not from the classical approach. The clas-

: : sical approach becomes more valid when the solid particle is

() 0 002 0.04 g 006 beyond mesoscopic, for which those first-order corrections

can be neglected entirely.

FIG. 9. Dependence of the half-widthv, and Av, on the e parameter; We have investigated the temperature dependencies of

curve 1:R,=5d, curve 2:R,=10d, curve 3:R,=15d, and curve 4R,  the surface tension and the Tolman length of the liquid—

=20d. (@ T*=0.7; (b) T* =0.9. vapor interface by using a nonlocal WDA-DFT. To our
knowledge, this is the first study of the Tolman length using

On the other hand, the lower limit @fparameter in the WDA-DFT. We find the WDA gives qualitatively similar re-

near-threshold region is controlled by the validity conditionSults of surface tension and the Tolman length as LDA. In
of the parabolic approximation th* that is, according to Particular, the WDA-DFT predicts a negative signdf, as

(@)

40000

Av

20000 F

10000 § ™

the classical theory does the LDA-DFT. This result is useful not only for this
study, but also for other problems involving surfaces of large
Ave __Ave (82  droplets.
3(vm—ve) 3B(ve—vy) Another main result of this work is the dependence of

This conditiort requires the height of the barrier to be higherthe chemical potential of liquid condensate on the size of the
dropletb(R) or the number of moleculds(»). We find that

than 2/3/3, ande in this model is larger than 0.005 for given ! e ’ -

R. and temperatures. For lower temperatures and laRger the ch_emlcal potential is a nonmonotonic funcﬂo_ertbr V.
this condition becomes weaker. Thus, the near-threshold réA_-‘ maximum appears on tHg(R) or b(v). Curve, Wh.'Ch gives
gion is described by values of theparameter ranging from fise 1o a threshold valut_a of the ch§m|cal potentigl at Ry,
0.005 to about 0.06-0.08, which also describes the range & Vm- Whe_zn the chemical potential .Of the vaioy=> b”‘.’

the supersaturation of the vapor. In this region one can us}?e nucleathn process begomes barrlerless. We also f'.nd that
Eq. (79) to evaluate the barrier height, which ranges from/©" 1arge solid particlesRy, is always in the region of thick

about XgT to a few tens okgT. For other values oé only f'"EIS fo_lr_r:/_vhlfch the power-lsvy app_rOX|hmat||on ﬁ IIS f}pp“' b
numerical results presented in Fig. 8 are accurate. cable. This fact was not obvious In the classical theory be-

cause of the lack of exact calculation®f,. The power-law

approximation has been used to obtain analytical expressions

for some nucleation characteristics. Wherever the power-law
We have developed a hybrid thermodynamic/DFT ap-approximation is applicable, e.g., for nonpolar fluids on large

proach to the problem of heterogeneous nucleation on mesavettable solid particle, we find that our analytical expres-

scopic wettable particles. The thermodynamic part is similasions can be reduced to the classical érgs neglecting

to a classical nucleation theory:® The main advance over curvature and compressibility corrections. Even with the ne-

VI. CONCLUSION
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glect, all the unknown quantities appearing in those equabFT.2%2834-3%Fgr smallR, both DFT and molecular simula-
tions become well defined in the hybrid approach. For polations predict a positive sign of the Tolman lengéiR).
fluids, however, the exponential approximation is requiredHowever, the sign ob,, (for R— «) is still controversial due
due to the long correlation length involved. The exponentiako the lack of experimental measurements. One molecular
approximation tdll is also needed for fluids on small solid dynamics simulatioft predicted that the Tolman length is
particles. For the latter, the logarithmic behavior of thenegative, whereas anotfigpredicted that it is positive. Thus
chemical potential due to the adsorption on the particle alséar, all DFT has suggested thai is a small negative quan-
becomes important. For this particle-size range our approactity. The question is to what extent the underlying approxi-
which uses expansion over the small curvature of droplet, isnations in DFT, such as the random-phase approximation
no longer valid. (RPA) or the local density approximatiofi.DA), affect the

Finally, we have obtained several quantities key to thepredicted outcome. Could the negative signéofbe an ar-
study of the kinetics of heterogeneous nucleation. These irtifact of some approximations? In a previous sti/dye ex-
clude the barrier height to nucleatioAW (see Fig. 8and  amined the effects of the RPA and an improved modified
the half-widthA v, aboutv,, andA v, abouty, on theW(v) mean-field approximatiofMMFA) in the framework of
curve. Note that a kinetic theory of heterogeneous nucleatiohDA-DFT. That study showed that the MMFA leads to a
on mesoscopic particles has been developed by otheslight decrease ofés.,| but still predicts a negative sign of
workers?* Inputs to that theory include the data shown in8.,. Here, we examine effects of WDA o#... To our
Figs. 8 and 9 at various nucleation conditions. Moreover, itknowledge, this is the first calculation @&, based on the
requires the equilibrium distributidrof the droplet per unit nonlocal WDA-DFT. Results will be compared with those
volume based on LDA-DFT.

. 5 We calculate 03; and 8. by using the stati;tﬁiggl-
(€ N _ n _ VT Ve mechanics formulas derived by Blokhuis and Bed ,

)= T2 Ve exp—AW) ex;{( Av, ) } which are applicable to systems with pairwise intermolecular

(83 potential. A key input for these formulas is the density profile
|v—ve|<Av, of the planar liquid—vapor interfagg(z). It turns out thas.,
wheren,, is the number of solid particles per unit volume, asis strongly dep.endent on the symmetry .Of the dens?ty profile.
well as the steady-state distribution in the near-threshold re'?Or gxamplg, i one uses the symme_trlc hyperbqllc—tangent
gion density profllg resulting from the gradlent-expan_smn Iﬁ%‘!’,

5,.=03%%€ |t is known that WDA can lead to microscopic
oscillation onp(z) at the liquid side at low temperatures and
high liquid densities(above the so-called Fisk—Widom
line).*%* In other words, the WDA can significantly change
the symmetry of the density profile. It is of interest to see
: (84  how this oscillation behavior ip(z) affects s, .

We notice that the original Bolokhuis—Bedeaux formulas
cannot be directly applied here due to the nonlocal nature of
the WDA. Generalization of these formulas can be made by
replacing the pairwise potentiav,(r,,) with the effective

n,w I : =
j(s):ﬁexp( —AW), (85) pairwise potentialvy(r,) + dpsw(riz,p(rz)), where
e Cc

n, exp—AW) [{( v— VC)Z

(s) —
n = —p X
() T PAv A, Av,

jmd’ Vv
X , v expg — Av,

The steady-state rate of nucleation is given by

- 204 dp)
wherewy is the number of molecules attached to the surface ¢, .=————.
of the droplet(with size R,,) per unit time at the so-called 1=p1=2pp>

free-molecule regim@.Our calculation ofRy,, v, Ve, Ve, , cul h ; i h
and that shown in Figs. 8 and 9 all can be used in these [Ndeed, in order to calculate the surface tension and the

formulas to investigate the kinetics of heterogeneous nucle]:[Olman length, gne gifs to find thz_varlatlon 0‘; the sfgo%ems
ation on mesoscopic solid particles. ree energy under different coordinate transformatioty,
but keep the volume of the system unchanged. As was shown
in our previous work’ the only part of the free energy

ACKNOWLEDGMENTS which contributes to this variation is the nonlocal part, that

The authors are grateful to Professor AlexanderS: according to Eq(15)
Shchekin and Dmitriy Tatianenko for useful discussions and
;?)Tr:r;zgtosh This work is supported by the National Science Fnonloca[P]:J dry p(2) A (P(2))

(A1)

1
APPENDIX A: EVALUATION OF SURFACE TENSION + if f dry drpWy(ri2)p(21)p(22).

AND THE TOLMAN LENGTH USING WDA-DFT (A2)

The surface tension and the Tolman length can be evalu-
ated from either molecular simulatiois®®* or the The variation is given by
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OF honlocal P1= f dr, p(z,)A (qu(z(zz)) 5;(22)

1
+ Ef f dry dry dWp(r12)p(z1)p(2,).

(A3)

Taking into account Eq.16), after some mathematical work
the variation becomes

5Fnon|oca[P]:f drlf dr, p(z1)p(2) A‘/flqs(z(zz))
(9_“’“12 ’F(E))/ﬁr_ﬂ %3 06 o7 05 0.9
1-p1(22) = 2p2(2) p(23) e
1 FIG. 10. Temperature dependence of the scaled surface tem@fm
+ anp(rlz)/arlz ((6rp,—6rqy)e), =g md?/6kgT.
(A4)
whereg, is the unit vector in the direction of,. The varia- so__" fdz f 2 dr fl q IW(r12)
tion becomes the same as &8§) in Ref. 37 by replacing the  “* 4475, 1) T2miizf 15

potentialw,(r,) there with the effective pairwise potential

o ivati dw(r15,p(21+Sr10))
Wy (r12) + dnso(r12,p(r2)). The rest of the derivation of the 12 1 1 a2
surface tension and the Tolman length will then follow that  éns(p(21FSM12) a1, r1A1-3s)
in Ref. 37.
Thus, the generalized formula for the surface tension is < (24 S112p(Z1)p(21FST1p). (A7)
L Wo(r 1) As in the original Blokhuis—Bedeaux formula, a condition
Ug’l:ZJ dzlf f%zdrlzj ds[p—l for applying Eq.(A7) is that the density profile should be
2 -1 iz calculated using the equimolar dividing surface. Otherwise,
— additional terms must be included. Again, using the integra-
dw(rq12,p(21+Sr15)) ) . . . P
+ ¢dns(Z1+Sr10) ri(1—3s?) tion by parts, Eq(A7) can be written in a similar way as Eq.
drip (AB), that is,
X p(z1)p(zy+Sr1). (A5) T 5 1 ap(z3)
. . .. . 5302_ ) f dzlf rlzdrlzf ds Wp(rlz)
This formula differs from the original one by having the 205, -1 0z,
second term in the square bracket, due to the nonlocal func- .
tion Eq.(A1). Using the integration by parts, EGA5) can be +0[¢hs(p(22))w(r12,9(22))9(22)]|
written in a similar form as in Ref. 34, that is 9z, | ST12
22221+SI’12
1 dp(z
(TC;:LZWJ dZ]_J rizdrlzj ds %Wp(rlz) ><(221+Sr12)p(21). (A8)
-1 2

The calculateds,, at various temperatures is shown in Fig.

11, along with that from the LDA-DFT. Interestingly, we find

that the sign ofé,, predicted by using WDA-DFT is still

negative, that is, the nonlocal DFT does not qualitatively

(A6) change the sign of,.. This conclusion is an important by-
product of this work.

N I pndp(22)) (T 12,0(22)) p(22)]|
0z,

‘ZZZZl+SI’12

X Srio0(24).

The generalized formula E@A5) or (A6) allows us to
evaluatess, by using the density profile calculated from the _
WDA-DFT. Results of o3, at various temperatures are APPENDIX B: CALCULATION OF THE CONSTANT

shown in Fig. 10, as well as those;; calculated from the c(Ry)

LDA-DFT using the original formula&’** Generally, the We follow the method introduced in Ref. 5 to derive
WDA gives a loweroy, than the LDA. The difference is

: : _ > ¢(R,) by using a patching conditiordb(»)/dv|r__r
bigger at low temperatures above the Fisk—Widom Ime’zdb(v)/dv| First, we have from Eq(41) that s s2
where the density profile exhibits oscillatory behavior. But, R=Rp’ ’ ‘
the difference is still less than 7%. Previously, we shotfed i db(v) 1 db( R)|
that the difference ino5; by replacing the RPA with the IM = 2 :
MMFA amounts to 200/:1at the low temperatures. Rery 7 4TRup22(1 4 p2nxokeTh(v)) AR ’R: R,

The generalized statistical-mechanics formula for the (B1)
Tolman length is Next, using the patching condition and E&1), we have
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FIG. 11. Temperature dependence of the scaled Tolman lefg#v.. /d.

db(v) - 1 db(R)|
dl's Iy=Tsp p2(1+ poex2KgTh(v)) dR R(Rélz)

Finally, substituting Eq(52) to the left-hand side dfB2) and
Eq. (39) to the right-hand side aB2), and keeping only the

first-order terms of curvature and compressibility gives a lin-

ear equation foc(R,), that is

(Ry) 712 -
C —

" dl'y Iy=Tsp exp(b( V)|R:Rn) =23/ (Ryp1)
__ L | _2om M) Aon(d. 2000
poksT| RZ oz sy Ru R R
R, 9z - X2 X2 9z |z:z0 . (B3)

0

Note that in classical nucleation thedrihe crossover

Heterogeneous nucleation on mesoscopic wettable particles 1867

d*b(v)/dv?|, =-[1/D(R)*][dD(R)/dR]
X[db(R)/dR]|g_+[1/D(R)?]
X [d?b(R)/dR?]|g_
=[1D(R)’[d*b(R)/(dR?)]|g -
With Egs.(29), (39), (60), (61), (64), and(67), we obtain
dzb(v)\ 1 dzb(R)\
dv* |, “ D(R)® dR* |

_RY+Ry
RET?)_ Rn

0
_ J21

- 2 3 0)7
4m2p3, kg TR

, 20 4R9?24+ 3ROR, —2R?
RY (RO+R)(RY-R
m (Ryn' +Rn)(Ry’ —Ry)

20%x, 2RO?2+ 3ROR +R?
Ry RO-R,

m

(C2

The third derivative can be expressed as
[d°b(v)/dv?]],,,

—[3D(R)*I[dD(R)/dR][d*b(R)/dR?]|g _
+[UD(R)*I[d*b(R)/AR%]|R ,

where we also useldb(R)/dR]g_=0. Using Egs.(29),

(39), (60), (61), and(67), we obtain
d3b( y)<°>\ B 1 1
dv® | (47RD%p,.)°% pooksT RO

o0
4(721

13R2+6RO'R,—9R2
(R’ = Ry)?
where we just include the leading orderRif’ without con-

sidering the curvature and compressibility corrections. This
is sufficient to give a reasonable estimation of thparam-

X

: (C3

between the adsorbed and thin-film region was patched byter via Eq.(59), that is,

using the logarithmic(adsorptive and exponentialstruc-

tural) approximations for the chemical potential and disjoin- 1

ing pressure, respectively.

APPENDIX C: CALCULATION OF THE DERIVATIVES
FOR THE CHEMICAL POTENTIAL

To determinedzb(v)/dv2|,,rn we first calculateD(R)
=dv/dR using Eq.(41). ForR>R,,, the derivative is given
by

D(R)=47R%po..| 1+ x2kg Tpos

y 1 RS—Rﬁdb(R))

b(R)*+ 3 —~ 4R

(CD

Since[db(R)]/dR] R,= 0 the second derivative

V213R(024 6ROR, —9R?

2RO +R,
<1.
(R =ROYARY +Ry)

3Ry

1/2

3

(C4

Using the above equation with E¢63), we find that the
validity of the parabolic approximation requires:0.08 for
5d<R,<20d. For largerR,, e should be even smaller.
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