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Heterogeneous nucleation on mesoscopic wettable particles: A hybrid
thermodynamic Õdensity-functional theory

T. V. Bykov and X. C. Zenga)

Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588

~Received 15 February 2002; accepted 23 April 2002!

A hybrid thermodynamic and density-functional theory for heterogeneous nucleation on mesoscopic
wettable particles is developed. The nonlocal density-functional theory~DFT! is on basis of the
weighted-density approximation~WDA! of Tarazona. The model system consists of a
Lennard-Jones~LJ! fluid and a 9–3 LJ wall for the solid particle. Effects of the droplet curvature and
compressibility are accounted for in the theory. A by-product of this work is the calculation of the
Tolman length using the WDA-DFT~Appendix A!. Important characteristics of the heterogeneous
nucleation, including the chemical potential of the liquid condensate, the free energy of droplet
formation, and the barrier height to nucleation, are obtained. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1485733#

I. INTRODUCTION

Heterogeneous nucleation is the most common mecha-
nism in initiating a first-order phase transition. For example,
from a metastable supersaturated vapor to the bulk liquid, the
nucleation process often proceeds with the formation of a
liquid-like film on the surface of foreign particles. Many
kinds of particles can act as heterogeneous-nucleation cen-
ters. These include ions, droplets of acid, solutable or unso-
lutable sols, and dust particles. It is known that thermody-
namic properties of the liquid film formed on the surface of
a particle depend strongly on the nature of the surface force.
A general feature for heterogeneous nucleation is the exis-
tence of a threshold supersaturation beyond which the so-
called barrierless nucleation can take place. In comparison,
the homogeneous nucleation which occurs only in an
impurity-free environment, is much less common in nature.
In fact, the homogeneous nucleation always requires a higher
value of supersaturation than that for heterogeneous nucle-
ation. This was first recognized by Volmer1 in 1939. Since
then, studies of heterogeneous nucleation have received con-
siderable attention. Recent reviews on this subject can be
found in Refs. 2–4.

In this paper we consider the heterogeneous nucleation
on mesoscopic spherical particles. Droplet formation on the
particles can be developed in two ways, depending on the
wettability of the liquid on the surface of the particle. The
first possible way is the formation of a liquid film on the
entire surface of the particle~complete wetting!. The film
then grows into a large liquid droplet with the foreign par-
ticle at the center. The second way is via forming micro-
lenses of liquid on the surface of the particle with a nonzero
contact angle. These separate microlenses then grow in size,
collapse into a thick film which covers the entire surface of
the particle, and then develop into a large liquid droplet. In
this study, we consider only the first possibility. A sufficient
condition for this possibility is that the liquid condensate will
wet the surface of the particle completely as the radius ap-

proaches infinity~or the coefficient of spreading of the con-
densate is positive in the planar limit2!.

As mentioned above, the thermodynamic properties of
the liquid condensate on the mesoscopic particles strongly
depend on the nature of the surface force. In the classical
theory of heterogeneous nucleation,2,4,5 several empirical pa-
rameters were introduced to describe the surface forces.
These parameters are generally taken either from experi-
ments or from other microscopic theories or molecular simu-
lations, for example, the molecular theory of capillarity and
the density-functional theory, or molecular dynamics and
Monte Carlo simulations. Molecular simulations have been
used extensively to explore various wetting phenomena on a
planar solid surface,6–9 and have yielded important results
such as the dependence of wetting temperature and the sur-
face critical temperature on the surface force, as well as the
density profiles of the liquid film near the solid surface.
Density-functional theory~DFT! has also been employed by
many workers to study behavior of a fluid near a solid
surface.10–14 In most studies, the so-called weighted density
approximation ~WDA! developed by Tarazona10,11 is
adopted. The WDA has been shown to be very accurate for
describing highly nonuniform solid–liquid interfacial
systems.8,9,14Both DFT and molecular simulations have their
own advantages and shortcomings. In molecular simulations,
the number of molecules in the simulation cell is finite~typi-
cally, a few thousand!, whereas a typical mesoscopic size of
droplet possesses at least millions of molecules. Although
DFT is free from such size limitation, it requires certain ap-
proximation in the correlation function and free-energy func-
tional, which renders the calculation less accurate. Here, we
use the DFT because we are interested in the formation of
liquid droplets on mesoscopic particles. Moreover, the DFT
has been used in many previous studies of homogeneous
nucleation.15

As discussed above, a planar surface can be considered
as the limiting case for a mesoscopic particle when its diam-
eter approaches infinity. For the planar surface, the complete
wetting may occur when the nucleating vapor is undersatu-a!Electronic mail: xzeng1@unl.edu
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rated. Towards the complete wetting, the disjoining potential
changes monotonically as a function of the thickness of the
liquid film ~see, for example, Fig. 1 in Ref. 14!, while it is
nonmonotonic for the incomplete wetting. Thus far, most
DFT studies on the heterogeneous nucleation focus mainly
upon systems involving partially wettable particles,16,17

namely, the second possible way of heterogeneous nucleation
described above. In that case, the line tension of the three-
phase interface on the solid surface must be considered. The
solid surface can be either planar18 or curved.19,20 DFT with
a local gradient expansion was the basis for all these studies.
It is well known that the local density approximation~LDA !
cannot qualitatively describe the structure of the density pro-
file near the solid surface. Thus, we will use the nonlocal
WDA-DFT.10,11 We will present a hybrid approach by com-
bining the DFT with a classical nucleation theory.2,4 The
latter2,4 yields general relations among thermodynamical and
kinetic properties of the system, while the DFT provides im-
portant properties of the liquid droplet, such as the depen-
dence of the chemical potential of the liquid droplet on the
droplet size. Outcomes of the hybrid theory include the
threshold value of the chemical potential~or the threshold
value of the supersaturation! for barrierless nucleation, the
height of the activation barrier to nucleation, the half-width
of the barrier, as well as the position of the minimum and
maximum on the curve of free energy of droplet formation
versus the droplet size.

This paper is organized as a follows: In Sec. II several
main aspects of the thermodynamics of heterogeneous nucle-
ation are discussed. In Sec. III the DFT with the WDA of
Tarazona is briefly discussed and the application to a wetting
liquid film on the planar solid surface is reviewed. Charac-
teristics of the chemical potential of the liquid condensate are
described and chemical potential of the liquid condensate as
a function of molecular number in the liquid film is given in
Sec. IV. Key properties of heterogeneous nucleation, such as
the free energy of droplet formation and the barrier height to
nucleation, are presented in Sec. V. Final conclusions are
given in Sec. VI. In Appendix A, we present generalized
Blokhuis-Bedeaux formulas for the surface tension and the
Tolman length by accounting for the effect of the nonlocal
WDA.

II. THERMODYNAMICS OF HETEROGENEOUS
NUCLEATION

Several main thermodynamic equations such as the
Laplace equation and Gibbs–Duhem equation form the basis
for the description of any droplet-like object in the classical
nucleation theory.2 In this section we formulate generalized
version of these equations for the description of heteroge-
neous nucleation on mesoscopic wettable particles.

The system considered here is an open system which
consists of a mesoscopic wettable solid particle and a meta-
stable vapor at a fixed temperature and volume. Upon con-
densation, a liquid film with a uniform thickness will form
on the surface of particle~complete wetting!. Assuming the
system has spherical symmetry, the density profile of the
system is given byr(r ), where r is the distance from the
center of the solid particle. Hereafter, we refer the metastable

vapor as phase 1, the liquid film as phase 2, and the solid
particle as phase 3. In describing the thermodynamics of this
nonuniform system, we use the Gibbs method of dividing
surfaces to replacer(r ) by a step-like density profile, similar
to the sharp-kink model introduced by Getta and Dietrich.18

This new density profile consists of the solid particle with
densityr3 , the liquid film with densityr2 which equals the
bulk density of liquid at the current supersaturation, and the
vapor with density ofr1 . The solid particle has a radiusR̃n .
We useR̃n to represent its physical radius andRn for the
radius of the solid–liquid dividing surface.Rn may differ
from R̃n by few molecular diameter, depending on the thick-
ness of the solid–liquid interface. Following Ref. 18, we set
zero density betweenR̃n andRn . The radius of the liquid–
vapor dividing surface is denoted byR. Thus, the thickness
of the liquid film is given byh5R2Rn ~see Fig. 1!. Finally,
L denotes the outmost radius of the entire system.L can be
chosen in such a way that beyondL the physical density of
vapor is nearly uniform~i.e., r1!.

The supersaturation of the vapor is characterized by the
chemical potentialm. At the fixed temperature, the vapor
densityr1 is determined solely bym, and so is the density of
the bulk liquidr2 . For the open system, the grand thermo-
dynamic potential is given by

V52p2

4p

3
~R32Rn

3!2p1

4p

3
~L32R3!

14pRn
2s32~Rn!14pR2s21~R!1Ṽ~h!, ~1!

wherep2 is the normal pressure of the uniform liquid film
~with the densityr2!, p1 is the pressure of the vapor~with
the densityr1!, s32(Rn) is the surface tension of the solid–
liquid interface, which depends on the curvature and the
choice of the dividing surfaceRn , ands21(R) is the surface
tension of the liquid–vapor interface, which also depends on
the curvature and choice of the dividing surfaceR. Both
s32(Rn) ands21(R) are defined such that they are indepen-
dent of the thickness of the liquid film. In reality, this would

FIG. 1. A schematic plot of a liquid droplet forming on a mesoscopic wet-
table solid particle.
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be true only if the film is thick so that the physical density of
the film is nearlyr2 . Equation~1! does not include the ther-
modynamic potential of the solid particle since it stays con-
stant for all changes in the system.

The last term in Eq.~1!, Ṽ(h), is a function of the thick-
ness of liquid filmh. It approaches zero ash goes to infinity.
Assuming the spherical symmetryṼ(h) can be written as the
integral from some volume densityṽ(r )

Ṽ~h!54pE
R

L

r 2ṽ~r !dr54pE
Rn1h

L

r 2ṽ~r !dr, ~2!

where the integration is taken fromR to L, due to the re-
moval of the bulk liquid fromR to L, which creates the liquid
film with a finite thickness. Thus, Eq.~1! can be rewritten as

V1
4p

3
L3p152

4p

3
R3~p22p1!1

4p

3
Rn

3p2

14pRn
2s32~Rn!14pR2s21~R!

14pE
R

L

r 2ṽ~r !dr. ~3!

Taking a partial derivative overR on Eq.~3! under the con-
dition of fixed m and Rn , and noting thatV, p1 , p2 , and
s32(Rn) do not depend onR, we obtain

0524pR2~p22p1!18pRs21~R!14pR2
]s21

]R

14p
]

]R E
R

L

r 2ṽ~r !dr, ~4!

or

p22p15
2s21~R!

R
1

]s21

]R
~R!2ṽ~Rn1h!. ~5!

Equation~5! can be considered as the generalized Laplace
equation in the case of heterogeneous nucleation.

The second important thermodynamic equation is the
generalized Gibbs–Duhem equation, which can be derived
by taking the differential ofV @Eq. ~1!#, under the condition
of fixed temperature and total volume of the system

dV524pp2~R2dR2Rn
2 dRn!2V2 dp214pp1R2 dR

2V1 dp118pRns32dRn14pRn
2 ds32

18pRs21dR14pR2 ds2124pR2ṽ~R!dR, ~6!

whereV1 andV2 are the volume of the vapor and the liquid,
respectively. On the other hand, we have

dV52N dm52~N321N21N211N1!dm, ~7!

whereN is the total number of molecules~excluding that of
the solid particle! in the system, which is the sum of the
molecules in the liquid filmN2 , vaporN1 , and two interfa-
cial regionsN32 and N21. Combining Eq.~6! with Eq. ~7!
and noting thatdRn50 ~for fixed solid–particle size!,
V2 dp25N2 dm ~or dp25r2 dm! and V1 dp15N1 dm ~or
dp15r1 dm!, we obtain

2~p22p1!4pR2dR14pRn
2ds3214pR2ds2118pRs21dR

24pR2ṽ~Rn1h!dh1N32dm1N21dm50. ~8!

Substituting the generalized Laplace equation~5! into Eq.~8!
results in the generalized Gibbs–Duhem equation

24pR2
]s21

]R
dR14pR2 ds2114pRn

2 ds321N32dm

1N21dm50. ~9!

Equation~9! can be further separated into two equations

ds3252G32dm, ~10!

and

ds212
]s21

]R
dR52G21dm, ~11!

by defining two adsorptions,G32 andG21. G325N32/4pRn
2 is

the adsorption of the liquid on the surface of the solid par-
ticle, and G215N21/4pR2 is the adsorption at the liquid–
vapor interface.

The generalized Laplace equation~5! and generalized
Gibbs–Duhem equations~10! and ~11! are key thermody-
namic equations for the study of heterogeneous nucleation.
We note that in our considerations32 ands21 in these equa-
tions depend only on the curvature of the droplet, but not on
the thickness of the liquid film. Onlyṽ(Rn1h) in Eq. ~5!
depends on the thicknessh. The physical significance of the
free-energy densityṽ(Rn1h) can be better illustrated from
the limiting case of the liquid film~with thicknessh! near a
planar solid surface. In this limit the radial variabler can be
replaced byz5r 2R̃n , where thez axis is perpendicular to
the solid surface with the origin at this surface. Thus,ṽ(r )
becomesṽ(z)5 limR̃n→`ṽ(r ). In fact, we will restrict our
attention to that type of particles for which the solid–liquid
interaction potential depends only on the distance from the
particle surface. For these particles, the replacementr by z is
always valid.

Note that in the limiting case of planar liquid–vapor in-
terface s21 is independent of the curvature, namely,
]s21/]RuR→`50. Let z05uR̃n2Rnu. Equations~5!, ~10!,
and ~11! then become

p22p152ṽ~z01h!, ~12!

ds3252G32dm, ~13!

and

ds2152G21dm, ~14!

respectively. Here, the bulk vapor pressurep1 is also the
normal component of pressure tensor at the interface andp2

is the pressure of the bulk uniform liquid at the samem. This
means thatp12p2 is just the Derjaguin’s disjoining pressure
P(h)21 for the planar liquid film; thus,ṽ(z01h)5P(h)
according to Eq.~12!. P(h) can be considered as a sum of
several components:21 some due to the overlapping of the
interfacial layers of the thin liquid film while others due to
the interactions between the solid surface and the liquid film.
Theh dependence ofP is the key characteristic of the liquid
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film needed to develop theory of heterogeneous nucleation
on solid surface. This dependence cannot be given from the
classical nucleation theory.2 DFT, on the other hand, can
yield P(h), and numerical results will be given in the next
section.

III. PROPERTIES OF THE LIQUID FILM NEAR
PLANAR SOLID SURFACE: DFT, MODEL SYSTEM,
AND THICKNESS DEPENDENCE

Let us first briefly summarize several main aspects of the
WDA-DFT.10,11Let w(r1 ,r2)5w(r 12) represent the pairwise
interaction molecular potential for the simple nonpolar mol-
ecules. In this case the free-energy functional of nonuniform
system near planar solid surface~with the random-phase ap-
proximation! is given by12–14

F@r#5E dr f id~r~z!!1E dr r~z!Dchs~ r̄~z!!

1
1

2 E E dr1 dr2 wp~r 12!r~z1!r~z2!, ~15!

wherez is the distance from the solid surface,wp(r 12) is the
small attractive part of interaction potential, andf id(r) is the
free-energy density of the ideal gas.Dchs( r̄) is the excess
free-energy density, and it can be calculated accurately via
the Carnahan–Starling22 formula Dchs(r)5kBTh(4
23h)/(12h)2, wherekB is the Boltzmann constant,T is
the temperature, andh5prd3/6 ~d is the hard-sphere diam-
eter andr is the density!. In Eq. ~15!, Dchs( r̄) is a function
of the weighted densityr̄(z). The latter can be determined
by averaging the true local densityr(z) over certain local
volume. Following Tarazona,10,11 we have

r̄~z1!5E dr2 r~z2!v~r 12,r̄~z1!!, ~16!

where the weighting functionv is chosen in the same way as
in Refs. 10 and 11.

In the grand canonical ensemble, the grand thermody-
namic potential is given by

V@r#5F@r#1E dr1 r~z1!Vext~z1!2mE dr1 r~z1!,

~17!

where Vext(z1) is the external potential~here, due to the
solid surface!. The equilibrium density profile is determined
from the variational principledV@r#/dr50, which gives

r~z1!5expH 2
1

kBT F E dr2 r~z2!Dchs8 ~ r̄~z2!!

3
v~r 12,r̄~z2!!

12 r̄1~z2!22r̄2~z2!r̄~z2!
1Dchs~ r̄~z1!!

1E dr2 wp~r 12!r~z2!1Vext~z1!2mG J , ~18!

wherer̄1 and r̄2 are defined in Refs. 10 and 11. The density
profile r(z) of the liquid film near a solid surface can be

determined by solving the Eq.~18!. To this end, we used an
iteration method suggested by Tarazona.10

The model system is chosen to be the Lennard-Jones
~LJ! fluid near a 9–3 LJ smooth solid surface. In the frame-
work of Weeks–Chandler–Anderson23 perturbation scheme,
we have

wp~r 12!5H 2eLJ , r 12,21/6s,

4eLJ@~s/r 12!
122~s/r 12!

6#, r 12.21/6s,
~19!

whereeLJ ands are the LJ parameters. The diameter of hard
spheres~reference system! is related tos, i.e., d5(a1T
1a4)/(a2T1a3)s, where the constantsa1 , a2 , a3 , anda4

are given in Ref. 24. The solid-surface potential18 is given by

Vext~z!52r3S u3

z3 1
u9

z9 D , ~20!

wherer3512/d3 is the density of the solid surface and co-
efficientsu3 and u9 can be found as a result of summation
for pairwise liquid–wall interactions over lattice structure of
the wall. Following Getta and Dietrich18 we use u3

52.348eLJs
6 andu9525.326eLJs.12 For the numerical cal-

culation,Vext(z) is set to be infinity forz,0.84d. The two
reduced temperatures considered here areT* 5kBT/eLJ

50.7 and 0.9; both are above the wetting temperature of the
system as well as the surface critical temperature.

Using the iteration procedure, we have calculatedr(z)
for several given chemical potentialm. The density profiles
are shown in Fig. 2, which all exhibit the well-known oscil-
latory behavior near the solid surface. Form5m` , the thick-
nessh becomes infinity. Note thatm` can be determined
from the conditionp15p2 . In the DFT, the bulk pressure is
written as

p5ph~r!2 1
2Cr2, ~21!

FIG. 2. The scaled density profileh(z/d)5r(z/d)pd3/6 of LJ fluid films
near an LJ 9–3 smooth planar wall located atz50, for various given chemi-
cal potentialm at T* 5kBT/eLJ50.9. The vertical dotted line represents the
positionz0 /d.
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where ph(r) the pressure of the hard spheres22 and C
52*dr wp(r ). For m,m` , the liquid film has a finite
thicknessh, andp1 andp2 differs by P, that is, the disjoin-
ing pressure.

Given the density profiles of the liquid films, we are
ready to determine the thickness of the liquid film~h!. For a
planar liquid film near the solid surface, Eq.~1! can be writ-
ten as

V̄52p2h2p1~ L̃2h2z0!1s321s211Ṽ~h!/A, ~22!

whereA is the surface area,V̄5V/A, L̃ denotes the outmost
boundary of the system, andz0 is the distance between the
solid–liquid dividing surface and the solid surface. The last
term in Eq.~22! is

Ṽ~h!/A5
4p

A E
Rn1h

L

r 2ṽ~r !dr

5
4p

A E
z01h

L̃
~Rn2z01z!2ṽ~z!dz

5
4pRn

2

A E
z01h

L̃
~11~z2z0!/Rn!2ṽ~z!dz

→E
z01h

L̃
ṽ~z!dzuRn→`5E

h

L̃2z0P~ h̃!dh̃. ~23!

Using p12p25P(h) and Eq.~23!, we rewrite Eq.~22! as

V̄1p1~ L̃2z0!5P~h!h1s321s211E
h

L̃2z0P~ h̃!dh̃.

~24!

Although the left-hand side of Eq.~24! can be determined
from the DFT,s32, s21, and h on the right-hand side are
strongly dependent on the choice of the dividing surface.

For the liquid–vapor interface, we have chosen the
equimolar dividing surface as the dividing surface so that
G2150. Thus, according to Eq.~14!, s21 will have a constant
value regardless ofm, and this value is equal to the surface
tension of the liquid–vapor interfaces21

` 5V̄`1p1`L̃ in the
absence of the solid surface. For the solid–liquid interface,
we have chosen the position of the dividing surface such that
G32 is a constant. However, unlikeG21, G32 cannot be zero
because there is always some liquid or vapor~even whenh
50! adsorbed on the solid surface. To determineG32 andz0 ,
we have used two limiting cases ofh, one forh approaching
infinity and the other forh approaching zero. The first case
occurs whenm5m` ~see Fig. 2!. The number of particles per
unit surface area is given by

E
0

L̃
r~z!dzum5m`

5G321r2`~ L̃2z0!, ~25!

wherer2` is the bulk density of the liquid atm5m` . The
second limiting case occurs whenm5ms , the chemical po-
tential at liquid spinodal. The value ofms can be calculated
from the DFT. Form,ms the bulk liquid phase does not
exist, and thusr2 , p2 , andP(h) are not defined. This means
one has to set the thicknessh50. In this case the number of
particles per unit surface area is given by

E
0

L̃
r~z!dzum5ms

5G321r1um5ms
~ L̃2z0!. ~26!

The left-hand side of both Eqs.~25! and ~26! can be evalu-
ated using the DFT. Thus, the two unknownsG32 andz0 can
be determined by solving the coupled Eqs.~25! and ~26!.
OnceG32 andz0 are known, we can define the thickness of
the film h for a givenm(ms,m,m`), that is,

h5
*0

L̃r~z!dz2G322r1~ L̃2z0!

r22r1
. ~27!

With h defined, we turn to the main objective of this
section, the thickness dependence ofs32 andP. Integrating
Eq. ~13! with G32 fixed, we obtain

s325s32
` 2G32~m2m`!, ~28!

wheres32
` 5V̄1p2`(L̃2z0) is the solid–liquid surface ten-

sion whenh→`.
The dependence ofP on h for a givenm ~betweenms

and m`! is shown in Fig. 3. Indeed,P(h) is an essential
input in the heterogeneous nucleation theory. In the classical

FIG. 3. The scaled disjoining pressureP* 5Ppd3/6kBT of the liquid film.
The vertical dotted line represents the positionz0 /d. ~a! T* 50.7, z0

52.35d, B* 5pB/6kBT516.9, andl 51.6d; ~b! T* 50.9, z053.06d, B*
5pB/6kBT512.5, andl 51.7d.
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heterogeneous nucleation theory,2 two commonly used ap-
proximations toP(h) are the power-law approximation and
the exponential approximation. The former is for relatively
thick liquid films, while the latter is for the thin structural
films.2 In the case of nonpolar LJ fluid, the power-law ap-
proximation toP(h) is given by

P~h!'
B

~z01h!3 , ~29!

where B is the Hamaker constant. However, the classical
nucleation theory does not give this constant. In Ref. 18, a
formula is given to estimateB based on the sharp-kink ap-
proximation to the density profile. According to this formula
and in our notation,B is given by

B5~r2`2r1`!~r3u32r2`t3!, ~30!

where the subscript ` refers to m5m` , and t3

522C/3ps3564A2/27s6eLJ @using Eq.~19!#. To compare
our result ofP(h) to that of the power-law approximation,
we setB as an independent parameter to fit the calculated
P(h). The fitting shows thatB is about 10% larger than that
calculated from Eq.~30!, indicating that Eq.~30! gives quite
a good estimation ofB. We conclude that the power-law
approximation is in good agreement with the DFT result for
relatively thick liquid films, e.g.,z.5d ~see Fig. 3!.

On the other hand, the exponential approximation to
P(h) is given ~in our notation! by

P~h!'Ps exp~2~z2z0!/ l !, ~31!

wherePs5(p12p2)um5ms
is the disjoining pressure at the

zero thickness (z5z0), andl is the correlation length for the
film near the solid particle. Clearly,l cannot be given from
the classical heterogeneous nucleation theory. A fit ofl to the
DFT calculation yieldsl;1.5d. We also findl slightly in-
creases with the temperature. Figure 3 shows that the expo-
nential approximation toP is in good agreement withP
calculated from the DFT forz0,z,5d.

IV. CHEMICAL POTENTIAL OF THE LIQUID
CONDENSATE

Calculation of the barrier height to nucleation requires
the chemical potential of the liquid condensate as a function
of the droplet’s sizeR as well as the number of particles in
the droplet or in the adsorbed film,n. In this section, we will
find theR- andn-dependence based on the DFT model.

A. Chemical potential of liquid condensate
and R dependence

We start from Eqs.~5! and ~11!. The surface tension
s21(R) appears in both equations. Since we consider only
the condensation on mesoscopic solid particles,R is large
enough to warrant the use of the Tolman formula25

s215s21
` S 12

2d`

R D , ~32!

wheres21
` is the surface tension of the planar liquid–vapor

interface in the absence of the solid particle, andd` is the the
Tolman length whenR→`. Previous DFT26–28 has shown

that ~i! s21(R) is not a monotonic function ofR, ~ii ! s21

approaches zero asR→0, ~iii ! Eq. ~32! is applicable only
when R is at least greater than 5d, and ~iv! d` is a small
negative constant. For the mesoscopic solid particle consid-
ered here, the conditionR.5d is well satisfied.

Taking the dividing surface to be the equimolar dividing
surface so thatG2150, and substituting Eq.~32! into Eq.~11!
gives

]s21

]R
5

ds21

dR
5

d

dR
s21

` S 12
2d`

R D5
2s21

` d`

R2 . ~33!

Substituting Eq.~33! into the Laplace equation~5! gives

p22p15
2s21

`

R S 12
d`

R D2P~h!. ~34!

It is well known that the compressibility correction is in the
same order as the curvature correction. Therefore, we should
also take into account the compressibility corrections which
were not included in the classical consideration.2

In Eq. ~34!, the pressure differencep22p1 can be cal-
culated via the compressibility route. We start from the den-
sity of the liquid, which can be given approximately by

r25r2`1r2`
2 x2Dm, ~35!

wherer2` is the density of the uniform liquid atm5m` , x2

is the compressibility of the liquid, andDm5m2m` . We
can show from the DFT that Eq.~35! provides an accurate
estimation forr2 except whenm is very close toms where
the dependencer2 on m becomes nonlinear. Integrating Eq.
~35! over m yields the pressure of the liquid

p25p2`1r2`Dm1 1
2r2`

2 x2Dm2, ~36!

wherep2` is the pressure of the liquid atm5m` , andp2`

5p1` . Thus, the second formula forp22p1 is

p22p15p1`2p11r2`Dm1 1
2r2`

2 x2Dm2. ~37!

In Eq. ~37!, the termp1`2p1 can be neglected compared to
the next two terms asr1!r2 . The latter condition is satis-
fied for the LJ system at the reduced temperatures 0.7 and
0.9 since both are far below the critical temperature.

Combining Eq.~37! with Eq. ~34! and neglectingp1`

2p1 results in a quadratic equation~38! for Dm

1

2
r2`

2 x2Dm21r2`Dm2
2s21

`

R S 12
d`

R D1P~h!50.

~38!

Since d` /R, s21
` x2 /R, and Px2 in Eq. ~38! are all small

parameters due to the mesoscopic size of the dropletR as
well as the small value of compressibility of the liquid, the
solution of the quadratic equation ofDm can be expressed in
terms of these small parameters to the first order, that is

Dm5
1

r2`
F2s21

`

R S 12
d`1s21

` x2

R
1Px2D 2P2

x2

2
P2G .

~39!

Equation~39! is an important result of this paper. It gives the
chemical potential of liquid condensate as a function of the
droplet sizeR, which will be used later to calculate the bar-
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rier to nucleation. It can be reduced to the classical equation
by removing curvature and compressibility corrections.
Comparing the DFT results ofDm(h) in the planar limit with
those by using Eq.~39! ~analytical planar expression based
on the disjoining pressure and compressibility corrections!
indicates that Eq.~39! provides quite a good estimation of
the chemical potential as function of the film thickness. In-
deed, at low temperatures the difference is negligible except
for h,1.5d, for which the difference is still less than a few
percent.

Note that several quantities in Eq.~39! can be obtained
directly from experiments. These include the disjoining pres-
sureP(h),21 the liquid compressibilityx2 , the liquid density
r2` , and the planar surface tensions21

` . Only the Tolman
length d` has not yet been measured because it is on the
order of molecular length scale. Of course, all these quanti-
ties can also be calculated from the DFT. Appendix A de-
scribes how the surface tension and the Tolman length can be
determined based on the WDA-DFT. On the other hand the
classical nucleation theory can only provide some estimation
for the chemical potentialDm; neitherP(h) nor s21

` andd`

can be determined in the framework of this theory.
Once thes21

` and d` are determined from the WDA-

DFT, the chemical potential of the liquid condensate as a
function of droplet radiusR can be evaluated from Eq.~39!.
Results are shown in Fig. 4 forR̃n.5d. We find that theR
dependence is not monotonic but has a maximum at a scaled
chemical potentialbm at R5Rm ~hereafter, we use the di-
mensionless chemical potentialb[Dm/kBT!. Similar R de-
pendence was found from the classical heterogeneous nucle-
ation theory,2,4 although empirical parameters were used.

Let b1 be the dimensionless chemical potential of the
metastable vapor. If 0,b1,bm , the equationb(R)5b1

has two solutions. One solution isR5Re , for which
db(R)/dR.0. It corresponds to a stable droplet of the liquid
condensate forming on the solid particle, and this droplet is
in chemical equilibrium with the surrounding supersaturated
vapor. Another solution is atR5Rc , for which db(R)/dR
,0. It corresponds to the critical droplet of the liquid con-
densate with the solid particle at the center, and this droplet
is in unstable equilibrium with the surrounding supersatu-
rated vapor. The equilibrium droplet cannot grow in size. To
grow, the droplet size should be larger thanRc to overcome
the barrier to nucleation. Finally, ifb1.bm the equation
b(R)5b1 does not have any solutions and the heterogeneous
nucleation becomes barrierless.

We close this subsection by noting that at the maximum
value ofb the corresponding droplet sizeRm is always in the
region of thick films~see Fig. 4! for all solid particle sizesR̃n

considered. Therefore, atRm , the disjoining pressureP(Rm)
can be well described by the power-law approximation
@Eq. ~29!#.

B. The number of molecules n in the liquid
condensate and adsorbed film

Calculation of the barrier to droplet formation requires
not only theR dependence of the chemical potential, but also
the chemical potential as a function of the number of mol-
eculesn in the liquid condensate or the adsorbed film as
well.2,4 In general, this number is given by

n5
4p

3
~R32Rn

3!r214pRn
2G3214pR2G21, ~40!

where r2 can be determined from Eq.~35!. Note that we
have chosen the liquid–vapor dividing surface such that
G2150. We have also chosen the solid–liquid dividing sur-
face such thatG32 is a constant forR.Rn . This constant can
be found from Eqs.~25! and~26!. For mesoscopic solid par-
ticles, we assume the adsorptionG32 is the same as that in the
planar case. However, forR5Rn , we know thath50 and
G325G31 at m5ms . If m,ms , the adsorptionG32 is not well
defined andG31 cannot be considered as a constant. In fact,
wheneverm,ms and the film has a zero thickness (h50),
which means that the liquid condensate no longer exists ex-
cept for an adsorbed film on the surface of the solid particle.
Combining Eqs.~35!, ~39!, and~40! and taking into account
both liquid condensate and adsorbed film and keeping only
first-order terms, we obtain

FIG. 4. Dependence of the scaled chemical potentialb(R)5Dm/kBT of the
liquid condensate on the scaled radius of the dropletR/d for various given
radiusR̃n of the solid particle; curve 1:R̃n55d, curve 2:R̃n510d, curve 3:
R̃n515d, and curve 4:R̃n520d. ~a! T* 50.7; ~b! T* 50.9.
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n~R!5
4p

3
~R32Rn

3!r2`S 11r2`x2S 2s21
`

R
2P~h! D D

14pRn
2G32, R.Rn

~41!
n~G31!54pRn

2G31, R5Rn .

Consequently, form,ms , n no longer depends onR but only
on G31, which changes from zero to a finite value when
h50.

C. Dependence of n on the gas adsorption G31

For the planar solid surface (Rn→`), the gas adsorption
G31 can be calculated for givenm,ms from the equation

G31~m!5E
0

L̃
r~z!dz2r1~ L̃2z0!, ~42!

wherez0 is the position of the dividing surface. Meanwhile,
the pressure of an undersaturated vapor,p1 , can be calcu-
lated from Eq.~21!, or approximately from the ideal-gas law
becauser1 is very small. Combining Eq.~21! with Eq. ~42!
for m gives the gas-adsorption isothermp15g(G31), whereg
is some function ofG31. Figure 5 showsG31 versusr1 ~for
the ideal gasr1 and the scaled pressurep1 /kBT are the
same!, which showsG31 is a stepwise monotonic function.
This type of isotherm has been classified by earlier workers
as one of the several typical isotherms29 for the gas adsorp-
tion on the solid surface. The stepwise nature of this iso-
therm stems from the oscillatory behavior of the density pro-
file of the adsorbed film. Note that in the classical theory the
linear or Henry’s law isotherm was used,5 that is,

G315KGr1 , ~43!

whereKG is the Henry’s law constant.
In the case ofR5Rn andm,ms , the grand potential of

the system is given by

V52p1

4p

3
~L32Rn

3!14pRn
2s31, ~44!

wheres31(Rn)5s31(R̃n ,z0) is the surface tension of solid–
vapor interface, which depends on both the curvature of the
particleR̃n and the position of the dividing surfacez0 . Since
V itself is independent on the choice ofz0 , taking derivative
over z0 on Eq.~44! gives

p152
2s31

Rn
2

]s31

]z0
. ~45!

Equation~45! is analog to the Laplace equation for liquid–
vapor surfaces. We assume the two variables ofs31(R̃n ,z0)
are separable, i.e.,s31(R̃n ,z0)5s31

` (z0)c(R̃n), which be-
comes exact asR̃n→` where the functionc(R̃n) approaches
1. Thus, for the planar solid surface (Rn→`), Eq. ~45! be-
comes

p152
]s31

`

]z0
, ~46!

or

g~G31!52
]s31

`

]z0
, ~47!

sincep15g(G31). Combining Eq.~47! with Eq. ~45! gives

p152
2s31

Rn
1c~R̃n!g~G31!. ~48!

Moreover, because the vapor is in equilibrium with the ad-
sorbed film, we havep15p1` exp(b(n)), assuming the vapor
is an ideal gas. Here,b(n) is the scaled chemical potential of
the adsorbed film. Combining the equilibrium equation with
Eq. ~48!, we obtain

b~n!5 lnS 2
2s31

Rnp1`
1

c~R̃n!g~G31!

p1`
D . ~49!

In Eq. ~49!, two unknowns remain to be determined:~1!
s31 and~2! c(R̃n). First, combining Eqs.~44! and~45! with
the thermodynamic relationdV52N dm52(N11N31)dm
anddp15r1 dm results in

ds315
]s31

]z0
dRn2G31dm. ~50!

FIG. 5. Adsorption isotherms for the LJ fluid near the planar solid surface.
The scaled adsorptionG31* 5G31pd2/6 vs scaled vapor densityh1

5r1pd3/6. The horizontal line shows the value ofG32* . ~a! T* 50.7; ~b!
T* 50.9.
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Because the size of the solid particle and the position of the
dividing surface is fixed, Eq.~50! is reduced to

ds3152G31kBT db~n!. ~51!

Using Eqs.~49! and ~51!, we eliminate the first unknown,
s31, and obtain a differential equation forb(n)

db~n!

dG31
5

c~R̃n!

p1`

dg~G31!

dG31

1

exp~b~n!!22G31/Rnr1`
,

~52!

where n54pRn
2G31 @see Eq. ~41!#. Next, we determine

c(R̃n). To this end, we follow the method introduced in Ref.
5 by using the so-called patching condition
db(n)/dnuG315G32

5db(n)/dnuR5Rn
. The derivation of

c(R̃n) is given in Appendix B.
Note that if the Henry’s law isotherm is substituted for

g(G31) ~which was used in the classical nucleation theory!
Eq. ~52! will have a simple analytic solution,b(n)
5 ln(a(R̃n)G31), where the constanta(R̃n) can be determined
with the same patching condition~see Appendix B!. In real-
ity, however,g(G31) is not exactly a linear function but can
be viewed approximately as some weak oscillations about a
straight line ~see Fig. 5!. With this picture in mind, it is
reasonable to express the solution of Eq.~52! as

b~n!5 ln~a~R̃n!G31!1k~G31!, ~53!

wherek(G31) represents a perturbation function which gives
rise to the oscillations about the straight line. Let
k(G31)uG315G32

50; the constanta(R̃n) can then be deter-
mined from patching condition, that is,b(n)uR5Rn

5 ln(a(R̃n)G32). Taking the assumed perturbative solution
~53! into the differential equation~52! leads to a differential
equation fork(G31)

dk~G31!

dG31
5

1

G31
Fc~R̃n!

p1`

dg~G31!

dG31

3
1

a~R̃n!exp~k~G31!!22/~Rnr1`!
21G . ~54!

This equation is easier to solve than Eq.~52! as the latter
contains a near-divergent term ln(a(R̃n)G31). Numerical solu-
tion of Eq. ~54! is obtained as well as that of (b(n)) of
Eq. ~53!.

With both Eq.~39! for n>4pRn
2G32 and Eq.~53! for n

54pRn
2G31<4pRn

2G32, we obtain the chemical potential
b(n) over the entire range ofn. Figure 6 shows a plot ofb
versusn for given Rn and temperatures, wheren50 corre-
sponds to the bare solid particle. For adsorbed films, weak
oscillations appear on theb(n) curves @see Figs. 6~a! and
6~c!#, due to the stepwise structure of the adsorption iso-
therm. For thicker liquid films, these oscillations do not ap-
pear.

D. Chemical potential for barrierless and near-
threshold nucleation

As mentioned above, a key feature in theb(R) or b(n)
curves@Figs. 6~b! and 6~d!#, is the existence of a maximum

bm at Rm or nm . For the purpose of discussing heteroge-
neous nucleation, let us define the threshold valuebth5bm of
chemical potential of the vapor. In the overthreshold region
b1.bth , the heterogeneous nucleation process becomes bar-
rierless. In the underthreshold region 0,b1,bth , the barrier
height to nucleation depends on the value ofb1 . In practice,
however, the near-threshold region in whichb1 is close to
bth has received more attention2 because in this region the
rate of nucleation can be conveniently measured.

A description of the near-threshold region has been
given in Refs. 2 and 4. Following Ref. 2, we will use ane
parameter~0,e,1! to characterizes how farb1 is from bth ,
that is,

b15bth~12e!. ~55!

The barrierless nucleation occurs whene50 while the near-
threshold nucleation is denoted bye!1. In this region the
chemical potential of the liquid condensate can be expanded
up to the second order~the parabolic approximation2,4! about
nm

b~n!5bth2
1

2 Ud2b~n!

dn2 U
nm

~n2nm!2, ~56!

where the first-order term vanishes becausedb(n)/dnunm

50. Validity of the parabolic approximation can be exam-
ined from the condition

1

3 U~n2nm!d3b~n!/dn3unm

d2b~n!/dn2unm

U!1, ~57!

that is, when the third-order term is much smaller than the
second one. With the parabolic approximation, the number of
molecules for a givene in the equilibrium and critical droplet
are given by

ne5nm2~2ebth /ud2b~n!/dn2unm
!1/2,

~58!
nc5nm1~2ebth /ud2b~n!/dn2unm

!1/2,

respectively, and with which the condition Eq.~57! becomes

1

3
~2ebth!1/2U d3b~n!/dn3unm

~d2b~n!/dn2!3/2unm

U!1. ~59!

Equations~55!–~59! form the basis for the description of the
near-threshold region in the classical theory of heteroge-
neous nucleation.

Let us first determinenm or Rm from db(n)/dnunm
50 or

from db(R)/dRuRm
50 with using Eq.~39!. Note again that

Eq. ~39! involves a zero-order term as well as first-order
terms of compressibility and curvature. To separate their con-
tribution to Rm , we write

Rm5Rm
~0!~11z!, ~60!

whereRm
(0) denotes the solution of the equation with only the

zero-order term, that is,

d

dR S 2s21
`

R
2P D 52

2s21
`

Rm
2 2

]P

]z U
R5R

m
~0!

50. ~61!
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z is a small correction toRm
(0) by including the first-order

terms in Eq.~39!. Substituting Eq.~60! with the solutionRm
(0)

from Eq. ~61! into db(R)/dRuRm
50 gives

z52
4s21

` d`

Rm
~0!4~4s21

` /Rm
~0!32]2P/]z2uR

m
~0!!

. ~62!

Next, sinceRm is in the region of thick films~Sec. IV A!,
the power-law approximation@Eq. ~29!# can be used to
evaluateP in Eq. ~61!. As a result, the positive solution of
the quadratic equation~61! is

Rm
~0!5R̃n1

1

2
A 3B

2s21
` 1AR̃nA 3B

2s21
` 1

3B

8s21
` . ~63!

Substituting this zero-order solution into Eq.~62! gives the
first-order correction

z5
d`

Rm
~0!

Rm
~0!2R̃n

Rm
~0!1R̃n

. ~64!

Finally, substituting Eqs.~60! and ~64! into Eq. ~41! gives

nm54pRn
2G321

4p

3
r2`~Rm

~0!32Rn
313zRm

~0!3!

3S 11x2S 2s21
`

Rm
~0! 2PuR5R

m
~0!D D

54pRn
2G321

4p

3
r2`~Rm

~0!32Rn
3!

3S 11
3~Rm

~0!2R̃n!Rm
~0!2

~Rm
~0!1R̃n!~Rm

~0!32Rn
3!

d`

1x2

2s21
`

Rm
~0!

2Rm
~0!1R̃n

3Rm
~0! D . ~65!

Using Rm
(0) @Eq. ~63!# and Eq.~29!, we obtain the threshold

chemical potential

FIG. 6. Dependence of the scaled chemical potentialb(n) of the liquid condensate on the number of particlesn in the condensate; curve 1:R̃n55d, curve
2: R̃n510d, curve 3:R̃n515d, and curve 4:R̃n520d. ~a! and~b!: T* 50.7; ~c! and~d!: T* 50.9. Curve 5 in~a! and~c! represents the classical approximation
b(n)5 ln(a(R̃n)G31). The thinner curves in~b! and ~d! represent the parabolic approximation.
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bth5
1

r2`kBT

2s21
`

Rm
~0!

2Rm
~0!1R̃n

3Rm
~0! S 12

3d`

2Rm
~0!1R̃n

2
3s21

` x2

2Rm
~0!1R̃n

4Rm
~0!214Rm

~0!R̃n1R̃n
2

9Rm
~0!2 D . ~66!

Having derivednm , the validity condition of the para-
bolic approximation@Eq. ~56!# can be examined by calculat-
ing the second and third derivative ofb(n) at nm . Detailed
expressions are given in Appendix C. Moreover, given Eqs.
~66! and~C2!, we can calculate the size of equilibrium clus-
ter ne and critical clusternc using Eq.~58!. In Fig. 6, the
parabolic approximation ofb(n) @Eq. ~56!# is also shown for
the givenR̃n and temperatures. One can see that the approxi-
mation is quite good, particularly nearn5nm , which is the
near-threshold region in which we are interested.

V. FREE ENERGY OF DROPLET FORMATION
AND THE BARRIER HEIGHT

The free energy of droplet formation and barrier height
are key characteristics that control the rate of nucleation. In
the last section we have derived the chemical potential as a
function of the number of moleculesb(n). This relation will
be used to calculate the free energy of droplet formation.

A. Free energy of droplet formation W„n…

On the basis of nucleation thermodynamics,30 we know
that if a liquid droplet is in mechanical and thermal equilib-
rium with the surrounding vapor, we have

]W/]n5b~n!2b1 , ~67!

whereW is the free energy of droplet formation in unit of
kBT. Integrating Eq. ~67! using the boundary condition
W(0)50 ~the formation free energy is zero for a bare solid
particle! gives

W~n!5E
0

n

dñ~b~ ñ !2b1!. ~68!

Note that our definition ofn differs slightly from that in Ref.
2 by a valuenn . The latter is the number of molecules of the
liquid condensate required to fill the volume of solid particle.
Because we consider liquid compressibility,nn cannot be
treated as a constant. Substitutingdñ @from Eq. ~41!# into
Eq. ~68! gives

W~n!54pRn
2E

0

G32
b~n!dG3114pE

Rn

R

dRr2`b~R!

3F11x2kBTr2`S b~R!1
1

3

R32Rn
3

R2

db~R!

dR D G
2b1n, ~69!

where b(R) is given by Eq.~39! and b(n) by Eq. ~53!.
Again, keeping only the first-order terms of curvature and
compressibility, we have

W~n!54pRn
2E

0

G32
b~n!dG311

4p

kBT E
Rn

R

dR

3FR2S 2s21
`

R S 12
d`21/3s21

` x2

R
2

2

3
Px2D 2P

1
x2

2
P2D 1

~R32Rn
3!x2

3 S P
dP

dR
2

2s21
`

R

dP

dRD
1

Rn
3x22s21

`

3R2 S 2s21
`

R
2P D G2b1n. ~70!

The two integrals involvingdP/dR can be further evaluated
using the integration by parts, that is,

4px2E
Rn

R

R2
R

3
P

dP

dR

5
4p

3
x2S R3

2
P2uRn

R 2
3

2 ERn

R

R2P2 dRD ,

~71!

24px2E
Rn

R

R2
2

3
s21

`
dP

dR

524ps21
` x2

2

3
R2PuRn

R 14ps21
` x2

2

3 E
Rn

R

2RP dR.

With Eq. ~71!, Eq. ~70! becomes

W~n!54pRn
2E

0

G32
b~n!dG311

4pR2s21
`

kBT S 12
2d`

R D U
Rn

R

1
4p

3
~R32Rn

3!
x2

2kBT S 2s21
`

R
2Puh5R2Rn

D 2

2
4p

kBT E
Rn

R

R2P dR2b1n. ~72!

This expression ofW(n) can be reduced to the classical one2

if the first-order curvature and compressibility corrections
are removed and if the adsorption term is included inP.
Finally, we obtain the following expression for the free en-
ergy of droplet formation on the solid particle in the case of
n.4pRn

2G32:

W~n!54pRn
2FG32~ ln~a~R̃n!G32!21!

1E
0

G32
k~G31!dG31G1

4pR2s21
`

kBT S 12
2d`

R D U
Rn

R

1
4p

3
~R32Rn

3!
x2

2kBT S 2s21
`

R
2Puh5R2Rn

D 2

2
4p

kBT E
Rn

R

R2P dR2b1n. ~73!

For n,4pRn
2G32, we have
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W~n!54pRn
2FG31~ ln~a~R̃n!G31!21!

1E
0

G31
k~G̃31!dG̃31G2b1n. ~74!

For the limiting case ofRn50 andP50, Eq. ~73! will be
reduced to

Whomog~n!5
4pR2s21

`

kBT S 12
2d`

R D
1

4p

3
R3

x2

2kBT S 2s21
`

R D 2

2b1n, ~75!

which indeed is the free energy of droplet formation for ho-
mogeneous nucleation. Therefore, the differenceW(n)
2Whomog(n) can be identified as the work of wetting, which
is entirely due to the presence of the solid particle.

To calculate the integrals in Eq.~73! we used numerical
results forP(h) up to a certain value ofR, and beyond that
R we used the power-law approximation@Eq. ~29!#. Results
of W(n) for given b1 and Rn are shown in Fig. 7. All the
W(n) curves exhibit the ‘‘loop’’ behavior which is typical for

heterogeneous nucleation. Similar behavior has been pre-
dicted from the classical theory, but only qualitatively be-
cause the theory utilizes numerous empirical parameters. The
minimum on these curves corresponds to the equilibrium
sizene , at which the solid particle is covered by a liquid film
with a finite thickness and in stable equilibrium with the
surrounding supersaturated vapor. The valueWe5W(ne) is
negative, which means the formation of the equilibrium liq-
uid film is spontaneous but it cannot grow further into a
liquid droplet. The maximum atnc on theW(n) curves cor-
responds to the peak of the barrier.

B. The barrier height to nucleation DW

The height of the barrier is defined asDW[W(nc)
2W(ne). Typically, DW is no greater than several tens of
kBT for which the nucleation rate is measurable. Ifn.nc the
size of the droplet is large enough to overcome the barrier to
nucleation. Asb1→bth from below, bothne andnc approach
to nm . As we know,nm depends onRn but not on the super-
saturation characterized byb1 . This means that whenever
b15bth , DW(nm)50, that is, the nucleation becomes barri-
erless.

FIG. 7. Dependence of the scaled free energy of droplet formationW(n) on the number of moleculesn for various given chemical potentials~or supersatu-
rations!. ~a! and~c!: R̃n55d; ~b! and~d!: R̃n515d. ~a! and~b!: T* 50.7; ~c! and~d!: T* 50.9. The thicker curves represent the region where the power-law
approximation is applicable.
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As discussed in Sec. IV, we are particularly interested in
the near-threshold region, where the nucleation barrier is less
than a few tens ofkBT ~see Fig. 7!. It has been shown in Ref.
2 that in the near-threshold region the parabolic approxima-
tion @Eq. ~56!# to b(n) is valid, and thus Eq.~68! becomes

DW5E
ne

nc
dn~b~n!2b!

5
4

3
e3/2bth

3/2F 2

ud2b~n!/dn2unm
G1/2

. ~76!

Moreover, in the region nearne andnc one has

W5We1F ~n2ne!

Dne
G2

, W5Wc2F ~n2nc!

Dnc
G2

, ~77!

whereDne andDnc are the half width of the minimum and
maximum on theW(n) curve, respectively, and are given by

Dne5Dnc5S 2

ebthd2b~n!/dn2unm
D 1/4

. ~78!

Usingbth @Eq. ~66!# andud2b(n)/dn2unm
@Eq. ~C2!# obtained

in this work and substituting them into Eq.~76!, keeping
only first-order terms of curvature and compressibility, gives

DW5
8

3

e3/2

kBT
4pRm

~0!2s21
` S 2Rm

~0!1R̃n

3Rm
~0! D 3/2S Rm

~0!2R̃n

Rm
~0!1R̃n

D 1/2

3S 11
d`

2Rm
~0!

7Rm
~0!312Rm

~0!2R̃n211Rm
~0!R̃n

224R̃n
3

~Rm
~0!1R̃n!2~2Rm

~0!1R̃n!

1
s21

` x2

2Rm
~0!2

4Rm
~0!214Rm

~0!R̃n1R̃n
2

2Rm
~0!1R̃n

D . ~79!

In Fig. 8 we plotDW as a function of parametere for
given R̃n . Two sets of curves can be seen in Fig. 8. The first
is obtained by usingDW5W(nc)2W(ne) with the numeri-
cal results shown in Fig. 7. The second is obtained by using
Eq. ~79! with e!0.08~in the near-threshold region!. The fact
that both sets of curves show very good agreement indicates
Eq. ~79! indeed gives quite accurate prediction on the barrier
height in the near-threshold region. Furthermore, if the cur-
vature and compressibility corrections are neglected@in Eq.
~79!# and if Eq.~79! is expanded over the small thickness of
the film,Rm

(0)2R̃n , the classical formula~7.16! in Ref. 2 will
be reproduced. This result shows that our approach can re-
cover not only results of the classical theory, but also evalu-
ate the extent to which those approximations underlying the
classical theory are applicable.

The half-widthDne and Dnc can be calculated for our
model via combining Eqs.~66! and ~C2! with Eq. ~78!,
which gives

Dne5Dnc5
r2`Rm

~0!2

e1/4 S 2pkBT

s21
` D 1/2S 3Rm

~0!

2Rm
~0!1R̃n

Rm
~0!1R̃n

Rm
~0!2R̃n

D 1/4

3S 11
d`

Rm
~0!

19Rm
~0!3126Rm

~0!2R̃n1Rm
~0!R̃n

224R̃n
3

4~2Rm
~0!1R̃n!~Rm

~0!1R̃n!2

1
s21

` x2

4Rm
~0!2

28Rm
~0!3156Rm

~0!2R̃n135Rm
~0!R̃n

217R̃n
3

3~2Rm
~0!1R̃n!~Rm

~0!1R̃n!
D .

~80!

Figure 9 shows the calculatedDne andDnc as a function of
e parameter for givenR̃n and temperatures. The magnitude
of Dne andDnc is important to the kinetics of heterogeneous
nucleation. On one hand, we notice from Fig. 9 that

Dne@1, Dnc@1, ~81!

for given e in the near-threshold region. This condition has
been invoked in the classical theory because it allows the
number of particles to be used as a continuous variable.

FIG. 8. Dependence of the scaled barrier heightDW on thee parameter;
curve 1: R̃n55d, curve 2:R̃n510d, curve 3:R̃n515d, and curve 4:R̃n

520d. ~a! T* 50.7; ~b! T* 50.9. The thicker curves result from Eq.~79!,
whereas the thinner curves result from numerical integration of the chemical
potential shown in Fig. 6.
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On the other hand, the lower limit ofe parameter in the
near-threshold region is controlled by the validity condition
of the parabolic approximation tob,2,4 that is, according to
the classical theory

Dne

3~nm2ne!
5

Dnc

3~nc2nm!
!1. ~82!

This condition2 requires the height of the barrier to be higher
than 2/3), ande in this model is larger than 0.005 for given
R̃n and temperatures. For lower temperatures and largerR̃n ,
this condition becomes weaker. Thus, the near-threshold re-
gion is described by values of thee parameter ranging from
0.005 to about 0.06–0.08, which also describes the range of
the supersaturation of the vapor. In this region one can use
Eq. ~79! to evaluate the barrier height, which ranges from
about 3kBT to a few tens ofkBT. For other values ofe only
numerical results presented in Fig. 8 are accurate.

VI. CONCLUSION

We have developed a hybrid thermodynamic/DFT ap-
proach to the problem of heterogeneous nucleation on meso-
scopic wettable particles. The thermodynamic part is similar
to a classical nucleation theory.2,4,5 The main advance over

the classical approach is that the hybrid approach takes into
account the first-order curvature and compressibility correc-
tions. Such corrections cannot be given in the classical
theory because parameters such as the compressibility and
the Tolman length cannot be known without employing cer-
tain models for the microscopic structure of the liquid. The
use of DFT allows us to find these important characteristics
of the fluid, which are neglected or treated with empirical
parameters in the classical theory.

Our results~Fig. 2! show that the disjoining pressure
P(h) of the LJ liquid film near the solid surface is a mono-
tonic function of the film’s thicknessh. We have confirmed
several approximations toP(h) used in the classical nucle-
ation theory.2 These include the power-law approximation
for thick films and the exponential approximation for thin
films. Several key constants involved in these approxima-
tions, such as the Hamaker constant and the correlation
length in the exponential approximation, have been evalu-
ated directly from the DFT. In the classical theory, however,
those constants were not known. That theory could only es-
timate them based on either experiments or other micro-
scopic theories.

In this study we consider heterogeneous nucleation on
mesoscopic wettable particles. Because of the mesoscopic
size, only the first-order corrections due to the curvature~the
Tolman length! and compressibility have been taken into ac-
count. Again, these corrections can be obtained in the frame-
work of DFT but not from the classical approach. The clas-
sical approach becomes more valid when the solid particle is
beyond mesoscopic, for which those first-order corrections
can be neglected entirely.

We have investigated the temperature dependencies of
the surface tension and the Tolman length of the liquid–
vapor interface by using a nonlocal WDA-DFT. To our
knowledge, this is the first study of the Tolman length using
WDA-DFT. We find the WDA gives qualitatively similar re-
sults of surface tension and the Tolman length as LDA. In
particular, the WDA-DFT predicts a negative sign ofd` , as
does the LDA-DFT. This result is useful not only for this
study, but also for other problems involving surfaces of large
droplets.

Another main result of this work is the dependence of
the chemical potential of liquid condensate on the size of the
dropletb(R) or the number of moleculesb(n). We find that
the chemical potential is a nonmonotonic function ofR or n.
A maximum appears on theb(R) or b(n) curve, which gives
rise to a threshold value of the chemical potentialbth at Rm

or nm . When the chemical potential of the vaporb1.bth ,
the nucleation process becomes barrierless. We also find that
for large solid particles,Rm is always in the region of thick
films for which the power-law approximation toP is appli-
cable. This fact was not obvious in the classical theory be-
cause of the lack of exact calculation ofRm . The power-law
approximation has been used to obtain analytical expressions
for some nucleation characteristics. Wherever the power-law
approximation is applicable, e.g., for nonpolar fluids on large
wettable solid particle, we find that our analytical expres-
sions can be reduced to the classical ones2 by neglecting
curvature and compressibility corrections. Even with the ne-

FIG. 9. Dependence of the half-widthDne and Dnc on the e parameter;
curve 1: R̃n55d, curve 2:R̃n510d, curve 3:R̃n515d, and curve 4:R̃n

520d. ~a! T* 50.7; ~b! T* 50.9.
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glect, all the unknown quantities appearing in those equa-
tions become well defined in the hybrid approach. For polar
fluids, however, the exponential approximation is required
due to the long correlation length involved. The exponential
approximation toP is also needed for fluids on small solid
particles. For the latter, the logarithmic behavior of the
chemical potential due to the adsorption on the particle also
becomes important. For this particle-size range our approach,
which uses expansion over the small curvature of droplet, is
no longer valid.

Finally, we have obtained several quantities key to the
study of the kinetics of heterogeneous nucleation. These in-
clude the barrier height to nucleation,DW ~see Fig. 8! and
the half-widthDne aboutne , andDnc aboutnc on theW(n)
curve. Note that a kinetic theory of heterogeneous nucleation
on mesoscopic particles has been developed by other
workers.2,4 Inputs to that theory include the data shown in
Figs. 8 and 9 at various nucleation conditions. Moreover, it
requires the equilibrium distribution2 of the droplet per unit
volume

n~e!~n!5
nn

p1/2Dne
exp~2DW! expF S n2nc

Dnc
D 2G ,

~83!
un2ncu<Dnc ,

wherenn is the number of solid particles per unit volume, as
well as the steady-state distribution in the near-threshold re-
gion

n~s!~n!5
nn exp~2DW!

p1/2DneDnc
expF S n2nc

Dnc
D 2G

3E
n

`

dn8 expF2S n82nc

Dnc
D 2G . ~84!

The steady-state rate of nucleation is given by

j ~s!5
nnw0

pDneDnc
exp~2DW!, ~85!

wherew0 is the number of molecules attached to the surface
of the droplet~with size Rm! per unit time at the so-called
free-molecule regime.4 Our calculation ofRm , nm , ne , nc ,
and that shown in Figs. 8 and 9 all can be used in these
formulas to investigate the kinetics of heterogeneous nucle-
ation on mesoscopic solid particles.
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APPENDIX A: EVALUATION OF SURFACE TENSION
AND THE TOLMAN LENGTH USING WDA-DFT

The surface tension and the Tolman length can be evalu-
ated from either molecular simulations31–33 or the

DFT.26,28,34–36For smallR, both DFT and molecular simula-
tions predict a positive sign of the Tolman lengthd(R).
However, the sign ofd` ~for R→`! is still controversial due
to the lack of experimental measurements. One molecular
dynamics simulation33 predicted that the Tolman length is
negative, whereas another32 predicted that it is positive. Thus
far, all DFT has suggested thatd` is a small negative quan-
tity. The question is to what extent the underlying approxi-
mations in DFT, such as the random-phase approximation
~RPA! or the local density approximation~LDA !, affect the
predicted outcome. Could the negative sign ofd` be an ar-
tifact of some approximations? In a previous study37 we ex-
amined the effects of the RPA and an improved modified
mean-field approximation~MMFA ! in the framework of
LDA-DFT. That study showed that the MMFA leads to a
slight decrease ofud`u but still predicts a negative sign of
d` . Here, we examine effects of WDA ond` . To our
knowledge, this is the first calculation ofd` based on the
nonlocal WDA-DFT. Results will be compared with those
based on LDA-DFT.

We calculate s21
` and d` by using the statistical-

mechanics formulas derived by Blokhuis and Bedeaux,34,38

which are applicable to systems with pairwise intermolecular
potential. A key input for these formulas is the density profile
of the planar liquid–vapor interfacer(z). It turns out thatd`

is strongly dependent on the symmetry of the density profile.
For example, if one uses the symmetric hyperbolic-tangent
density profile resulting from the gradient-expansion DFT,39

d`50.35,36 It is known that WDA can lead to microscopic
oscillation onr(z) at the liquid side at low temperatures and
high liquid densities ~above the so-called Fisk–Widom
line!.40,41 In other words, the WDA can significantly change
the symmetry of the density profile. It is of interest to see
how this oscillation behavior inr(z) affectsd` .

We notice that the original Bolokhuis–Bedeaux formulas
cannot be directly applied here due to the nonlocal nature of
the WDA. Generalization of these formulas can be made by
replacing the pairwise potentialwp(r 12) with the effective
pairwise potentialwp(r 12)1fhsv(r 12,r̄(r2)), where

fhs5
2Dchs8 ~ r̄ !

12 r̄122r̄ r̄2
. ~A1!

Indeed, in order to calculate the surface tension and the
Tolman length, one has to find the variation of the system’s
free energy under different coordinate transformation,37,38

but keep the volume of the system unchanged. As was shown
in our previous work,37 the only part of the free energy
which contributes to this variation is the nonlocal part, that
is, according to Eq.~15!

Fnonlocal@r#5E dr2 r~z2!Dchs~ r̄~z2!!

1 1
2 E E dr1 dr2 wp~r 12!r~z1!r~z2!.

~A2!

The variation is given by
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dFnonlocal@r#5E dr2 r~z2!Dchs8 ~ r̄~z2!!dr̄~z2!

1
1

2 E E dr1 dr2 dwp~r 12!r~z1!r~z2!.

~A3!

Taking into account Eq.~16!, after some mathematical work
the variation becomes

dFnonlocal@r#5E dr1E dr2 r~z1!r~z2!FDchs8 ~ r̄~z2!!

3
]v~r 12,r̄~z2!!/]r 12

12 r̄1~z2!22r̄2~z2!r̄~z2!

1
1

2
]wp~r 12!/]r 12G~~dr22dr1!er !,

~A4!

whereer is the unit vector in the direction ofr12. The varia-
tion becomes the same as Eq.~8! in Ref. 37 by replacing the
potentialwp(r 12) there with the effective pairwise potential
wp(r 12)1fhsv(r 12,r̄(r2)). The rest of the derivation of the
surface tension and the Tolman length will then follow that
in Ref. 37.

Thus, the generalized formula for the surface tension is

s21
` 5

p

2 E dz1E r 12
2 dr12E

21

1

dsF]wp~r 12!

]r 12

1fhs~z11sr12!
]v~r 12,r̄~z11sr12!!

]r 12
G r 12~123s2!

3r~z1!r~z11sr12!. ~A5!

This formula differs from the original one by having the
second term in the square bracket, due to the nonlocal func-
tion Eq.~A1!. Using the integration by parts, Eq.~A5! can be
written in a similar form as in Ref. 34, that is

s21
` 5pE dz1E r 12

2 dr12E
21

1

dsF ]r~z2!

]z2
wp~r 12!

1
]@fhs~r~z2!!v~r 12,r̄~z2!!r~z2!#

]z2
U

z25z11sr12

G
3sr12r~z1!. ~A6!

The generalized formula Eq.~A5! or ~A6! allows us to
evaluates21

` by using the density profile calculated from the
WDA-DFT. Results of s21

` at various temperatures are
shown in Fig. 10, as well as thoses21

` calculated from the
LDA-DFT using the original formulas.28,34 Generally, the
WDA gives a lowers21

` than the LDA. The difference is
bigger at low temperatures above the Fisk–Widom line,
where the density profile exhibits oscillatory behavior. But,
the difference is still less than 7%. Previously, we showed37

that the difference ins21
` by replacing the RPA with the

MMFA amounts to 20% at the low temperatures.
The generalized statistical-mechanics formula for the

Tolman length is

d`52
p

4s21
` E dz1E r 12

2 dr12E
21

1

dsF]wp~r 12!

]r 12

1fhs~r~z11sr12!!
]v~r 12,r̄~z11sr12!!

]r 12
G r 12~123s2!

3~2z11sr12!r~z1!r~z11sr12!. ~A7!

As in the original Blokhuis–Bedeaux formula, a condition
for applying Eq.~A7! is that the density profile should be
calculated using the equimolar dividing surface. Otherwise,
additional terms must be included. Again, using the integra-
tion by parts, Eq.~A7! can be written in a similar way as Eq.
~A6!, that is,

d`52
p

2s21
` E dz1E r 12

2 dr12E
21

1

dsF ]r~z2!

]z2
wp~r 12!

1
]@fhs~r~z2!!v~r 12,r̄~z2!!r~z2!#

]z2
U

z25z11sr12

Gsr12

3~2z11sr12!r~z1!. ~A8!

The calculatedd` at various temperatures is shown in Fig.
11, along with that from the LDA-DFT. Interestingly, we find
that the sign ofd` predicted by using WDA-DFT is still
negative, that is, the nonlocal DFT does not qualitatively
change the sign ofd` . This conclusion is an important by-
product of this work.

APPENDIX B: CALCULATION OF THE CONSTANT
c „R̃n…

We follow the method introduced in Ref. 5 to derive
c(R̃n) by using a patching conditiondb(n)/dnuG315G32

5db(n)/dnuR5Rn
. First, we have from Eq.~41! that

lim
R→Rn

db~n!

dn
5

1

4pRn
2r2`~11r2`x2kBTb~n!!

db~R!

dR U
R5Rn

.

~B1!

Next, using the patching condition and Eq.~B1!, we have

FIG. 10. Temperature dependence of the scaled surface tensions21
`*

5s21
` pd2/6kBT.
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db~n!

dG31
U

G315G32

5
1

r2`~11r2`x2kBTb~n!!

db~R!

dR U
R5Rn

.

~B2!

Finally, substituting Eq.~52! to the left-hand side of~B2! and
Eq. ~39! to the right-hand side of~B2!, and keeping only the
first-order terms of curvature and compressibility gives a lin-
ear equation forc(R̃n), that is

c~R̃n!
dg

dG31
U

G315G32

1

exp~b~n!uR5Rn
!22G32/~Rnr1`!

5
1

r2`kBT F2
2s21

`

Rn
2 2

]P

]z U
z5z0

1
4s21

`

Rn
S d`

Rn
2 1

2s21
` x2

Rn
2

2
Px2

Rn
1

]P

]z U
z5z0

x2D 22x2

]P

]z
Puz5z0G . ~B3!

Note that in classical nucleation theory5 the crossover
between the adsorbed and thin-film region was patched by
using the logarithmic~adsorptive! and exponential~struc-
tural! approximations for the chemical potential and disjoin-
ing pressure, respectively.

APPENDIX C: CALCULATION OF THE DERIVATIVES
FOR THE CHEMICAL POTENTIAL

To determined2b(n)/dn2unm
we first calculateD(R)

5dn/dR using Eq.~41!. For R.Rn , the derivative is given
by

D~R!54pR2r2`F11x2kBTr2`

3S b~R!1
1

3

R32Rn
3

R2

db~R!

dR D G . ~C1!

Since@db(R)#/dRuRm
50, the second derivative

d2b~n!/dn2unm
52@1/D~R!3#@dD~R!/dR#

3@db~R!/dR#uRm
1@1/D~R!2#

3@d2b~R!/dR2#uRm

5@1/D~R!2@d2b~R!/~dR2!#uRm
.

With Eqs.~29!, ~39!, ~60!, ~61!, ~64!, and~67!, we obtain

d2b~n!

dn2 U
nm

5
1

D~R!2

d2b~R!

dR2 U
Rm

5
s21

`

4p2r2`
3 kBTRm

~0!7 S 2
Rm

~0!1R̃n

Rm
~0!2R̃n

1
2d`

Rm
~0!

4Rm
~0!213Rm

~0!R̃n22R̃n
2

~Rm
~0!1R̃n!~Rm

~0!2R̃n!

1
2s21

` x2

Rm
~0!2

2Rm
~0!213Rm

~0!R̃n1R̃n
2

Rm
~0!2R̃n

D . ~C2!

The third derivative can be expressed as

@d3b~n!/dn3#unm

52@3/D~R!4#@dD~R!/dR#@d2b~R!/dR2#uRm

1@1/D~R!3#@d3b~R!/dR3#uRm
,

where we also used@db(R)/dR#Rm
50. Using Eqs.~29!,

~39!, ~60!, ~61!, and~67!, we obtain

d3b~n!~0!

dn3 U
nm

5
1

~4pRm
~0!2r2`!3

1

r2`kBT

4s21
`

Rm
~0!4

3
13Rm

~0!216Rm
~0!R̃n29R̃n

2

~Rm
~0!2R̃n!2 , ~C3!

where we just include the leading order ofRm
(0) without con-

sidering the curvature and compressibility corrections. This
is sufficient to give a reasonable estimation of thee param-
eter via Eq.~59!, that is,

1

3
e1/2S 2Rm

~0!1R̃n

3Rm
~0! D 1/2 13Rm

~0!216Rm
~0!R̃n29R̃n

2

~Rm
~0!22R̃n

2!1/2~Rm
~0!1R̃n!

!1.

~C4!

Using the above equation with Eq.~63!, we find that the
validity of the parabolic approximation requirese,0.08 for
5d,R̃n,20d. For largerR̃n , e should be even smaller.
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