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Simple Statements, Large Numbers 
 

 Large numbers are numbers that are significantly larger than those ordinarily used 

in everyday life, as defined by Wikipedia (2007).  Large numbers typically refer to large 

positive integers, or more generally, large positive real numbers, but may also be used in 

other contexts.  Very large numbers often occur in fields such as mathematics, 

cosmology, and cryptography.  Sometimes people refer to numbers as being 

“astronomically large”.  However, it is easy to mathematically define numbers that are 

much larger than those even in astronomy.  We are familiar with the large magnitudes, 

such as million or billion.  In mathematics, we may know a number as an approximation 

or as an exact amount; for example 531,441.  This number could be called “half a 

million” but it is also the specific solution to the question “how many ways are there to 

color the 12 numerals on a clock face if you have three different colored markers?” 

(Contributed by Maria Pierce).  You would compute this number as follows:  you have 3 

choices of color for each hour number 1,2,3,…,12.  So there are 3 choices for 1; followed 

by 3 choices for 2; followed by 3 choices for 3; etc.  This would give you 312= 531,441 

number of choices.   

A simple question involving small numbers can have a large number as its 

solution.  I have been asked to find and explain a few other examples of simple 

statements that result in amazingly large numbers.  The largest numbers we are likely to 

use in daily discourse are in the billions. For example, there are now 6.6 billion people on 

this planet; the solar system has been here about 4.5 billion years; the money spent by our 

government every year is in the billions; the number of stars we can see on a clear night 
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is ‘billions and billions’.  Exploring how large some numbers really are fascinates me.  

Saying, “I’ve told you a billion times,” has an all new meaning to me now. 

 Do numbers go on forever, or do they stop? What is the largest number?  

According to Dr. Math (2002), numbers are ideas, not anything you can see or touch. We 

use them to count and describe quantity or amount.  We have to use our imaginations and 

picture what it would be like if we found a “larger number”.  For example, if I say that 

quintillion is the largest number, someone could tell me that quintillion plus one is larger.  

One dictionary I looked in said the largest official group of numbers that has a name is, 

‘centillion’ (a one followed by 303 zeroes).  There are a couple of naming schemes that 

name large numbers.  These schemes could never have a largest name.  For example, two 

centillions is larger than one centillion.  Suppose you want to know how to express 

600,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000.  The 

best way to do this is the scientific way: 6 x 1062, read “six times ten to the power of 

sixty-two”.  This is the most concise way and the most reproducible way to represent 

large numbers.  (home.hetnet., 2007) 

The English names for large numbers are coined from the Latin names for small 

numbers n by adding –illion suggested by the name ‘million’.  The process of naming 

large numbers can be continued indefinitely, but one has to stop somewhere.  

Mathematicians have rules for naming numbers that allow them to use a small list of 

names and put them together to make names for more numbers than a dictionary could 

hold.  Using those rules, mathematicians can make numbers like ‘a centillion centillion’.  

Back in the 1930’s, a man named Edward Kasner, a mathematician, asked his eight-year-

old nephew Milton Sirotta to think of a name to give to a large number.  Mr. Kasner then 
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said that a “googol” was the number you would write as a one followed by 100 zeroes.  

The official naming scheme that has been around much longer would call this number ten 

duotrigintillion.  Kasner just thought that ‘googol’ was cool and it caught on.  But a 

googol isn’t even as large as a centillion.  Mr. Kasner then used that new name to give a 

name to a number that is much larger, the “googolplex”.  This is written as a one 

followed by a googol of zeroes.  How big is that?  A googol is so large that it is much 

larger than the current estimates for the total number of atoms in the whole universe or 

even a trillion universes; so even if you wrote a zero on every atom in the universe, you 

couldn’t even write the number googolplex, much less count it! Allow me to make 

another comparison: the number of seconds since the beginning of our solar system is 

only about 1 followed by 18 zeroes.   

The word ‘infinity’ doesn’t represent an actual number that is bigger than all 

others, as some might think.  Infinity just means “without end”, and is a way of 

describing something that never comes to an end.  There are infinitely many numbers, 

because there is no last number (Dr. Math, para. 1-6).  When talking about large numbers 

in every day life, many people throw around the terms million, billion, or trillion.  How 

much is a million, really?  What about a billion or trillion?  What’s the difference 

between a million, billion, and trillion?  Here are some examples from tysknews.com 

(2007) that puts these numbers in perspective.  A million seconds is about 11.5 days.  A 

billion seconds is 31 years.  A trillion seconds is 31,688 years.  A million minutes ago 

was 1 year, 329 days, 10 hours and 40 minutes ago.  A billion minutes ago was just after 

the time of Christ.  A million hours ago was in 1885.  A billion hours ago man had not 

yet walked on earth.  Trillion=1,000,000,000,000.  The United States has not existed for a 
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trillion seconds.  Indeed a trillion seconds is over 31,000 years, but our national debt is 

estimated to be about 8 trillion dollars.  To visualize a million, look closely at a strand of 

hair; if you pile a million of those on top of each other it would reach up to a seven story 

building (Peterson, 2003, para.6).  In the book How Much is a Million? by David 

Schwartz, some of the pages are filled with tiny stars, 14,364 per page.  It would take 

about (69.6) 70 of those pages to reach a million stars- amazing!   

 Let’s talk money.  How much is a million dollars?  The largest U.S. bill in 

circulation is the hundred dollar bill, and it takes 10,000 of those to make one million 

dollars.  Ten thousand bills!  Tim, from fatwallet.com (2007), did a simulation of a 

million dollars.  Real bills are 6.125” wide and 2.625” tall and one packet of them is 

exactly one centimeter thick (1 inch=2.54 cm, so 1 cm= .3937 inches).  The piles had a 

volume of approximately 633 cubic inches (6.125 X 2.625 x .397).  Tim bought six 500-

sheet reams of paper and each sheet, when cut, would yield four bills.  He then made a 

hundred one-centimeter paper piles, each centimeter represented $10,000.  Tim wrapped 

the ‘fake’ money and had one hundred packets of hundred hundreds.  The pile was about 

the size of a 15” television.  It weighed almost 20 pounds.  That’s a lot of money!  Think 

of having $5000, that’s imaginable.  Now, if you gave $5000 to each of your 200 closest 

friends, you just gave away a million dollars.  That’s a pretty concrete example.  Bill 

Gates is worth roughly 40 billion dollars.  If he puts his money in the bank at 5% interest, 

how much does he earn every day?  Well, about 2 billion per year, so (roughly) 5 million 

dollars per day, or (roughly) 200,000 dollars per hour, or (roughly) 4000 dollars per 

minute, or about 63 dollars per second.  That’s amazing! 
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 The solar system contains very large numbers.  Now that I know how big a 

million really is, the distances from planets to the sun are unbelievable to me.  This table 

shows the distances between planets (NTTI, 2000): 

Planet Mean Distance 

from Sun (millions 

of miles) 

Mean Distance in 

AU 

Mean Diameter 

(miles) 

Mercury 36.0 0.39 3,031 

Venus 67.1 0.72 7,521 

Earth 92.9 1.00 7,926 

Mars 141.5 1.52 4,221 

Jupiter 483.4 5.20 88,734 

Saturn 886.7 9.54 74,566 

Uranus 1,782.7 19.14 31,566 

Neptune 2,794.3 30.06 30,199 

Pluto 3,666.1 39.53 1,450 

 

 It’s very hard to understand just how large the solar system is.  Scientists tell us 

that the largest number our minds can really comprehend, or grasp, is about a hundred 

thousand (100,000) (NTTI, 2000).  Earth’s average distance from the Sun is 93 million 

miles (by definition, that’s one AU (astronomical unit)).  If you got on a jet and flew at 

600 miles per hour from the Sun to the Earth, it would take 18 years.  If you could drive 
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the same distance, it would take 152 years.  The distance to fly from the Sun to the Earth 

can be computed as follows:  Since distance= rate x time, and we know the distance is 

about 93 million miles and the rate is 600 miles per hour;   

93,000,000=600t    (divide by 600) 

155,000=t, so it would take one hundred fifty-five thousand hours. 

Since there are 24 hours in a day, 155000/24= approx. 6458.33 

days. 

Since there are approx. 365.25 days in 1 year,  

6458.33/365.25=17.68, so that’s why it takes approximately 18 

years to travel from the Sun to Earth.  Does this not amaze you?   

 Time is another thing that I can usually grasp, along with money.  It takes a few 

seconds to type a sentence.  In one day, there are 86,400 seconds.  One month is 

2,629,743.83 seconds.  There are 31,556,926 seconds in a year.  I can compute this as 

follows:  60 seconds in one minute, and 60 minutes in 1 hour, so 60 x 60= 3600 seconds 

in 1 hour.  Since there are 24 hours in a day, multiply 3600 by 24= 86400 seconds in 1 

day.  There are approximately 365.25 days in 1 year, so 86,400 x 365.25= 31,557,600 

seconds in one year.  I am 30, so I have been alive roughly 946,707,779 seconds.  I plan 

to live until I’m about 90, so that means I would have lived a total of about 2,840,123,340 

seconds.  This is two billion, eight hundred forty million, one hundred twenty-three 

thousand, three hundred forty seconds!   

 An anonymous person asked Dr. Math (Nov., 1996) what the number 

9,600,000,000,000,000,000,000 meant.  Dr. Daniel replied by saying, “That’s a really big 

number!”  First, he gave it a name… 
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We call 1,000,000 a million, 

1,000,000,000 a billion, 

1,000,000,000,000 a trillion, 

1,000,000,000,000,000 a quadrillion, 

1,000,000,000,000,000,000  a quintillion, and 

1,000,000,000,000,000,000,000 a sextillion. 

The number 9,600,000,000,000,000,000,000 is 9 sextillion, 600 quintillion.  This is 

approximately 10 sextillion.   I need to think of this in terms I can maybe imagine.  Right 

now, there are about 5 billion (5,000,000,000) people on earth.  If we divided 10 

sextillion by 5 billion, we’d have 2 trillion as the quotient.  So suppose there were 

something that each person had 2 trillion of.  Then all people together would have 

roughly 10 sextillion of them. But what do we all have roughly 2 trillion of?  We all have 

about that many nerve cells in our brains.  So, the really big number 

9,600,000,000,000,000,000,000 is something pretty close to the total number of nerve 

cells in people on earth.  Wow!   

Here’s another big number:  8,200,000,000,000.  The word for this is 8 trillion, 

200 billion.  If I divide this number by the number of people in the US (according to the 

U.S. Bureau of Census, the resident population of the US, projected on 8-6-07, is 

302,537,371), then the result is roughly 27,000.  That’s about how much money the 

average person ages 18-25 makes in a year in the US.  So, 8.2 trillion is then roughly the 

total amount of money from everyone in America’s annual paycheck.   

 The number 1.2 million (1,200,000) sounds like a big number, right?  This is the 

number of students who didn’t graduate from U.S. high schools in 2006.  What about 325 
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billion (325,000,000,000)?  This is the amount of money in lost wages and taxes those 

1.2 million students who didn’t graduate cost the nation (all4ed.com, para. 5).  Six 

million students throughout America are currently at risk of dropping out of high school.  

American businesses currently spend more than $60 billion each year on training, much 

of that on remedial reading, writing, and mathematics (Alliance for Excellent Education 

factsheet, n.d.).  Current estimates put the number of youth who are not in school, do not 

hold a diploma, and not working at 3.8 million (urban.org, para. 12.). These numbers are 

huge, and they make my job as a teacher so much more difficult! 

 Let me throw out the number 17,576,000.  In Lincoln, license plates contain 3 

letters followed by 3 digits.  If all letters and digits could be used and you allowed 

repeats, there would be 17,576,000 different plates available.  Since there are 26 letters 

and 10 digits, this is computed as 26*26*26*10*10*10.  I am assuming that they can 

repeat and I’m not taking into consideration the ‘taboo’ words that could be made by 

some combinations (ex. DAM).  There may also be some letters that cannot be used. 

Think of something you use on a regular basis, say for example, the telephone.   To find 

the total telephone numbers in the United States you would compute as follows:  Area 

codes are three digits where the middle digit is either a 0 or 1, the first digit can be 

anything but 0 or 1, and no three exchange digits can be the same as the preceding area 

code.  In the area code, there are 8 possible numbers to choose from (2-9) for the first 

digit, two choices (0 and 1) for the second digit, and 10 choices (0-9) for the third.  To 

find the number of area codes, multiply 8x2x10, the result is 160.  Each area code is 

followed by a three digit number that cannot equal the area code.  Three digits from 0-9 

gives a result of 103 or 1000 possible numbers and then subtract one for the number equal 
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to the area code, leaving 999 possible combinations.  To follow each of the 160 possible 

area codes, I multiply 160 by 999 and get 159,840.  The last four numbers have no 

restrictions, so I can take 104 which gives me 10000 possibilities.  160*999*10000 will 

result in different numbers since each of the 159,840 combinations of area codes and 

three digit numbers will be followed by 10000 more possible numbers.  The total number 

of telephone numbers in the United States is 1,598,400,000.   

A cell is the structural and functional unit of all known living organisms, and is 

sometimes called the building block of life.  Humans have an estimated 100 trillion, or 

1014, cells (wikipedia.org/wiki/cells, para 1).  The human body contains a large number 

of bacteria.  It is estimated that 500 to 1000 different species of bacteria live in the human 

body.  Bacteria are much smaller than human cells, and there are about ten times as many 

bacteria as human cells in the body, 1000 trillion (1015) versus 100 trillion (1014) 

(wikipedia.org/wiki/bacteria, para. 2).  Those are big numbers! 

Let’s talk ice cream!  I love Cold Stone, but there are so many choices.  They 

have 13 flavors of ice cream, 12 candy mix-ins, 6 types of fruit, 5 syrup choices, 3 dish 

sizes, 3 types of cones, you can have a sundae, shake, or cake.  So when it takes me 

forever to decide, that’s because there are at least 13*12*6*5*3*3*3= 126,360 different 

combinations to choose from!   

What about the penny problem?  Would you rather be given one million dollars 

today or one penny the first day, double that penny the next day, then double the previous 

day’s pennies and so on for a month?  After 30 days on the penny-doubling plan, you 

would have received a total of 230 – 1 = 1,073,741,823 pennies.  That’s more than a 

billion pennies!  If I divide this number by 100 (100 pennies in a dollar), that would be 
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$10,737,418.23.  That’s almost 11 million dollars- wow!  Here is how I arrived at the 

total number of pennies:   

 

Day # of pennies given Total # of pennies 

1 1 1 

2 1x2=2 1+2=3 

3 2x2=4 1+2+4=7 

4 2x4=8 1+2+4+8=15 

5 2x8=16 1+2+4+8+16=31 

 

The series whose sum gives the total number of pennies follows a regular pattern: each 

new term added to it is a power of two.  This is an example of a geometric series.  In a 

geometric series there is a constant ratio between consecutive terms.  The constant ratio 

between the terms of the geometric series that gives the number of pennies added from 

one day to the next in this problem is 2.  Knowing this ratio, I can use the fact that the 

sum of a geometric series with n terms (denoted Sn) whose ratio is r is:   

Sn= (first term)(1-rn)/(1-r). 

For the penny problem the first term is 1 and the ratio is 2, so the sum after n days is 

given by:   

Sn = 1(1-2n)/(1-2)= -(1-2n)= 2n – 1. 

This penny problem is very similar to the following rice problem:  A man asked 

for 1 grain of rice for the first square on a chess board, 2 grains for the second, 4 for the 

third, 8 for the fourth, and so on for each of the 64 squares on the board.  Unbelievably, 
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the number of grains of rice on the chess board is 18,446,744,073,709,551,615.  This 

number is eighteen quintillion, four hundred forty-six quadrillion, seven hundred forty-

four trillion, seventy-three billion, seven hundred nine million, five hundred fifty-one 

thousand, six hundred fifteen.  To find this, I again used the formula 2n-1 because the first 

square has 20= 1 grain, the second has 21= 2, so that the nth square has twice as many 

grains of rice as the previous square.  The sum of all grains of rice on the chess board is 

1+2+4+8+…+263.  Since this is a geometric sequence with a common ratio of 2, the sum 

is:   

S= (264-1)/ (2-1)=  264-1  

  To gain an understanding of the volume of this much rice, let me assume that a 

single grain of rice has dimensions 2mm x 2mm x 5mm and that the average swimming 

pool is a rectangular prism of dimensions 15ftx30ftx6ft.  We can compute the 

approximate number of swimming pools needed to hold all the rice as follows: 

20mm3/76.455m3 x 1.845 x 1019= (20 x 1.845 x 1019)/(76.45 x 109)= 4.825 x 109  

Thus it would take about 4 billion 8 million swimming pools to contain all of those grains 

of rice.  

 This next number is too big for me to grasp.  How many ways are there to 

arrange 30 books on a bookshelf?  The answer is 30!=  

265,252,859,812,191,058,636,308,480,000,000.  I’ve never encountered a number that is 

33 digits long!  1033 is a decillion.  There are about one fourth of a decillion ways to 

arrange 30 books on a bookshelf (Dr. Math, 2007)! 

 In conversation I often say million, billion, trillion to represent that I mean ‘a lot’. 

For example, a phrase I have used many times is “I have a million things to do today”.  
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Considering that it takes almost 12 days to count to a million saying one number per 

second, this is a bit of an exaggeration.  The next time students say they want to make a 

million dollars, I will have a few examples to bring them back to reality.  If the students 

each saved $50,000 per year, it would take them 20 years to have saved a million dollars.   

 Visualizing large numbers can be very difficult. People regularly talk about 

millions of miles, billions of bytes, or trillions of dollars, yet it's still hard to grasp just 

how much a "billion" really is. The MegaPenny Project  (2001) aims to help by taking 

one small everyday item, the U.S. penny, and using this to answer the question "What 

would a billion (or a trillion) pennies look like?"  Keeping in mind that a penny is about 

.75 inches in diameter,  .0625 inches thick and  weighs .1 ounces,  look at these 

simulations by the MegaPenny Project to get an idea of how much a million, a billion, 

and a trillion really is:1  
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One Million Pennies 

 
1,003,776 

One million, three thousand, seven hundred and seventy-six Pennies 
[ A wall five by four by one feet thick with a 9-inch cube stepstool ] 

   
Say hello to our friend Graham. Now that the pennies have really begun to pile up,
he'll be standing in for scale. Graham is about 5 feet, 10 inches tall, and he weighs
about 180 pounds, or about 35 times less than the 1 million pennies stacked 
beside 
him.  

value  $10,037.76 
(Ten thousand, thirty-seven dollars 
and seventy-six cents)

width  Four feet

height  Five feet

thickness  12 inches, (one foot)

weight  6273.6 pounds (3.14 tons)

height stacked  5,228 feet ( 0.99 Miles ) 

area (laid flat)  3,921 square feet
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One Billion Pennies 

 
1,000,018,176 

One billion, eighteen thousand, one hundred and seventy-six Pennies 
[ Five school buses. ] 

   
Each of these blocks represents one 9x11x41 foot school bus - as seen below. If you were
to stack all these pennies in a single pile, one atop the other, the stack would reach nearly 
one 
thousand miles high. For comparison, note that the Space Shuttle typically orbits only 225 
miles 
above the Earth's surface.  

 
Only in North America and the general scientific community is this number (1,000,000,000) 
called 
a "billion". Most European countries call this number either "one thousand million" or,  
in some cases, a "milliard".  
value  $10,000,181.76 

(Ten million, one hundred eighty-one 
dollars and seventy-six cents)

width  45 feet 
height  11 feet 
thickness  41 feet 
total weight  3,125 tons

height stacked  987 Miles 

area (laid flat)  3,906,321 square feet (89.7 acres)
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One Trillion Pennies 

 
1,000,000,016,640 

One trillion, sixteen thousand six hundred and forty Pennies 
[ One cube measuring 273 x 273 x 273 feet ] 

Notice our friend Graham, still barely visible as a speck at lower left. 
value  $10,000,000,166.40 

(Ten billion, one hundred and 
sixty-six dollars and forty cents)

width  273 feet

height  273 feet

thickness  273 feet

total weight  3,125,000 tons

height stacked  986,426 Miles 

area (laid flat)  89,675.2 acres

  

  

So, why study large numbers?  In the 70’s, the world’s population was over 4 

billion people.  On October 12, 1999, the world population reached the 6 billion mark.  

The United Nations predicts that by 2025,  there will be 8.5 billion people in the world.  

This exponential growth puts a massive global strain on our capability to provide 
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resources and services to a starving world.  On May 22, 2006 the United State’s national 

debt totaled $8.3 trillion.  The current national debt is $7.9 trillion.  In Third World 

countries,  50,000 people die every day.  People in Niger are dying of starvation in 

feeding centers.  There are 3.6 million people facing food shortages (askquestions.org, 

2007).  Close to home, according to Risk Management Solutions, Hurricane Katrina’s 

losses exceeded $100 billion.  In 1972, the US spent $24 million each hour on the 

Vietnam War.  It is important for us to understand our history in order to choose the best 

path for the future, and comprehending large numbers plays a significant role in that 

understanding. 
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