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In the Central Great Plains, the predominant crop rotation is winter wheat 

(Triticum aestivum L.)-fallow. Producers are looking to add diversity and intensity to 

their cropping systems by adding summer crops, however, the elimination of summer 

fallow may increase crop production risk. The objective of this study was to use crop 

simulation modeling to compare the productivity of two fixed rotations [winter wheat-

corn (Zea mays L.)-fallow and winter wheat-corn-spring triticale (X Triticosecale 

Wittmack)] with simulated flexible fallow rotations. The flexible fallow rotations made 

the decision to plant triticale or use summer fallow prior to winter wheat seeding based 

on available soil water in spring. Data from three years of field studies at two sites, 

Sidney, NE and Akron, CO, were used to calibrate and test the model, AquaCrop, for the 

crop simulation. Twenty-three years of historical weather data from each of the two 

locations were used to simulate crop production for each rotation. Average income was 

improved by replacing summer fallow with triticale (from 120 to 160 US $ ha
-1

 for Akron 

and from 126 to 199 US $ ha
-1

 for Sidney), but income variability (standard deviation) 



 

 

also increased (from 73 to 84 US $ ha
-1

 for Akron and from 93 to 115 US $ ha
-1

 for 

Sidney). Risk-averse growers are likely to always use fallow in their crop rotations prior 

to planting winter wheat, while non-risk-averse growers will likely eliminate fallow and 

substitute triticale or a similar early-planted spring forage. Flexible fallow rotations 

seldom improved profits compared to always using fallow without also increasing 

income variability. The exception was Sidney using the 400 mm soil water threshold, 

which lowered income variability compared to always fallowing (from 93 to 91 US $ ha
-

1
) and increased average income (from 126 to 142 US $ ha

-1
). However, the economic 

benefits of flexible fallow compared to the two fixed cropping systems were minimal.  
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INTRODUCTION  

 In the western portion of the Central Great Plains, the predominant crop rotation 

is winter wheat (Triticum aestivum L.)-fallow using mechanical tillage (Lyon et al., 1993; 

Dhuyvetter et al., 1996). Summer fallow is an important, and sometimes indispensable, 

component in the production of winter wheat due to the low amount of highly variable 

precipitation in this region (450 mm or less annually) (Lyon et al., 1993). The primary 

objective of summer fallow is the storage of water in the soil for use by the next wheat 

crop (Nielsen et al., 2011). This is accomplished, in part, by controlling the growth of 

weeds (Tanaka et al., 2010). However, there are years when precipitation is great enough 

to allow summer fallow to be replaced by a short-season spring-planted crop (a concept 

that is referred to as “Flexible Fallow”).  
 

In the semiarid portion of the Great Plains, mainly in the western portion, 

continuous cropping systems are risky due to limited precipitation and high potential 

evapotranspiration (ET) (Nielsen et al., 2005). The rain shadow caused by the Rocky 

Mountains, where elevations exceed 4200 m, results in a decline in annual precipitation 

from east to west in Nebraska (Lyon et al., 2003).  Summer fallow is a common practice 

used in regions where annual precipitation is less than 500 mm per year (Farahani et al., 

1998). In the Great Plains, 75% of annual precipitation is received during the warm 

season (April through September). The amount of water stored in the soil during summer 

fallow is low, and changes in the amount of water stored over the fallow period can be 

negative (Farahani et al., 1998). The climatological conditions of the Central Great 

Plains, where water is the most limiting resource for crop production, makes winter 
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wheat-fallow the most commonly used production system in order to stabilize the 

production of winter wheat in this region (McGee et al., 1997; Smika, 1970; Farahani et 

al., 1998; Lyon et al., 2004).  

Unpredictable weather conditions such as variable precipitation, temperature 

fluctuation, and hail make dryland farming in the Great Plains uncertain (Dhuyvetter et 

al., 1996). In order to achieve success and sustainability in the dryland agriculture 

systems of the Great Plains, a more efficient use of the erratic precipitation and stored 

soil water is necessary (Saseendran et al., 2009; Nielsen et al., 2005).  
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CHAPTER 1. Literature Review 

1.1 Summer Fallow 

Fallow attempts to limit the growth of all plants during the non-crop season, 

thereby increasing the amount of soil moisture stored (Lyon et al., 2004; Dhuyvetter et 

al., 1996). The control of plant growth is accomplished by either cultivation or herbicide 

application (Brown et al, 1983).  

Summer fallow was first practiced in the Great Plains during the 19
th
 century by 

farmers as a way to improve yields in small grain production, reduce crop failure, and to 

reduce labor (Farahani et al., 1998). The lack of crop selection and adverse weather 

conditions in the Great Plains during 1912 to 1921, led to the wheat-fallow system 

becoming the dominant agricultural system in this region (Tanaka et al., 2002, Tanaka et 

al., 2010).   

For winter wheat in the Great Plains, the fallow period is approximately 14 

months (Farahani et al., 1998). The main objective of a fallow period is to increase the 

total amount of stored soil water to then be used by the following crop (Moret et al., 

2006). Other benefits that can be achieved with fallow are the release of nutrients into the 

soil through the mineralization of soil organic matter and weed control (Aase et al., 2000; 

Johnson et al., 1982). Fallow allows for stability in both production and yield, and a 

better seasonal distribution of work (Johnson et al., 1982). 

Even though the objective of fallow is to stabilize production for the next crop by 

primarily helping to store water in the soil, it has been found that soil water is stored 
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inefficiently in fallow systems, frequently averaging less than 25% precipitation storage 

efficiency (Lyon et al., 2004; McGee et al., 1997; Nielsen and Vigil, 2010).  

Farahani et al. (1998) divided fallow in the winter wheat-fallow system into three 

periods: early period (from July after wheat harvest to mid-September), overwinter period 

(fall to early May), and late period (from spring to mid-September at wheat seeding). 

Further, they mention that the winter period is the most efficient at storing soil water, 

having the lowest amount of evaporation and greatest water storage efficiency, even 

though this period has the lowest precipitation rate. On the other hand, the late period, 

also known as summer fallow, is the most inefficient at storing soil water, even though it 

is the period that receives the greatest amount of precipitation (Farahani et al., 1998). In 

the non-crop periods of the wheat-fallow system, most of the precipitation is lost by 

evaporation, deep percolation, and runoff (Black et al., 1981).
 

In Australian dryland wheat production, Angus et al. (2001) reported that little 

water is stored during the fallow period. Most of the precipitation received during the 

fallow period is lost due to soil evaporation, weed use, volunteer plants, runoff, deep 

seepage, and snow blow-off (Farahani et al., 1998). Nielsen et al. (2005) mentions that 

when tillage is used during summer fallow, the degradation of crop residues make the soil 

more vulnerable to wind erosion and the reduction in the size of the crop residue particles 

make them less effective for evaporation reduction. Additionally, the formation of a soil 

crust by the impact of rain drops on unprotected soil reduces the water infiltration 

capability of the soil (Nielsen et al., 2005). Crop residues allow for the protection of soil 

against rain drop impact, the reduction of evaporation, the enhanced retention of 
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infiltrated water, and the maximum rates of water infiltration are achieved (Peterson et 

al., 1993).  

Under intense tillage, the water storage efficiency of fallow is as low as 10% 

(Farahani et al., 1998). Moret et al. (2006) comments that in Spain, moldboard and chisel 

plowing have had an adverse effect on soil water conservation when fallow was applied 

for the first time during a very wet autumn. Deeper tillage mixed weed seed into deeper 

soil layers and reduced the effectiveness of herbicides compared to herbicide use with 

shallow tillage (Black et al., 1981). Research by Black et al. (1981)
 
found that the control 

of weeds, such as wild oat (Avena fatua L.), is better with herbicides when the land has 

not been tilled to a depth of more than 7.5 cm. Reduction in tillage increases residue 

cover that allows for a reduction in soil erosion and increase in production. Reduced and 

no-till farming practices have improved the efficiency of precipitation capture and 

storage, allowing a reduction in the use of fallow and more intensive cropping systems 

(Lyon et al., 1995). Nielsen et al. (2010) found that the precipitation storage efficiency in 

the wheat-fallow system is higher with no-till (35%) than when conventional tillage is 

used (20%). Precipitation storage efficiency can be increased up to 20 to 30% when 

farmers use no-till and residue management techniques commonly used today. The 

increase in water storage efficiency is due to the reduction in the number of times that 

moisture is brought to the soil surface as tillage is eliminated (Farahani et al., 1998; 

Nielsen et al., 2005). Note that even with the best technology available today, the water 

storage efficiency of fallow remains low, i.e., less than 45%.  
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Soil erosion is an important aspect that needs to be taken into consideration by 

producers during the evaluation of cropping systems (Dhuyvetter et al., 1996, Young et 

al., 1986). Wind and water erosion are the two most obvious disadvantages of summer 

fallow (Burt et al., 1989).  The use of tillage during fallow exposes soil to degradative 

forces such as C removal by erosion, the acceleration of C oxidation, and less C being 

deposited in the soil surface in comparison with conditions found for native prairie 

(Peterson et al., 1998). Soil erosion and saline seeps are two sources of pollution of air 

and water that can result from fallow and affect society (Johnson et al., 1982). Reduced 

soil productivity and profitability of the farm are other problems related to the use of 

summer fallow in dryland cropping systems (Lyon et al., 2004). 

Fallow may represent an economic disadvantage for growers, in part, because 

mechanical tillage represents a big cost, and because the area required for an annual 

cropping system is doubled (Lyon et al., 2007, Tanaka et al., 2010). In addition, anytime 

the land is not producing there is an opportunity cost, which is higher in years with high 

crop prices (Johnson et al., 1982). In an extended literature review made by Dhuyvetter et 

al. (1996), it was found that even with the inclusion of government program payments for 

wheat, more intensive cropping systems were more profitable than the traditional wheat-

fallow cropping system in the Central Great Plains.  

Other important effects such as the reduction in soil aggregates, destruction of 

residues, and N mineralization have been reported as disadvantages of tillage during the 

fallow period (Peterson et al., 1993). The uses of monoculture systems such as wheat-

fallow promote not only soil degradation and the reduction in the profitability of the 
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system, but also disease, weed, and insect problems (Daugovish et al., 1999; Nielsen et 

al., 2009). 

The decision to fallow land is made by individual farmers, making the total 

amount of fallowed land greater than the optimal amount for society, consequently, 

benefiting growers solely in the short term (Johnson et al., 1982). Conditions such as the 

Dust Bowl in the 1930s were created, in part, by frequent use of tillage operations in the 

control of weeds in fallow systems (Farahani et al., 1998).  

The frequent use of summer fallow in the Central Great Plains can be hazardous 

for crop production systems, creating ecological, economic, and social problems. Because 

of this, other alternatives need to be explored that reduce the need for the use of summer 

fallow. 

1.2 Alternatives to Summer Fallow 

The agricultural systems of the Central Great Plains are very reliant on summer 

fallow (McGee et al., 1997). However, because of the environmental and economical 

implications of the winter wheat-fallow rotation, a different approach that allows for a 

more efficient use of water is needed.  

In order to generate alternatives to the use of summer fallow, the improvement of 

existing techniques and development of new ones to increase soil water retention and 

conservation during the non-crop period are necessary (Black et al., 1981). This 

improvement or new development needs to include crop residue management techniques 

(such as reduced till and no-till), reduction of the length and/or frequency of the fallow 

period, and adequate crop selection (Nielsen et al., 2005).  
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Farmers in the dryland cropping regions are looking for options other than the 

traditional monoculture systems such as wheat-fallow (Nielsen et al., 2009; Zentner et al., 

2009). The use of herbicides for weed control during fallow helps to conserve soil water 

and allows growers to produce crops more intensively (Lyon et al., 1983). Reduction in 

tillage due to chemical weed control has increased wheat yields by 37% in wheat-fallow 

systems compared with systems involving tillage (Nielsen et al., 2002). These 

enhancements have increased economic returns and improved environmental 

sustainability (Zentner et al., 2005).  

Dhuyvetter et al. (1996) suggested that the use of a more intensive cropping 

system than wheat-fallow, in combination with less tillage, can be an option for many 

parts of the Great Plains currently using the wheat-fallow production system. The water 

stored in the spring of the fallow year by using no-till, can be as much or more than the 

water stored if fallow is continued until wheat planting in the fall (Peterson et al., 1996).  

The use of more intense cropping systems with no-till will use the water stored in the 

soil, and increase productivity per unit of water received and replace summer fallow in 

many environments (Peterson et al., 1993; Tanaka et al., 2010). The increase in intensity 

in the system allows a crop to be produced annually on 67 to 100% of the tillable land 

(Dhuyvetter et al., 1996).  

Loss of soil organic C and N is promoted by fallow (Peterson et al., 1993). More 

intensive cropping systems have higher grain and crop residue production, less soil 

disturbance that results in increased C content of the soil, and reduced C losses (Peterson 

et al., 1998). The increase in residue C, in addition to no soil disturbance in a no-till 
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environment, promotes aggregate stability, which will positively impact the physical and 

chemical properties of the soil (Tanaka et al., 2010).
 

Crop intensification in the Great Plains increases precipitation use efficiency on a 

biomass-produced and price-received basis (Nielsen et al., 2005). Peterson et al. (1993) 

found that increasing intensification of cropping systems will be an environmentally and 

economically sustainable practice even in more water stressed environments.  

Producers have shown some resistance to changing traditional production 

systems. Some of the reasons for the slow change are: returns will not cover added costs 

of machinery, herbicides and fertilizer; the relatively low labor required in wheat-fallow 

systems; the increase in financial and production risks; and the ability to comply with 

government programs (Dhuyvetter et al., 1996).  

The reduction of summer fallow length and/or frequency will diminish soil 

erosion, improve the efficiency of water use, and increase the long-term viability of 

dryland farming in the Great Plains (Lyon et al., 2004; Tanaka et al., 2002). A reduction 

of summer fallow by crop intensification, e.g., from one crop in 2-yr to two crops in 3-yr, 

increases precipitation use efficiency (Nielsen et al., 2005). McGee et al. (1997) found 

that a 3-yr rotation with a fallow period of 11 months was as efficient at storing water as 

a fallow period of 14 months (McGee et al., 1997). The increase in crop intensification to 

two crops in three years had little effect on the water available at wheat planting and on 

wheat yield (Nielsen et al., 2002).  

With the implementation of crop intensification, higher production of grain per 

unit of water is achieved (Peterson et al., 1998). The key point of water use efficiency in 
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crop intensification is the replacement of water evaporation from the soil surface by crop 

transpiration (Farahani et al., 1998, Tanaka et al., 2010). The use of perennial grass that 

resembles the native prairie vegetation provides the highest water use and the least 

erosive soil condition (Peterson et al., 1993). However, this last option will not allow for 

the production of a wheat crop. More intensive systems such as wheat-sorghum-fallow 

showed less financial risk than wheat-fallow (Dhuyvetter et al., 1996). Daugovish et al. 

(1999) found that 3-yr rotation systems provide at least the same economic return as 

wheat-fallow production, and in addition, provided excellent control of winter annual 

grass weeds. The longer a field stays in a 3-yr rotation with a summer crop, the greater 

the reduction in winter annual grass weeds (Daugovish et al., 1999). No significant 

differences were found between wheat yields from wheat-fallow (no till), wheat-corn-

fallow, and wheat-millet-fallow systems (Nielsen et al., 2002).  

The most efficient way to improve cropping system water use is to substitute a 

summer crop for summer fallow (Farahani et al., 1998), and the frequency of summer 

fallow can be reduced by reducing or eliminating tillage and increasing precipitation 

storage efficiency between crops (Peterson et al., 1993). An early harvest, or short 

duration spring-planted crop, used in transition from a full-season summer crop to winter 

wheat minimizes the impact of not having summer fallow on the following winter wheat 

(Lyon et al, 2004). Wheat following an early planted summer crop exhibited greater tiller 

production, faster germination, and more growth compared to wheat following a late 

planted summer crop (Lyon et al., 2007). The use of forage crops prior to winter wheat 

seeding, due to the early date of harvest, allows more time for soil water storage than the 
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use of grain crops (Lyon et al., 2004). Dhuyvetter et al. (1996)
 
analyzed the economics of 

eight studies of dryland cropping systems in the Great Plains and found that in seven of 

these studies the net return was greater in a more intensive crop rotation in combination 

with practices of reduced-till or no-till following wheat harvest and prior to planting the 

summer crop, than from the wheat-fallow rotation.  

Spring triticale (X Triticosecale rimpaui Wittm.), dry pea (Pisum sativum L.), 

foxtail millet (Setaria italica L. Beauv.), and proso millet (Panicum miliaceum L.) are 

short-season crops that can be used in crop rotation to replace summer fallow 

(Saseendran et al., 2009). Lyon et al. (2004) found that rotations that involved oat (Avena 

sativa L.) + pea for forage or proso millet as summer fallow replacement crops were 

economically competitive with summer fallow.  

1.3 Flexible Fallow 

Cropping decisions need to be based on the amount of soil water at planting and 

expected precipitation during the growing season (Black et al., 1981). The practice of 

having a continuous cropping system (no monoculture), where the selection of the crops 

depends on the water available in the soil profile is defined as “opportunity cropping” 

(Nielsen et al., 2005 ; Peterson et al., 1993). Lyon et al. (1995)
 
defined it as a “flexible 

cropping system”. A flexible cropping system involves planting a crop when the stored 

soil water and the expected precipitation are considered sufficient for a successful crop. 

In years where the water is not sufficient, fallow is implemented (Black et al., 1981). 

Flexible cropping systems avoid the rigidity of fixed cropping. The implementation of a 
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flexible cropping system along with proper crop and soil management can reduce or 

eliminate the necessity of summer fallow (Black et al., 1981).  

In order to be successful in the development of a flexible cropping system, it is 

necessary to take into consideration the relationship between initial soil water and 

subsequent yield of the crop (Lyon et al., 1995, and Young et al., 1986). Zentner et al. 

(2005) evaluated the use of an annual legume green manure crop as a summer fallow 

substitute depending on the available soil water reserves. In this experiment, they found 

that the “flex-crop” rotation had greater earnings than more traditional rotations, such as 

those that include fallow. Lyon et al. (1995) analyzed the response of five spring-planted 

crops to three different soil water levels at planting the year following winter wheat 

harvest. The crops analyzed were corn, grain sorghum, pinto bean (Phaseolus vulgaris 

L.), proso millet and sunflower (Helianthus annuus L.). They found that for pinto bean 

and proso millet, soil water at planting appeared to be a good indicator of the success of 

these short duration crops. However, for the long duration crops (corn, grain sorghum, 

and sunflower), soil water at planting did not appear to be a good indicator of grain yield 

(Lyon et al., 1995). This conclusion was verified by Nielsen et al. (2009) for dryland corn 

in Colorado. Other points to take into consideration in the success of flexible cropping 

are crop management and soil factors such as fertility and weed control (Black et al., 

1981).  

Flexible cropping systems allow farmers a better use of environmental and/or 

market conditions due to better adaptability from a bigger portfolio of crop options 

(Hanson et al., 2007). Flexible cropping systems can control the risk of production and 
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soil loss, being in this way an option to respond to the challenges that agricultural 

systems will be facing in the future due to uncertain conditions (Hanson et al., 2007, 

Young et al., 1986).  

The concept known as “flexible fallow” consists of the substitution of a short-

season, spring-planted crop for summer fallow when the soil water at planting is 

sufficient, thus reducing soil degradation by summer fallow without significantly 

compromising the next winter wheat crop (Felter et al., 2006). Flexible rotations that 

allow the decision to fallow or not based on available soil water in spring represent a 

more effective option than fixed rotation (Zentner et al., 2005). By fallowing in the driest 

springs and planting a spring crop when the soil water at planting is sufficient, the farmer 

has the opportunity to increase the sustainability of the system, obtain a higher income, 

and reduce the riskiness of a fixed spring cropping system (Young et al., 1989).  

In dryland crop production, the amount of soil moisture at seeding is usually a 

limiting factor (Young et al., 1989). Nielsen et al. (1999, 2002 and 2009) conducted 

many experiments to evaluate the relationship between soil water at planting and yield of 

different crops used to diversify the wheat-fallow system. Wheat and millet yield, planted 

after sunflower, declined as soil water at planting declined at Akron, CO (Nielsen et al., 

1999). In 2002, Nielsen et al. found a linear relationship between wheat grain yield and 

soil water at planting. In the same study, they found that the intensification of the 

traditional wheat-fallow system under no-till by the addition of a crop (corn or millet) 

between wheat and fallow reduced the fallow period and did not significantly affect the 

yield of the next wheat crop or the soil water available at wheat plating (Nielsen et al., 
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2002). Nielsen et al. (2009) mention that corn can be used as a rotation crop in order to 

diversify the traditional monoculture wheat-fallow system in the Central Great Plains. 

The study showed that under dryland conditions, there is a positive relationship between 

the soil water at planting and corn grain yield, with the slope of the relationship 

increasing dramatically as precipitation during the flowering and grain filling stages 

increased.  

Zentner et al. (2005)
 
compared the economic benefits of substituting an annual 

legume green manure for summer fallow based on available soil water. The legume was 

seeded and turned down before it reached full bloom to allow maximum N2 fixation, but 

at the same time minimize soil water depletion. The conclusions of this study were that 

flexible cropping systems usually ranked second in annual net returns, just behind 

continuous wheat when using conservation tillage practices in order to enhance soil water 

reserves, and under favorable growing conditions. The least profitable cropping systems 

were fallow-wheat-wheat and annual legume green manure-wheat-wheat.  

Good results were obtained by using annual legume green manure from 

Indianhead black lentil (Lens culinaris Medikus) and chickling vetch (Lathyrus sativus 

L.) cv. AC Greenfix as replacement crops for fallow when the soil water reserve in spring 

was enough to avoid compromising the following wheat crop (Zentner et al., 2005). 

The implementation of flexible fallow seems to have a better response when a 

short duration summer annual crop is used (Lyon et al., 2007). In the western portion of 

the Great Plains, forage crops had higher precipitation use efficiency on a biomass-

produced basis in comparison to oilseed crops or continuous small-grain production 



15 

 

(Nielsen et al., 2005). Short duration annual forage crops such as triticale and foxtail 

millet use less water than grain crops because the length of the growing season is reduced 

by harvesting prior to grain development, which is often the period of greatest water use 

(Lyon et al., 2004; Lyon et al., 2007). 
 

Saseendran  et al. (2009)
 
mentions that spring triticale and foxtail millet as forage 

crops, and proso millet as a grain or forage crop, have the potential to substitute for 

summer fallow in the winter wheat-fallow system.  

Felter et al. (2006) used spring planted crops to evaluate substitutes for summer 

fallow when soil water was sufficient at planting. They used four crops: spring triticale 

for forage, dry pea for grain, proso millet for grain, and foxtail millet for forage. They 

concluded that triticale, foxtail millet, and proso millet can be used as substitutes for 

summer fallow in a flexible fallow cropping system based on available soil water at 

planting. They found a linear relationship between dry matter accumulation and soil 

water availability at planting time for triticale and foxtail millet. The two forage crops in 

this study, spring triticale and foxtail millet, had an increase in harvested biomass for 

each centimeter of water available at planting of 229 kg ha
-1

 and 339 kg ha
-1 

respectively 

(Felter et al., 2006). They found that soil water at planting has a stronger relationship 

with yield in years where seasonal precipitation is limited. The early harvest date of 

triticale allows for more time to accumulate water in the soil prior to winter wheat 

seeding compared to foxtail millet, which is planted and harvested later than spring 

triticale (Lyon et al., 2007). 
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Producers and agricultural lenders need ways to assess the level of risk that the 

increase in intensity of the traditional wheat-fallow rotation creates (Nielsen et al., 2002). 

The study by Felter et al. (2006) suggests that soil water at planting can be used as an 

indicator of yield potential for a short-season spring-planted crop used as a substitute for 

summer fallow, particularly for crops grown for forage.   

A short-season spring-planted forage crop such as triticale can be used as a 

substitute for summer fallow in years where the amount of stored soil water at planting is 

enough to produce sufficient triticale biomass without significantly reducing grain yield 

of the following winter wheat crop (Felter et al., 2006; Lyon et al., 2007). Lyon et al. 

(2007) found that the decision to plant or not plant a short-season crop as a summer 

fallow replacement is more critical than the selection of what crop is planted. Since the 

water available at planting for the short-season summer fallow replacement crop is 

critical not only for the summer crop, but also for the following wheat crop, the 

determination of the threshold soil water at which to plant the crop is a key point for the 

success of the flexible fallow system (Lyon et al., 2007).  

The use of summer fallow needs to be a judicious decision and not a habitual 

practice (Black et al., 1981).The flexible fallow system can help growers increase crop 

production during wetter years and minimize the risk of crop loss in dry years (Lyon et 

al., 1995). In regions such as western Nebraska, where crop production is limited by lack 

of precipitation, soil water at planting might be a good predictor for potential yield. The 

development of a tool that helps growers to decide when to substitute a short-season 

spring-planted crop for summer fallow might be useful (Felter et al., 2006).  
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1.4 Crop Simulation Modeling 

 In regions where the environmental conditions make production decisions 

uncertain, models have been successfully used to analyze agronomic practices (Lyon et 

al., 2003). In the Central Great Plains, long-term experiments to evaluate crop rotation 

effects on water use and yield have been done since the 1990s (Saseendran et al., 2010). 

However, there are not many long-term experiments that can be used to evaluate the 

impact of no-till and altered crop rotations on the wheat-fallow system (Peterson et al., 

1993). Dryland cropping systems research in the Great Plains has to confront the 

difficulty of conducting experiments over a long time period, with the demand of high 

investment in many resources such as land and labor (Staggenborg et al., 2005). The 

ability of conventional statistical techniques to extrapolate location-specific findings to 

other regions and climates with heterogenic land conditions, such as the one presented in 

the semiarid regions, is questionable (Saseendran et al., 2010).  

The effect of summer fallow is well known in specific locations, but limited 

information is available about extrapolating this information to locations with different 

soil and climatic conditions (Peterson et al., 1993). With modeling, it is possible to see 

the way that an agricultural crop will behave in other locations, climates, seasons, and 

soils (Saseendran et al., 2009). The combination of long-term simulation with field 

research data may give a good prediction of performance for new crops included in the 

system, after only a couple of seasons of field data, avoiding the necessity of long-term 

experiments (Staggenborg et al., 2005).
 
This saves time and money in agricultural 

research and accelerates the delivery of technologies to producers.  
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Field research results can be limited to the period of time in which they were 

conducted, however, with crop modeling and long-term climate data, it is possible to 

make an analysis that will allow for an adjustment of recommendations, avoiding the 

time limitation of field research (Lyon et al., 2003; Staggenborg et al., 2005). Models are 

needed to sensitize results obtained from long-term experiments in order to make 

adequate management decisions in the Central Great Plains (Saseendran et al., 2010). The 

combination of historical weather data and simulation modeling can be used to predict 

system stability and the potential effect of future climatic changes (Peterson et al., 1993). 

Modeling is a tool that can be used by producers to avoid the risks implied in the 

adoption of new crops and practices (Staggenborg et al., 2005). In order to offer this tool 

to producers, the development of the model for the crop selected is necessary, along with 

its conscious calibration and testing of its performance under the climate of the region 

(Saseendran et al., 2009).  

Moret et al. (2006) mentions that even though there are many different crop 

models, only a few of them have been applied to the study of soil water changes during 

the fallow period.
 

Stochastic dynamic programming (DP) has been used to select dryland cropping 

systems with high average annual returns, low variability, and reduced risk for water 

percolation below the root zone (Burt et al., 1989). Young et al. (1986) used DP and 

target prices for barley (Hordeum vulgare L.) to evaluate flexible cropping systems in 

traditional wheat-fallow rotations. In this study, the authors were able to identify the 

critical level of available soil moisture at planting for a flexible cropping strategy in a 
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wheat-fallow system using barley. They found that reduced soil erosion, improved 

profitability, and reduced risk associated with continuous cropping were possible with the 

use of DP and a flexible cropping approach in the traditional wheat-fallow system of the 

region.  

Stochastic dynamic programming can help to improve the economics of dryland 

cropping systems, although the lack of data for different locations represents a problem 

for this approach (Burt et al., 1989). The use of well calibrated and tested crop simulation 

models can help to overcome this lack of information.   

Another tool is the Crop Sequence Calculator, which is a relatively simple 

program that gives information to the user about crop production, economics, diseases, 

weeds, water use and soil properties, in order to evaluate different crop sequences 

(USDA, 2011). However, the Crop Sequence Calculator does not predict crop yield 

response to variable environmental conditions. Farmer interest in this relatively simple 

program demonstrates the potential and necessity of more robust decision support tools in 

order to increase the sustainability of the wheat-fallow cropping system (Tanaka et al., 

2010).  

Root Zone Water Quality Model (RZWQM), Decision Support System for 

Agrotechology Transfer (DSSAT), Cropping System Model (CSM), and Agricultural 

Production System Simulator (APSIM) are some of the modeling programs reported in 

the literature as being used to simulate the effects on yield and soil water use from 

changes to the traditional cropping systems of the Central Great Plains.  



20 

 

RZWQM was developed by the Agricultural Research Service of the United 

States Department of Agriculture. The model simulates the impact that alternative 

management strategies have on plant growth, movement of water, nutrients, and agro-

chemicals within, over, and below the root zone (USDA, 2009).  

DSSAT is a simulation package developed by the International Benchmark Sites 

Network for Agrotechnology Transfer. DSSAT has been in use for over 15 years. 

DSSAT allows the integration of soil, crop, phenotype, weather, and management in a 

multi-spatial and multi-temporal simulation. DSSAT v4.0 includes 27 different crops and 

the ability to analyze the environmental impact and economic risk of climate change, soil 

carbon sequestration, climate variability, and nutrient and irrigation management 

(ICASA, 2011).  

RZWQM with DSSAT v4.0 crop growth modules (RZWQM2) was used by 

Saseendran et al. (2009), who used data from two different Great Plains locations with 

different plant available water levels and planted in different years, to successfully 

simulate the response of summer crops used as a substitute for summer fallow in the 

semiarid climate of the High Plains. The crops investigated were: spring triticale, proso 

millet, and foxtail millet. For this experiment, the Cropping System Model (CSM)-

CERES-Wheat v4.0 module was adapted for the simulation of spring triticale growth 

while the CSM-CERES-Sorghum module was adapted for proso millet and foxtail millet. 

Modeling was used as an accurate tool to simulate the crop growth and development of 

the three short-season crops as possible substitutes for summer fallow through multiple 

years and different locations (Saseendran et al., 2009).
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In 2010, Saseendran et al. evaluated the cropping system model RZWQM2 with 

the DSSAT v4.0 in two traditional rotations in the Central Great Plains: wheat-fallow and 

wheat-corn-fallow. The simulations were done from 1992 to 2008 and the calibration of 

the model was made with data from the wheat-corn-millet rotation at Akron, CO from 

1995 to 2008. The model was able to successfully simulate long-term sequential yield, 

biomass production, and water and precipitation use efficiencies in crop rotations 

involving wheat, millet, corn, and fallow in the Central Great Plains. Cropping systems 

successfully simulated were: wheat-fallow, wheat-corn-fallow, and wheat-corn-millet. In 

addition to these rotations, without further calibration, the model predicted accurately 

enough the average yield of corn, millet, and wheat in the wheat-millet-fallow and wheat-

corn-millet-fallow rotations (Saseendran et al., 2010). 

Staggenborg et al. (2005) used CERES-Wheat and CERES-Sorghum to simulate 

wheat-fallow and wheat-sorghum-fallow systems in western Kansas. Wheat was better 

simulated than sorghum. The error contained in the simulation of wheat, overestimated 

by 10%, was higher than the one reported by other authors, suggesting that CERES-

Wheat does not perform as well under dryland conditions such as that of the Great Plains. 

The authors mention that the error reported in the simulation may be due to 

overestimation in the leaf area index and the prediction of winter temperature damage 

more frequently than actually observed. Sorghum yield was also overestimated; in this 

case the error was 25%. The authors mention that this error might be due to the yield 

overestimation of the previous wheat in the rotation and because CERES-Sorghum 
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estimates water stress more severely than under actual conditions (Staggenborg et al., 

2005).  

APSIM simulates agricultural systems that integrate plant, animal, soil, and 

management interactions. APSIM can simulate over 20 crops. APSIM is able to simulate 

a wide range of farming systems. These options include dryland and irrigated cropping. 

Moeller et al. (2007) used APSIM to successfully simulate the productivity, and water 

and N use from 0-0.45 m soil depth in a wheat-chickpea system in Syria under different 

levels of N and water. The authors reported that the model was not able to simulate soil 

dynamics when the soil water content was set to “air-dry” and when each growing season 

finalized (Moeller et al., 2007).  

Mupangwa et al. (2011) used APSIM to simulate the seasonal and mulching 

effects on corn using 69 years of climatic records. The program simulated yield 

reasonably well for most of the seasons. Other parameters simulated in this experiment 

were biomass and soil water balance until the crop was mature (Mupangwa et al., 2011). 

CropSyst, a mathematical model that uses daily steps to simulate crop growth, 

biomass production, and N and water balance (Stockle et al., 1994), was used by Sadras 

et al. (2004) to evaluate more intensive cropping approaches than wheat-fallow in the 

Australian wheat-belt. The experiment included wheat, canola (Brassica napus L.), and 

grain legumes. In this experiment, the authors were not only able to successfully simulate 

crop yield at different N levels, but they also found that a more intense flexible approach 

could bring economic benefits superior to fixed rotations.  
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AquaCrop is a computer model developed by the Land and Water Division of the 

Food and Agriculture Organization of the United Nations (FAO). FAO developed 

AquaCrop in an effort to increase the water use efficiency in food production (Araya et 

al., 2010). The webpage (http://www.fao.org/nr/water/aquacrop.html) of AquaCrop 

mentions that the program was designed to simulate the response that different crops 

have to water, especially in conditions where water is the liming factor. AquaCrop is 

focused on the simulation of biomass and yield using water available for the crop 

(Steduto et al., 2009). 

Features of AquaCrop include the comparison between possible and actual yields, 

the development of irrigation schedules, crop sequencing simulations, future climatic 

scenarios, and the interaction of low water and fertility on yields, among others (FAO, 

2011). In AquaCrop transpiration is calculated, and with the use of crop-specific 

parameters, biomass is calculated (Steduto et al., 2009). The model can be used to 

generate yield predictions and improve water use efficiency of crops interacting with 

projected climatic changes (Araya et al., 2010).  

AquaCrop uses a relatively small number of parameters that can be separated into 

four categories: climate, crop, management, and soil (Raes et al., 2009). Steduto et al. 

(2009) should be consulted for more details regarding the specifics of the concepts, 

rationale and procedures taken in AquaCrop in each category. Due to the robustness of 

the model and user friendliness use, AquaCrop is a program that can be used to fill in the 

gap between researchers and growers in aspects related to irrigation (Steduto et al., 2009; 

http://www.fao.org/nr/water/aquacrop.html
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Geerts et al., 2010). This model differs from others in that it is really simple to 

understand (Araya et al., 2010).  

 Steduto et al. (2009) mentions that after calculating biomass production from 

transpiration, AquaCrop normalizes the biomass for atmospheric evaporative demand and 

air CO2, making it, in that way, applicable for different locations and seasons. The 

characteristics mentioned before, along with the fact that AquaCrop focuses on canopy 

cover instead of leaf area index, are the main attributes that distinguish AquaCrop from 

other crop models. Yield is calculated as a product of biomass and harvest index (HI) 

(Steduto et al., 2009). For further information about the calculations and algorithms used 

in AquaCrop, as well as the software description, a good explanation is presented by Raes 

et al. (2009). The robustness of the model, the simplicity of the inputs required, and its 

ability to simulate biomass and yield production based on water and water stress in crops 

make AquaCrop an efficient tool to evaluate the effects of irrigation and field 

management strategies, sowing dates, water use efficiency, and water-limited production 

under irrigated and dryland production (Steduto et al., 2009 and Raes et al., 2009, Heng 

et al., 2009) 

Because AquaCrop has only recently been developed and released, there are not 

many publications that describe its use and validity. Geerts et al. (2010) presented charts 

for deficit irrigation developed using AquaCrop and historical climate data. The charts 

were to be used by farmers as a decision tool to determine when to irrigate in order to 

supplement erratic precipitation. A Central Bolivian Altiplano location and quinoa 

(Chenopodium quinoa Willd.) were selected to exemplify the strategy described. 
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Araya et al. (2010)
 
used AquaCrop version 3.0 to model barley yield response and 

biomass under different water inputs and different planting dates, and soil water in the 

root zone. The experiment conducted to calibrate and validate the model was done in 

northern Ethiopia. The authors mention that AquaCrop not only successfully simulated 

the biomass, yield production, and water in the root zone, but that this model can be used 

for the evaluation of irrigation strategies, making AquaCrop an option in the evaluation 

of planting dates and irrigation strategies in barley.  

Other authors had evaluated AquaCrop in other crops. Farahani et al. (2009) and 

Garcia-Vila et al. (2009) evaluated the performance of AquaCrop modeling cotton 

(Gossypium hirsutum L.) for northern Syria and Spain, respectively. Farahani et al. 

(2009) reported that considering the simplicity of AquaCrop and the advantage of 

requiring fewer parameters than other models, the results obtained in the modeling of ET, 

biomass, yield and soil water across four levels of irrigation are promising. Garcia-Villa 

et al. (2009) found that AquaCrop in combination with economic analysis can be used for 

decision makers to grow irrigated cotton under water supply restrictions.  

Hsiao et al. (2009) used AquaCrop to simulate corn in different locations and 

seasons.  

AquaCrop contains two types of parameters. The first one is a conservative 

parameter that considers no change within different types of climates, time, management 

practices, cultivar, and geographic location. The second one is cultivar specific and it 

changes with climate, management, or soil type (Raes et al., 2010). The work presented 

by Hsiao et al. (2009) shows that after parameterizing AquaCrop with data collected in 
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six field experiments with different irrigation treatments and in different years at Davis, 

California, the model was able to simulate corn biomass and yield for the California 

location (with the largest deviation of 22% for biomass and 23% for yield). They were 

also able to simulate corn production in other locations, including Gainsville, Florida and 

Bushland, Texas. It is important to mention that the set of conservative parameters was 

held constant for the three locations and for different irrigation treatments, although, the 

authors mention that adjustment to these parameters would be expected when the model 

is tested against more diverse climatic and soil conditions (Hsiao et al., 2009). 

Salemi et al. (2011) used AquaCrop to successfully simulate winter wheat 

(sowing date at the beginning of November, harvesting mid June of the following year) in 

Iran under three levels of irrigation: 60, 80 and 100% of water requirement. The model 

was successful in the simulation of canopy cover, grain yield, and water productivity. The 

three-yr set of values modeled in comparison with the observed data showed a deviation 

percent from -0.7 to 12%, and d statistic from 0.97 to 1.00. The work done by Salemi et 

al. (2011) showed that AquaCrop can be used to model winter wheat. The limitations for 

the program found in this study were for drought stress and other stresses such as salinity. 

Models capable of simulating the effect of water deficits on yield and productivity 

are important tools (Heng et al., 2009). AquaCrop is a crop modeling program that can be 

used in the simulation of dryland cropping systems where the main limiting factor is 

water. The use of AquaCrop for the simulation of dryland cropping systems in the 

Central Great Plains can be a way to study options that allow for the increase in intensity 

of the cropping system, such as winter wheat-fallow, in years where water storage in the 
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soil and the precipitation are enough to grow another crop without comprising the 

following wheat crop.  

The objective of this study was to compare two fixed no-till cropping systems, 

WW-C-F (winter wheat-corn-fallow) and WW-C-T (winter wheat-corn-triticale) to a 

flexible fallow cropping system using three different soil water thresholds to determine  

when to plant spring triticale or summer fallow prior to winter wheat seeding using 

AquaCrop 3.1+ and at least 20 yr of historic climatic data to create a probability 

distribution for yields. In the flexible fallow system, the model will grow a spring triticale 

crop only in years when a threshold value of soil water at triticale planting (April 1) is 

exceeded; otherwise summer fallow will be used.  
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CHAPTER 2. Materials and Methods 

Field studies were conducted in 2009, 2010 and 2011 at the High Plains 

Agricultural Laboratory of the University of Nebraska (41
o
12‟ N, 130

o
0‟ W, 1315 m 

elevation above sea level) located near Sidney, NE and at the USDA-ARS Central Great 

Plains Research Station (40
o
09‟ N, 103

o
09‟ W, 1383 m elevation above sea level) located 

near Akron, CO. Soil at both locations were silt loams (Aridic Argiustolls). Additional 

soil characteristics for both locations are described in Felter et al. (2006). The cropping 

systems treatments described below were initially established in 2007 allowing the plots 

to go through two growing seasons with the treatments in place before data were 

collected.  

At each location, two fixed no-till crop rotations where established: WW-C-F and 

WW-C-T. Each phase of the rotations was present each year in a randomized complete 

block experimental design with eight replications per location. Plot size at Sidney was 

18.3 by 9.1 m and 24.4 by 12.2 m at Akron. At each location, the study area was divided 

in two, with four replications of each treatment receiving no supplemental irrigation, and 

four replications of each treatment receiving supplemental irrigation (applied at the 

beginning and mid-point of each month) from March through October whenever the 

previous 2-wk period had less precipitation than the 30-yr normal precipitation for that 

period of time. Only enough water was applied to bring the total precipitation plus 

irrigation up to the 30-yr normal. The supplemental irrigation was applied with a lateral-

move drop-nozzle irrigation system. 
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Planting and harvesting dates for both locations are presented in Tables 1 and 2. 

For corn („DK 5259 RR‟) a seeding rate of 34,600 seeds ha
-1

 and row spacing of 76 cm 

were used at both locations. For spring triticale („Tritical 2700‟) a seeding rate of 100 kg 

ha
-1

 was used, except at Sidney in 2010, where a seeding rate of 112 kg ha
-1 

was used. 

Winter wheat („Pronghorn‟) was seeded at a rate of 67 kg ha
-1

, except in 2009 and 2011 

at Sidney, where a seeding rate of 56 kg ha
-1

 was used. 

In order to successfully calibrate and validate AquaCrop 3.1+ for the three crops 

involved in the simulations (wheat, corn, and triticale), measurement of soil water 

content, phenological development, leaf area index (LAI), and aboveground plant 

biomass were taken at several phenological stages through the growing season. Grain 

yield was also collected for wheat and corn at harvest, and a harvest index calculated. 

Table 3 shows the timing of each measurement for each crop. Additional measurements 

were made at Akron as time and labor permitted.  

Nutrient needs were based on state recommendations. At Akron, 16.8 kg P2O5 ha
-1 

was applied in the seeded row and 67.2 kg N ha
-1 

was applied on the soil surface beside 

each row at corn planting, except for 2009 when no additional phosphorus was applied. 

Triticale was seeded at a row spacing of 19 cm with 16.8 kg P2O5 ha
-1 

applied in the 

seeded row and 67.2 kg N ha
-1 

applied to the soil surface beside each row at planting, 

except for 2009, when 22.4 kg P2O5 ha
-1 

was applied. In 2009, winter wheat was seeded at 

a row spacing of 19 cm, with 16.8 kg P2O5 ha
-1

 applied in the seeded row and 44.8 kg N 

ha
-1 

applied to the soil surface beside each row. In 2010, no additional phosphorus was 
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applied, and in 2011, 16.8 kg P2O5 ha
-1 

was applied
 
in the seeded row and 67.2 kg N ha

-1 

was applied to the soil surface beside each row at corn planting. 

At Sidney, corn was seeded at a row spacing of 76.2 cm. Winter wheat and 

triticale were seeded at a row spacing of 25.4 cm. No supplemental fertilization was 

required at Sidney in any year.  

At Akron, corn was harvested by hand and threshed by a stationary plot machine. 

Harvest index was calculated by hand harvesting 6.1 m of the two center rows. Triticale 

harvest samples were cut at ground level from 3.05 m of the two center rows near the 

neutron probe access tube. Wheat was mechanically harvested with a plot combine from 

8 rows with variable length (averaging 12.6 m). The reason for variable harvest length 

was that on occasion the area harvested included areas where biomass had been 

previously taken, or where plants had been knocked down when access tubes were 

removed, so length needed to be adjusted. In each case, HI was adjusted for the area 

harvested. 

At Sidney, corn was harvested by hand and threshed by a stationary machine. 

Harvest index was calculated by hand harvesting 2 m of row. Triticale harvest samples 

were mechanically harvested using a flail chopper, with the area harvested being 0.91 by 

9.1 m and located in the center of the plots, near the neutron probe access tubes. Wheat 

was mechanically harvested with a plot combine. The HI was determined from 2 m of 

row. Moisture and test weight of grain crops were determinate using a Dickey-John Grain 

Analyzer (GAC-2000, Dickey-John, Auburn, IL). 
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Triticale at both locations was harvested when approximately 50% of the plants 

had spikes fully emerged from the culm. Harvest samples were weighed in the field at 

harvest moisture. Subsamples were taken to determine moisture content by drying in an 

oven at 50
o
C until the weight remained constant. Field weights were then adjusted to a 

dry weight basis using the moisture content of the subsample to make the adjustment.   

Glyphosate [N-(phosphonomethyl)glycine] was used for weed control during the 

non-crop periods. During the cropping season, weeds were controlled by hand-weeding.   

Crop water use was calculated using the water balance method. At Sidney, a 

neutron probe (Campbell Pacific 503 DR, Campbell Pacific, Pacheco, CA) was used to 

determine soil water content at 30 cm depth increments down to 150 cm. When the 

volumetric water content reported by neutron probe in the 0-to 30-cm layer was less than 

0.12 cm cm
-1

, soil samples were collected from this soil layer, gravimetric soil water 

content determined and multiplied by soil bulk density to determine volumetric water 

content. At Akron, soil water measurements with the neutron probe were taken at 30 cm 

depth increments down to 180 cm. In the 0- to 30-cm layer, time-domain reflectometry 

was used. The neutron probes were calibrated using gravimetric soil water samples from 

the plot areas at both locations. Measurement sites were located near to the center of each 

plot.  

Total available water in the soil profiles at planting for each crop and location 

were estimated and from this amount ending water in the soil profiles was subtracted to 

determine soil water extraction. In-season precipitation and irrigation were added to the 
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soil water extraction to calculate crop water use (evapotranspiration, ET). Runoff and 

deep percolation were assumed to be negligible. 

LAI measurements at both locations were obtained using an LAI-2000 Plant 

Canopy Analyzer (LIA-2000; Li-Cor, Inc., Lincoln, NE, USA). Four sets of readings 

were taken at two locations in each plot at each sampling date. The instrument operator 

stood with the sun to his/her back and used a 90
o
 view cap to block his/her body from the 

sensor. Observations of corn LAI were adjusted by recomputing while ignoring the fifth 

ring sensor reading as recommended by the manufacturer and using the manufacturer‟s 

FV2000 data processing software. 

Phenological growth stages were observed and recorded weekly. Biomass 

samples were taken several times during the growing season from two meters of row by 

hand clipping approximately 1 cm above the soil surface. Samples were oven-dried at 50 

o
C until the weight remained constant.  

FAO has calibrated non-location-specific parameters for the major agricultural 

crops, providing default values that can be found in the AquaCrop database (Raes et al., 

2009). The calibration for winter wheat and triticale were not in this database, so 

calibrations for these crops were necessary.  

Data from Akron, CO were used for the AquaCrop calibration of winter wheat, 

corn, and triticale. The calibration for corn was done using the non-location-specific 

parameters predetermined in AquaCrop, but with modifications to better fit the Akron, 

CO region. Tables 4, 5 and 6 provide the calibrated parameter values used in AquaCrop 

to simulate the three crops used in this study. For the calibration of winter wheat, the data 
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collected in the current study in crop years 2008-2009 and 2009-2010 provided four data 

sets (irrigated and dryland treatments for both WW-C-F and WW-C-T) in each year, to 

which were added twelve sets of data collected from a single year (2005-2006 crop year) 

of a study conducted by Felter et al. (2006). For the calibration of spring triticale, six sets 

of data collected from 2 yr of a study conducted by Felter et al. (2006) were used along 

with the 2009 triticale data collected from the dryland treatment in this current study. 

Additionally, one set of triticale data (D.C. Nielsen, unpublished data) was used from the 

2008 setup year for the current study (irrigated and dryland treatments averaged together 

since no irrigation was applied in 2008). For the corn calibration, the data collected in the 

current study in 2009 and 2010 (irrigated and dryland treatments for both WW-C-F and 

WW-C-T) were used, to which were added four sets of data collected from the 2007 

setup year for the current study (D.C. Nielsen, unpublished data). The additional data sets 

were used for the calibration of AquaCrop to provide greater diversity to the data 

collected from this study in 2009 through 2011.  

One of the characteristics of AquaCrop is that it simulates the development of a 

crop in terms of canopy cover (CC) instead of LAI (Steduto et al., 2009).  For this study, 

CC was calculated from LAI measurements.  

At the beginning, the equation presented by Hsiao et al. (2009) was used to 

estimate the corn CC from measured LAI:  

CC=1.005 x [1 – exp (-.06 LAI)] 
1.2

                                         (1) 

However, the CC obtained did not represent the observed values. Therefore, an 

estimation of CC development from Akron data was calculated. The method used to 
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estimate the CC consisted of the use of digital photos of canopy development when the 

LAI measurements were taken during the seasons of 2009 and 2010. Visual estimates of 

CC from digital photos has been used by previous authors, e.g. Farahani et al. (2009). 

The digital photos were taken above the canopy at three different representative points 

per plot. In order to calculate the CC per plot, each picture was analyzed by laying them 

under a grid that contained 45 random points. A CC percentage was estimated by the 

fraction of points that contacted green crop canopy. From the percentage of CC and the 

LAI measurements, an empirical relationship was obtained by regression. The equation 

is: 

CC=83.7 x [1- exp (0.7811 LAI)]                                               (2) 

With an R
2
 = 0.983.  

The same approach used in the generation of the equation that represents the 

correlation between CC and LAI in corn was used to generate the equations for winter 

wheat and spring triticale. For winter wheat the equation is:  

CC=17.806 ln (LAI) + 64.47                                                      (3) 

With an R
2
 = 0.948 

For spring triticale the equation is:  

CC= 11.77 + 54.08 x LAI – 10.91 * LAI 
2
; for LAI < 2.3         (4) 

CC = 80; for LAI > 2.3                                                               (5) 

With an R
2
= 0.91 
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At the end of the calibration generated for winter wheat, it was used to adapt the 

calibration for spring triticale. This means that the equation generated for spring triticale 

was discarded and the one generated for winter wheat was used instead.  

During the AquaCrop calibration for the three crops simulated, the first section 

parameterized was the crop development calendar. The data required in the calendar 

section was obtained from the CC equations previously described. After the 

parameterization of the calendar section was completed, the water stress section was 

calibrated and parameterized. In the water stress section, canopy expansion, stomatal 

closure, and early canopy senescence were adapted to field data observed at Akron. No 

aeration stress was considered. The final calibration step was the parameterization of the 

crop water productivity value (WP*). After these three sections were calibrated, minimal 

changes were made to the development and ET sections. No fertility stress was 

considered during the calibration process since water is the main limiting factor for crop 

production in the Great Plain, and field plots were fertilized with adequate amounts of N 

fertilizer. 

A sensitivity analysis of the different changes made in each parameter was 

performed. In this analysis, variation of only one of the parameters was conducted for 

each model run. The effect that the incremental changes in individual calibration 

parameters had on grain yield for winter wheat and the effect on ET and biomass for 

winter wheat, corn and triticale were recorded. The values modeled for grain yield, 

biomass and ET were compared with the actual values obtained in the field for each crop 

under at least three different levels of soil water content at planting (low, medium and 
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high). The modeled values were divided by the observed values in order to generate a 

coefficient. The coefficient was then used to see how close the predicted value was to the 

observed value. This coefficient varies between 0 (poor model) and 1 (perfect model).  

In order to validate the ratio previously explained, further statistics were 

performed to evaluate the simulated results obtained in the validation: (i) Root Mean 

Square Error (RMSE), Eq. (6) which shows the average deviation between simulated and 

observed values; (ii) Mean Relative Error (MRE), Eq. (7), which gives the bias of the 

simulated value relative to the observed value; and (iii) the index of agreement (d-

statistic), Eq. (8) between measured and simulated parameters (Willmott, 1981), which 

varies between 0 (poor model) and 1 (perfect model): 

                                                       (6) 

               (7) 

                                                       (8) 

 

where,  

 = the i
th 

simulated value 

 = the i
th 

observed value 

 = the mean observed value 

 n = the number of data pairs 

Data from Sidney, NE was used to validate the AquaCrop calibrations. For the 

validation of winter wheat and spring triticale, twelve and six sets of data were used 
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respectively. For the corn validation, eight sets of data were used. The same statistical 

analysis described for the Akron calibration was performed for the simulated values 

obtained in the Sidney validation.  

The ETo Calculator, version 3.1 generated by FAO, was used to compute 

reference evapotranspiration by the FAO Penman-Monteith equation. The ETo Calculator 

creates the ETo, temperature and CO2 files used by AquaCrop for the long-term modeling 

runs. Historical weather data from 1988 through 2010 were obtained from the High 

Plains Regional Climate Center (http://hprcc1.unl.edu/cgi-hpcc/home.cgi) in Lincoln, 

NE. The values used were daily values of temperature maximum (
o
C), temperature 

minimum (
o
C), average vapor pressure (kPa), wind run (km day

-1
), and solar radiation 

(MJ m
-2

 day
-1

) and were recorded by automated weather stations within a few hundred 

meters of the plot areas at both locations. The rainfall values were entered into AquaCrop 

from records of manually read rain gauges at both locations.  

In order to model crop development and production with AquaCrop it is necessary 

to specify the sowing date for each crop. For triticale, not only the sowing date was 

necessary, but also the harvest date. Since spring triticale was grown for forage, an earlier 

termination date than physiological maturity was necessary. For Akron, the following 

sowing dates were determined using the average date from the data sets used for 

calibration of the model; 25 Sept. for winter wheat, 13 May for corn, and 8 April for 

spring triticale. The average harvest date for spring triticale was 23 June. For Sidney, the 

following dates were determined; 10 Sept. for winter wheat, 12 May for corn, and 4 April 

for spring triticale. The average harvest date for spring triticale was 25 June.  

http://hprcc1.unl.edu/cgi-hpcc/home.cgi
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AquaCrop predicted the soil water content at the end of the season or when the 

crop was terminated. The ending soil water content predicted by AquaCrop was added to 

the precipitation observed during the non-crop period between crops for each location to 

generate the beginning soil water content for the next crop. Before adding the amount of 

precipitation observed, the 10-yr average precipitation storage efficiency reported by 

Nielsen et al. (2010) was applied. Those storage efficiencies were 35% between wheat 

harvest and September 30, 81% between October 1 and corn plating, 64% between corn 

harvest and triticale planting, 10% between triticale harvest and wheat plating, and 29% 

between corn harvest and wheat plating. This last value was from the same experiment as 

reported in Nielsen et al. (2010) but is unpublished data from corn residue. The calculated 

amount of soil water at plating was distributed in the simulated soil profile by filling each 

30-cm layer to field capacity from top to bottom until the calculated amount of beginning 

water was used up. 

 In order to implement the flexible fallow approach, three soil water content 

thresholds at triticale planting were established. These were 350, 375, and 400mm. 

Simulations using weather data from 1988 through 2010 were performed for each 

location using the three thresholds. If the beginning soil water content at triticale planting 

met the threshold, triticale was planted; if not, fallow was implemented. When fallow was 

implemented, the precipitation received during this period was carried forward to the next 

wheat crop after applying the precipitation storage efficiency reported by Nielsen et al. 

(2010). In addition to the three flexible fallow rotations mentioned before using the three 

water threshold conditions, two fixed rotations were modeled, these were winter wheat- 
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corn- fallow (WW-C-F) and winter wheat- corn- triticale (WW-C-T). Each phase of each 

rotation was simulated every year, beginning with the 1988 starting soil water conditions. 

Grain yield for winter wheat and corn and biomass yield for triticale modeled for each 

year were simulated and recorded for both locations. Since winter wheat and corn are 

measured in kg of grain produced per ha, and spring triticale in kg of total biomass per 

ha, economic analysis was performed in order to compare the highest economic yield as 

risk associated with the five different cropping systems.  

Net return was calculated as the return to land and management, where the land 

and management will be residual claimants on the cash return generated in the system. 

Crop production budgets were generated for each crop and fallow period using the 2010 

University of Nebraska Crop Budget Generator 

(http://cropwatch.unl.edu/web/cropwatch/archive?articleID=4529324). Once the 2010 

crop production costs were determined, the United States Department of Agriculture – 

National Agricultural Statistics Service prices paid index for agriculture was used to 

index the production costs back to the appropriate values for the 1988 to 2009 crop 

production seasons 

(http://www.nass.usda.gov/Publications/Ag_Statistics/2010/Chapter09.pdf). By this the 

production cost was matched with the production year and historical price data (Tables 7 

and 8). 

The three price series used for this study were national weighted average annual 

prices from the United States Department of Agriculture – Economic Research Service 

(http://www.ers.usda.gov/Data/FeedGrains/). Corn and wheat prices were the reported 

http://cropwatch.unl.edu/web/cropwatch/archive?articleID=4529324
http://www.nass.usda.gov/Publications/Ag_Statistics/2010/Chapter09.pdf
http://www.ers.usda.gov/Data/FeedGrains/
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prices for the year based on actual farm gate sales. The triticale forage price was based on 

two thirds of the national average alfalfa price. The price of other hay crops such as 

triticale, sorghum, millets, and oats is traditionally discounted from the alfalfa hay price 

by at least 30 percent, and as much as 50 percent. There is a limited market for these 

forages, so pricing for this type of study must be based on the alfalfa market. 

To determine the per hectare profitability for each of the systems, an average 

across the three crops in each year was developed for those years where all three crops 

are grown in the system, Eq. (4).  

Return = {[(Yw * Pw) – Cw] + [(Yc * Pc) – Cc] + [(Yt * Pt) – Ct]} / 3           (9) 

where, 

Yw = wheat grain yield, (kg ha
-1

) 

Yc = corn grain yield, (kg ha
-1

)   

Yt = triticale dry biomass yield, (kg ha
-1

)   

Pw = grain wheat price, (US $ kg ha
-1

) 

Pc = grain corn price (US $ kg ha
-1

) 

Pt = biomass triticale price (US $ kg ha
-1

) 

Cw = wheat cost of production (US $ ha
-1

) 

Cc = corn cost of production (US $ ha
-1

) 

Ct = triticale of cost production (US $ ha
-1

) 

In the years where fallow is inserted into the system instead of the triticale forage, 

Eq. (5) was used. 

Return = {[(Yw * Pw) – Cw] + [(Yc * Pc) – Cc] - Cf} / 3                             (10) 
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where, 

Yw = wheat grain yield, (kg ha
-1

) 

Yc = corn grain yield, (kg ha
-1

)   

Pw = grain wheat price, (US $ kg ha
-1

) 

Pc = grain corn price (US $ kg ha
-1

) 

Cw = wheat cost of production (US $ ha
-1

) 

Cc = corn cost of production (US $ ha
-1

) 

Cf = fallow cost (US $ ha
-1

) 

Medians of winter wheat and corn grain yield and spring triticale biomass 

modeled for the three flexible rotations and the two fixed rotations, and medians of the 

economic return for each cropping system, were analyzed and compared using PROC 

GLIMMIX in SAS (SAS Institute, 1985) in order to identify differences.  
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CHAPTER 3. Results and Discussion 

3.1. AquaCrop Calibration and Validation 

AquaCrop 3.1+ can be used to simulate growth in winter wheat, corn and triticale 

in the Central Great Plains. During the calibration with Akron data, good agreement was 

found between the observed and predicted values for all three crops (Table 9 and Figures 

1-8). The best simulation was grain yield for corn with a d-statistic value of 0.961. A 

larger difference was found between the observed and predicted values for spring triticale 

ET and corn biomass (d-statistic values of 0.713 and 0.764, respectively). The poor 

prediction of spring triticale ET might be explained by the water contents of the surface 

60 cm of soil at planting, which was the lowest of all crops evaluated in this study. 

Previous studies reported that AquaCrop was very sensitive to initial soil water content 

(Garcia-Villa et al., 2009). The prediction of winter wheat and corn grain yield, and 

triticale biomass was acceptable, with d-statistic values of 0.921, 0.961, and 0.861, 

respectively.  

Winter wheat performance was well predicted by the model, which is important to 

note since AquaCrop 3.1+ does not account for winter dormancy, which made the 

calibration more challenging. In general, AquaCrop was able to simulate, with acceptable 

precision, the observed values for all three crops at Akron.   

Validation of AquaCrop using data from Sidney indicated that the model was not 

accurate in simulating any of the three crops used (Table 10 and Figures 9-16), with d-

values ranging from 0.242 for corn yield to 0.481 for wheat yield and biomass. It is not 

clearly understood why AquaCrop did such a poor job modeling the crops at Sidney. The 
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calibration done at Akron was expected to produce similar simulation results at Sidney 

without recalibration since the weather and soil environment at Sidney were not greatly 

different from Akron. The lower d-values obtained for Sidney could be attributed to the 

sensitivity of the program to soil water content. Even though the crops were poorly 

predicted at Sidney, we decided to do the multi-year predictions at both locations using 

the calibration parameters determined at Akron since they were developed under a fairly 

broad range of environmental conditions. Further analysis will likely need to be 

performed to determine if there are errors in the field data collected at Sidney, or if 

adjustments to some calibration parameters could be made to make the model more 

responsive to Sidney conditions. Such an analysis may be helpful in delineating potential 

areas of improvement for AquaCrop. 

3.2. Multi-year Simulations 

Tables 11 and 12 show the different values for winter wheat and corn grain yield 

and triticale forage yield predicted by AquaCrop for Akron and Sidney, respectively. In 

Tables 13 and 14 it is possible to see that average winter wheat yields were greatest in 

WW-C-F and lowest in WW-C-T. For Akron (Table 13), the average values for winter 

wheat yield in WW-C-F and WW-C-T were 2670 and 2240 kg ha
-1

, respectively. For 

Sidney (Table 14), the values were 2450 kg ha
-1

 for WW-C-F and 2290 kg ha
-1 

for WW-

C-T. The higher winter wheat grain yield average obtained in WW-C-F was likely the 

result of increased soil water after fallow compared to after triticale, 430 and 394 mm, 

respectively. The average winter wheat yield tended to decline as the frequency of 

summer fallow declined, which agrees with the main objective of summer fallow, which 
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is to increase the total amount of stored soil water to then be used by the following crop 

(Moret et al., 2007). This may also explain the increase in yield variability with the 

intensification of the cropping system.  

Even though winter wheat yield tended to decline as the frequency of summer 

fallow declined, and grain yield statistically significant difference was found between the 

400 mm flexible fallow system and WW-C-F at Akron (p-value 0.007, Table 15), no 

statistical difference was found between these two cropping systems at Sidney (p-value 

0.093, Table 16). 

Table 17 shows that at Akron, average corn yields were generally not affected by 

cropping system, except between WW-C-T and WW-C-F (p-value of 0.001), where WW-

C-F had a greater average corn grain yield. Other statistically significant differences for 

corn grain yield were too small to be of any practical significance. A similar situation at 

Sidney was found (Table 18). 

Average triticale forage yields were not affected by cropping system at either 

location (Tables 19 and 20). This might be explained by the fact that winter wheat and 

corn crops planted before triticale, likely eliminated any effect that the previous spring 

triticale or fallow treatments might have had on soil water storage prior to triticale 

planting.  

Tables 21 and 22 show the different economic returns for each system at Akron 

and Sidney, respectively. At both locations, average income was improved by replacing 

summer fallow with spring triticale, but income variability also increased (Tables 23 and 

24). Aakre (1991, unpublished data) cited by Dhuyvetter et al. (1996) reported higher 
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income variability in winter wheat-sunflower than in winter wheat-fallow. The increase 

in variability in income was attributed to yield variability of the cropping system. 

Flexible fallow did not seem to provide much benefit over fixed rotations, i.e., 

flexible fallow did not result in increased yield with little or no increase in income 

variability. The exception was Sidney, where the 400 mm threshold had a slightly greater 

average return and slightly reduced income variability compared to WW-C-F (Table 24).  

From Tables 23 and 24 we can infer that risk-averse growers are likely to prefer 

WW-C-F over WW-C-T, but non-risk-averse growers will likely prefer WW-C-T. 

Performance of the flexible fallow system using a 400 mm soil water threshold exhibited 

a slightly higher average return and slightly smaller income variability than WW-C-F at 

Sidney, which may suggest that some risk-averse farmers may prefer flexible fallow with 

a high soil water threshold, e.g. 400 mm, over WW-C-F if the cost of obtaining soil water 

content information is not prohibitive. However, in general, the economic benefits of 

flexible fallow compared to the two fixed cropping systems were minimal.  

Tables 25 and 26 show the statistical analysis of the economic returns for the 

different systems at both locations. In Figures 17 and 18, it is possible to see the 

distribution of the economic returns for each cropping system at Akron and Sidney, 

respectively. We can see that at both locations, the economic returns from WW-C-T were 

statistically superior to the returns from WW-C-F (p-value of 0.001) for both locations. 

Dhuyvetter et al. (1996) reported that the combination of reduced tillage and no-till with 

wheat rotations involving sunflower, corn and sorghum had a higher net return than the 

traditional winter wheat-fallow rotation in the Great Plains. Nielsen et al. (2005) reported 
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that the increase in precipitation use efficiency on a mass-produced and economic-return 

basis was higher in more intense cropping systems involving annual forages.  

Even further, WW-C-F was only economically competitive with the flexible 

fallow system using a 400 mm soil water threshold. The use of more intense cropping 

system than the traditional winter wheat-fallow can reduce the negative impact that 

fallow has on the environment. A more intense cropping system not only provides 

marketing advantages, but also improves weed control, increases residue retention, and 

minimizes insects and diseases associated with monoculture (Nielsen et al., 2008; 

Peterson et al., 1993). 
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CHAPTER 4. Conclusions 

AquaCrop can be used to simulate ET, which can be used to estimate soil water 

content following winter wheat, corn and triticale in the Central Great Plains. AquaCrop 

was also effective at simulating grain yield in corn and winter wheat.  

The multi-year simulations of flexible fallow using three different soil water 

thresholds and two fixed rotations showed that average winter wheat yields were greatest 

in WW-C-F and lowest in WW-C-T. However, average annual income was greater 

without summer fallow. This suggests that although summer fallow may reduce income 

variability, it also likely reduces income potential. Lyon et al. (2004) found that replacing 

summer fallow with oat + pea for forage or proso millet reduced subsequent winter wheat 

yield, but economic returns were similar to systems with summer fallow.  

Even though flexible fallow did not seem to provide much economic benefit over 

the two fixed rotations, the adoption of flexible fallow might help to reduce some of the 

negative consequences of summer fallow, e.g., soil erosion or the necessity of herbicide 

application for weed control by reducing the frequency of summer fallow. Lyon et al. 

(2004) mentioned that the elimination or significant reduction of summer fallow use will 

not only protect the soil from degradation, but also bring a higher efficiency in water use 

and improve the viability of the dryland cropping system in the long-run.  

Risk-averse growers are likely to prefer WW-C-F over WW-C-T because of the 

reduction in year-to year income variability that summer fallow provides. However, non-

risk-averse growers will likely prefer WW-C-T because of the increase in the average and 

total income. For farmers that have animal production incorporated into their farm 
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operations, a cropping system that includes a spring-planted annual forage such as spring 

triticale may have greater value than indicated here, where we have included cutting, 

baling, and transportation costs for spring triticale in the economic analysis. Grazing 

forages can reduce these costs (Clampham et al., 2008) by allowing animals to do some 

of the work related to harvesting the forages (Munson et al., 1990).  

Our simulations using AquaCrop and 23 yr of historical weather data from Akron, 

CO and Sidney, NE suggest that a flexible fallow system, (i.e., a system that uses soil 

water in the spring to determine whether to summer fallow prior to planting winter wheat 

or plant an annual forage such as triticale as suggested by Felter et al. (2006), provides 

little benefit compared to fixed cropping systems with or without summer fallow. Seldom 

in this study did flexible fallow provide increased income with little or no increase in 

income variability compared to WW-C-F, which is the goal of the flexible fallow system. 

This suggests that knowing soil water content in the spring does not insulate growers 

sufficiently from the vagaries of seasonal precipitation to significantly reduce crop 

production risk in the Central Great Plains. This suggests that growers need to decide if 

they are willing to accept greater income variability for the potential of greater income. If 

they are, then annual forages can substitute for summer fallow. If not, summer fallow will 

lower annual income variability but it will also lower overall income.  

The major influence that climate variability has on agriculture is increased 

economic risk (Jones et al., 2000). We hypothesized that flexible fallow systems based on 

the quantity of soil water in the spring could reduce the production and economic risk 

associated with climate variability. However, our crop simulation results provide little 
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support for this hypothesis. Short-term (3 to 4 months) climate forecast combined with 

information on stored soil water at planting have been used to help make crop 

management decisions in northeast Australia (Stone et al., 1992), which is strongly 

influenced by the El Nino southern oscillation. With accurate data input (soil physical 

properties, genetic material and weather conditions) modeling can be used as a cropping 

system tool (Staggenborg et al., 2005).  Perhaps flexible fallow systems will need to 

await better climate forecasting skill than is currently available for the Central Great 

Plains. Until that time, growers need to make their decisions on the use of summer fallow 

based on their level of aversion to risk, i.e. variability, or their level of concern about the 

negative soil and environmental consequences of summer fallow.  
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Tables 

 

Table 1. Planting and harvesting dates at Akron, CO for corn, winter wheat and triticale.  

Year of        

harvest Maize Spring triticale Winter wheat 

  Planting date Harvest date Planting date Harvest date Planting date Harvest date 

2009 12-May-09 6-Oct-09 (dryland)  3-Apr-09 7-May-09 20-Sep-08 20-Jul-09 

    26-Oct-10 (irrigated)          

2010 10-May-10 6-Oct-10 (dryland) 20-Apr-10  *  28-Sep-09 14-Jul-10 

     13-Oct-10 (irrigated)         

2011 

17-May-11 

 

13-Oct-11 (dryland) 

24-Oct-11 (irrigated)  

1-Apr-11 

 

22-Jun-11 

 

22-Sep-10 

 

18-Jul-11 

 

*Not harvested because winter triticale was seeded in error and it failed to vernalize and produce spikes.   
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           Table 2. Planting and harvesting dates at Sidney, NE for corn, winter wheat and triticale. 

Year of              

harvest Maize Spring triticale Winter wheat 

  Planting date Harvest date Planting date Harvest date Planting date Harvest date 

2009 13-May-09 7-Oct-09 13-Apr-09 30-Jun-09 10-Sep-08 15-Jul-09 

2010 10-May-10 7-Oct-10 30-Mar-10 22-Jun-10 10-Sep-09 13-Jul-10 

2011 *  * 1-Apr-11 22-Jun-11 9-Sep-10 19-Jul-11 

*No corn was planted at Sidney in 2011.         
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Table 3. Phenological stages at which various soil and crop measurements were taken for each crop. 

Spring Triticale 

  

Wheat 

  

Corn 

Soil water *LAI Biomass Soil water LAI Biomass Soil water LAI Biomass 

Planting Jointing Jointing Emergence Jointing Jointing Planting V8 V8 

Emergence Heading Harvest 

Mid 

November 

Mid way to 

flowering Flowering V8 Flowering Flowering 

Jointing 

 

Mid March Flowering Harvest Flowering Late milk Late milk 

Harvest Jointing Dough 

 

Late milk 

  

 

Flowering 

 

Maturity 

  Maturity 

   *LAI= leaf area index . 
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Table 4. Crop parameters used in AquaCrop to simulate winter 

wheat. 

Parameter Value Units 

Initial canopy cover 3.75 % 

Canopy growth coefficient (CGC) 2.4 %/day 

Maximum canopy cover (CCx) 90 % 

Canopy decline coefficient (CDC) 3.1 %/day 

Senescence 253 Calendar days 

Maturity 296 Calendar days 

Duration of flowering 14 Calendar days 

From day 1 after sowing to flowering 246 Calendar days 

Maximum effective rooting depth 1.8 Meter 

Minimum effective rooting depth 0.3 Meter 

   

Soil evaporation coefficient (Ke) 50 % 

Crop transpiration coefficient (Kcb) 0.6  

Crop water productivity (WP*) 21 g/m2 

Reference harvest index (HIo) 27 % 

   

Canopy expansion p-upper 0.3  

Canopy expansion p-lower 0.65  

Canopy expansion shape factor 3.5  

Stomatal closure p-upper 0.45  

Stomatal closure shape factor 3.5  

Early canopy senescence p-upper 0.75  

Early canopy senescence shape factor 3.5  

Aeration stress None  

   

Fertility stress None  
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Table 5. Crop parameters used in AquaCrop to simulate 

triticale. 

Parameter Value Units  

Initial canopy cover 4.95 % 

Canopy growth coefficient (CGC) 8.7 %/day 

Maximum canopy cover (CCx) 80 % 

Canopy decline coefficient (CDC) 13.5 %/day 

Senescence 125 Calendar days 

Maturity  125 Calendar days 

Duration of flowering  8 Calendar days 

From day 1 after sowing to flowering 90 Calendar days 

Maximum effective rooting depth  1.8 Meter 

Minimum effective rooting depth  0.3 Meter 

      

Soil evaporation coefficient (Ke) 50 % 

Crop transpiration coefficient (Kcb) 0.65   

Crop water productivity (WP*) 23 g/m2 

Reference harvest index (HIo) 27 % 

      

Canopy expansion p-upper 0.3   

Canopy expansion p-lower 0.65   

Canopy expansion shape factor 3.5   

Stomatal closure p-upper 0.45   

Stomatal closure shape factor 3.5   

Early canopy senescence p-upper 0.75   

Early canopy senescence shape factor 0.35   

Aeration stress None   

      

Fertility stress  None   
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Table 6. Crop parameters used in AquaCrop to simulate corn. 

Parameters Value Units  

Initial canopy cover 0.24 % 

Canopy growth coefficient (CGC) 12.2 %/day 

Maximum canopy cover (CCx) 75 % 

Canopy decline coefficient (CDC) 7.4 %/day 

Senescence 109 Calendar days 

Maturity  141 Calendar days 

Duration of flowering  12 Calendar days 

From day 1 after sowing to flowering 80 Calendar days 

Maximum effective rooting depth  1.8 Meter 

Minimum effective rooting depth  0.3 Meter 

      

Soil evaporation coefficient (Ke) 50 % 

Crop transpiration coefficient (Kcb) 1.05   

Crop water productivity (WP*) 30.7 g/m2 

Reference harvest index (HIo) 49 % 

      

Canopy expansion p-upper 0.1   

Canopy expansion p-lower 0.45   

Canopy expansion shape factor 2.6   

Stomatal closure p-upper 0.45   

Stomatal closure shape factor 6   

Early canopy senescence p-upper 0.45   

Early canopy senescence shape factor 2.7   

Aeration stress None   

      

Fertility stress  None   
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Table 7. Historical prices for winter wheat, corn, and 

spring triticale. 

  Winter wheat Corn Spring triticale 

Year --------------------------US $ kg
-1

-------------------------- 

1988 0.138 0.100 0.079 

1989 0.136 0.093 0.077 

1990 0.093 0.090 0.071 

1991 0.120 0.093 0.061 

1992 0.119 0.081 0.064 

1993 0.115 0.098 0.073 

1994 0.128 0.089 0.075 

1995 0.176 0.128 0.071 

1996 0.157 0.107 0.083 

1997 0.118 0.096 0.087 

1998 0.095 0.076 0.072 

1999 0.095 0.074 0.065 

2000 0.100 0.074 0.073 

2001 0.100 0.078 0.085 

2002 0.135 0.091 0.082 

2003 0.119 0.095 0.074 

2004 0.121 0.081 0.080 

2005 0.124 0.079 0.085 

2006 0.166 0.120 0.092 

2007 0.226 0.165 0.112 

2008 0.253 0.160 0.135 

2009 0.178 0.140 0.092 

2010 0.238 0.204 0.100 
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Table 8. Production cost for winter wheat, corn, spring triticale and fallow.  

  Price index Winter wheat Corn Spring triticale Fallow 

Year  ------------------------------------------US $ ha
-1

----------------------------------------- 

1988 92 166 200 170 26 

1989 97 175 211 179 27 

1990 99 179 216 183 28 

1991 100 180 218 185 28 

1992 101 182 220 186 29 

1993 103 186 224 190 29 

1994 106 191 231 196 30 

1995 108 195 235 199 31 

1996 115 207 250 212 33 

1997 118 213 257 218 33 

1998 114 206 248 210 32 

1999 113 204 246 209 32 

2000 115 207 250 212 33 

2001 120 217 261 221 34 

2002 119 215 259 220 34 

2003 124 224 270 229 35 

2004 132 238 287 244 37 

2005 140 253 305 258 40 

2006 150 271 327 277 42 

2007 162 292 353 299 46 

2008 188 339 409 347 53 

2009 183 330 398 338 52 

2010 186 336 405 343 53 
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Table 9. Statistics for the comparison between observed and simulated values for seed 

yield, final biomass, and crop evapotranspiration (ET) for winter wheat and corn, and 

final biomass and crop ET for triticale, for the calibration of AquaCrop for Akron, CO.  

  Mean    

Variable name n  Observed  Simulated MRE RMSE d statistic 

Winter wheat              

Yield (kg ha 
-1

) 20 2180 2010 13 399 0.921 

Biomass  (kg ha 
-1

) 20 7340 7820 12 1050 0.938 

ET (mm) 20 380 395 9 35.1 0.890 

             

Spring triticale            

Biomass  (kg ha 
-1

) 8 4370 4490 28 1140 0.861 

ET (mm) 8 160 186 20 36.6 0.713 

             

Corn             

Yield (kg ha 
-1

) 12 3970 4010 20 754 0.961 

Biomass  (kg ha 
-1

) 8 11000 12500 24 2460 0.764 

ET (mm) 12 430 435 9 41.9 0.886 
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Table 10. Statistics for the comparison between observed and simulated values for seed 

yield, final biomass, and crop evapotranspiration (ET) for winter wheat and corn, and 

final biomass  and crop ET for triticale, for the validation of AquaCrop for Sidney, NE.  

  

Mean 

   Variable name n  Observed  Simulated MRE RMSE d statistic 

Winter wheat              

Yield (kg ha 
-1

) 12 3390 2530 24 1330 0.481 

Biomass  (kg ha 
-1

) 12 11400 9490 17 2880 0.481 

ET (mm) 12 534 410 23 135 0.389 

    

     Spring triticale   

     Biomass  (kg ha 
-1

) 6 4480 5500 39 1620 0.420 

ET (mm) 6 186 318 38 153 0.461 

    

     Corn    

     Yield (kg ha 
-1

) 8 6990 7370 4 500 0.242 

Biomass  (kg ha 
-1

) 8 16800 15800 13 2910 0.457 

ET (mm) 8 472 499 4 30.2 0.398 
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Table 11. Simulated grain yields for winter wheat and corn, and forage yields for triticale, in two fixed rotations [winter wheat-corn-triticale (WW-C-T) and winter wheat-corn-fallow 

(WW-C-F) ] and flexible fallow using three different soil water thresholds at planting (350, 375, and 400 mm) to determine when to plant triticale or use fallow at Akron, CO.  using 

historical weather data from 1988 through 2010. Winter wheat yields are reported at 12.5% moistures; corn yields are reported at 12.5% moisture; triticale yields are reported at 0% 

moisture. 

  

WW-C-T 

 

350 mm 

 

375 mm 

 

400 mm 

 

WW-C-F 

Year 

 

WW C    T 

 

WW     C    T 

 

WW    C    T 

 

WW    C    T 

 

WW    C 

  

-------------------------------------------------------------------------------------------------------------kg ha
-1

---------------------------------------------------------------------------------------------- 

1988   2140 3840 4800   2140 3840 4800   2140 3840 4800   2140 3840 4800   2700 3840 

1989   1720 3270 4510   1720 3270 ****   1720 3270 ****   1720 3270 ****   2230 4310 

1990   1990 7010 4800   2660 7010 4210   2660 7010 ****   2660 7010 ****   2920 7100 

1991   2320 4550 4960   2320 4760 4960   2920 4760 ****   2920 4760 ****   2920 4550 

1992   2880 6720 4740   2880 6720 4770   3000 7000 ****   3000 7000 ****   3060 6990 

1993   2080 6390 4770   2100 6390 4770   2450 6460 ****   2450 6460 ****   2450 6470 

1994   1830 4400 4620   1830 4600 4620   2450 4400 4640   2450 4400 ****   2450 4400 

1995   3000 2960 4370   3000 2960 4370   3000 2960 ****   3020 2960 ****   3020 2960 

1996   3040 7240 4770   3060 7240 ****   2860 7310 ****   2860 7310 ****   2870 7310 

1997   2140 6260 4990   2390 6360 4990   2390 6260 5000   2390 6260 ****   2390 6260 

1998   1970 5800 4550   1970 6220 4570   2030 6220 4550   2450 6220 ****   2450 6220 

1999   1760 7250 4990   1810 7250 ****   1760 7270 ****   2570 7580 ****   2570 7580 

2000   2110 4130 4600   2530 4200 4600   2530 4130 4610   2530 4150 4710   2530 4150 

2001   2440 6360 5040   2440 6540 5040   2450 6540 4950   2580 6540 ****   2930 6540 

2002   1540 70 3760   1580 70 ****   1010 71 ****   1760 75 ****   1750 590 

2003   2590 2900 5080   3350 2900 5080   3350 2900 5080   3350 2900 5080   3350 2900 

2004   2980 5820 4590   2980 6500 ****   3030 6490 ****   3030 6490 ****   3030 6490 

2005   2000 5840 4950   2730 5840 ****   2730 5850 ****   2730 5850 ****   2730 5850 

2006   1780 4870 4580   2170 4870 4580   2170 4870 ****   2170 4870 ****   2770 4870 

2007   1940 2140 4970   1940 3040 5270   2940 3040 5270   2940 3040 ****   2940 3040 

2008   1770 5060 5060   2420 5060 5060   2420 5300 ****   2600 5300 ****   2650 5300 

2009   2650 6900 5180   2570 6900 5180   3290 6900 5180   3290 6900 5180   3290 6900 

2010   2860 3570 5020   2860 3570 5020   2860 3570 5020   2860 3570 ****   1350 3570 

**** Years where fallow was implemented since the water threshold to grow spring triticale was not reached.  
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Table 12. Simulated grain yields for winter wheat and corn, and forage yields for triticale, in two fixed rotations [winter wheat-corn-triticale (WW-C-T) and winter wheat-corn-fallow 

(WW-C-F) ] and flexible fallow using three different soil water thresholds at planting (350, 375, and 400 mm) to determine when to plant triticale or use fallow at Sidney, NE using 

historical weather data from 1988 through 2010. Winter wheat yields are reported at 12.5% moistures; corn yields are reported at 12.5% moisture; triticale yields are reported at 0% 

moisture. 

  

WW-C-T 

 

350 mm 

 

375 mm 

 

400 mm 

 

WW-C-F 

Year 

 

WW     C    T 

 

WW     C    T 

 

WW     C    T 

 

WW    C    T 

 

WW    C 

  

-------------------------------------------------------------------------------------------------------------kg ha
-1

---------------------------------------------------------------------------------------------- 

1988   1780 2720 5370   1780 2720 5370   1780 2720 5370   1780 2720 5370   1780 2720 

1989   2310 3930 4990   2310 3930 ****   2310 3930 ****   2310 3930 ****   2200 3930 

1990   1280 5300 5310   2040 5300 5310   2040 5300 5310   2040 5300 ****   2040 5130 

1991   2400 4190 5600   2400 5030 5600   2400 5030 ****   2710 5030 ****   2710 5030 

1992   2750 7140 5300   2750 7140 ****   2680 7140 ****   2680 7140 ****   2680 7140 

1993   1960 6870 5610   2300 6870 5610   2300 6870 ****   2300 6870 ****   2300 6870 

1994   2140 6910 5720   2140 6910 5720   2330 6910 5720   2330 6910 5720   2330 6910 

1995   2490 3350 4975   2490 3350 ****   2490 3350 ****   2490 3350 ****   2500 3350 

1996   2510 6170 5310   2400 6170 ****   2400 6170 ****   2400 6170 ****   2400 6170 

1997   2250 5380 5600   2450 5380 5600   2450 5380 5600   2450 5380 5600   2450 5380 

1998   2440 7420 5510   2440 7420 5510   2440 7420 ****   2440 7420 ****   2440 7420 

1999   2660 7350 5620   2660 7350 ****   2710 7350 ****   2500 7350 ****   2710 7350 

2000   2330 1650 5650   2630 1650 5650   2630 1650 5650   2630 1650 ****   2630 1650 

2001   2420 7180 5630   2420 7180 5630   2420 7180 5630   2470 7180 ****   2470 7180 

2002   1820 795 4690   1820 795 4690   1820 795 ****   1820 3070 ****   1820 3070 

2003   1870 1510 5650   1870 1510 5650   2840 1510 5650   2840 1510 5650   2840 1510 

2004   2410 4910 5520   2410 4740 ****   2410 6140 ****   2420 6140 ****   2550 6130 

2005   2380 7180 5520   2530 7180 ****   2530 7180 ****   2530 7180 ****   2530 7180 

2006   2210 4790 5180   2320 4790 5180   2360 4790 5180   2360 4790 ****   2360 4800 

2007   2810 5000 5950   2810 5000 5950   2810 5000 5950   2940 5000 ****   2940 5000 

2008   2340 6170 5610   2340 6170 ****   2340 6170 ****   2380 6200 ****   2380 6200 

2009   2680 7330 5830   2850 7330 5830   2850 7330 ****   2850 7330 ****   2850 7330 

2010   2480 6240 5630   2480 6240 5630   2480 6240 5630   2480 6240 ****   2400 6240 

**** Years where fallow was implemented since the water threshold to grow spring triticale was not reach.  
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Table 13. Summary of simulated grain yield for winter wheat and corn and forage yield for triticale for Akron, CO. Winter wheat yields are reported at 12.5% moistures; corn 

yields are reported at 12.5% moisture; triticale yields are reported at 0% moisture. 

  WW-C-T   350mm   375 mm   400mm   WW-C-F 

  WW  C T   WW  C T   WW  C T   WW  C T   WW  C T 

  --------------------------------------------------------------------------------------------------kg ha
-1

--------------------------------------------------------------------------------------------- 

Average 2240 4930 4770   2410 5050 4820   2530 5060 4910   2630 5080 4940   2670 5140 -- 

Total 51500 113000 111000   55500 116000 81900   58200 116000 49100   60500 117000 19800   61400 118000 -- 

SD 469 1870 310   482 1850 294   551 1870 249   422 1890 221   458 1800 -- 

Minimum 1543 1543 1543   1543 1543 1543   1543 1543 1543   1543 1543 1543   1543 1543 -- 

Maximum 3042 3042 3042   3042 3042 3042   3042 3042 3042   3042 3042 3042   3042 3042 -- 

Range 1500 1500 1500   1500 1500 1500   1500 1500 1500   1500 1500 1500   1500 1500 -- 
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Table 14. Summary of simulated grain yield for winter wheat and corn and forage yield for triticale for Sidney, NE. Winter wheat yields are reported at 12.5% moistures; corn yields 

are reported at 12.5% moisture; triticale yields are reported at 0% moisture.   

  WW-C-T   350mm   375 mm   400mm   WW-C-F 

  WW  C T   WW  C T   WW  C T   WW  C T   WW  C T 

  -------------------------------------------------------------------------------------------------------kg ha
-1

----------------------------------------------------------------------------------------------- 

Average 2290 5200 5470   2370 5220 5530   2430 5290 5570   2240 5390 5580   2450 5380 -- 

Total 52700 119000 126000   54600 120000 82900   55800 122000 55700   56100 124000 22300   56300 124000 -- 

SD 356 2050 293   291 2040 301   278 2050 224   286 1870 1870   296 1870 -- 

Minimum 1283 1283 1283   1283 1283 1283   1283 1283 1283   1283 1283 1283   1283 1283 -- 

Maximum 2813 2813 2813   2813 2813 2813   2813 2813 2813   2813 2813 2813   2813 2813 -- 

Range 1530 1530 1530   1530 1530 1530   1530 1530 1530   1530 1530 1530   1530 1530 -- 
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Table 15. Statistical comparison of  average winter wheat grain yield predicted for each cropping 

system at Akron, CO. 

Water threshold  Estimate Std. error DF t-value     Pf > |t| 

WW-C-T vs. 350 mm -80 62.3 52 -1.24 0.222 

WW-C-T vs. 375 mm -150 68.6 52 -2.19 0.033 

WW-C-T vs. 400 mm -313 70.4 52 -4.44 <.0001 

WW-C-T vs. WW-C-F -545 74.9 52 -7.27 <.0001 

350 mm vs. 375 mm -73 70.8 52 -1.03 0.307 

350 mm vs. 400 mm -236 73.5 52 -3.21 0.002 

350 mm vs. WW-C-F -468 79.3 52 -5.90 <.0001 

375 mm vs. 400 mm -163 75.3 52 -2.16 0.035 

375 mm vs. WW-C-F -395 83.1 52 -4.75 <.0001 

400 mm vs. WW-C-F -232 82.9 52 -2.79 0.007 
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Table 16. Statistical comparison of average winter wheat grain yield predicted for each 

cropping system at Sidney, NE.   

Water threshold Estimate Std Error DF t-value Pf > |t| 

WW-C-T vs. 350 mm -37 40 52 -0.94 0.353 

WW-C-T vs. 375 mm -75 41 52 -1.83 0.073 

WW-C-T vs. 400 mm -150 44 52 2.42 0.019 

WW-C-T vs. W-C-F -197 46 52 -4.25 <.0001 

350 mm vs. 375 mm -39 43 52 -0.89 0.337 

350 mm vs. 400 mm -68 46 52 -1.50 0.14 

350 mm vs. W-C-F -160 50 52 -3.23 0.002 

375 mm vs. 400 mm -30 45 52 -0.66 0.514 

375 mm vs. W-C-F -121 51 52 -2.37 0.021 

400 mm vs. W-C-F -92 54 52 -1.71 0.093 
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Table 17. Statistical comparison of  average corn grain yield predicted for each cropping 

system at Akron, CO. 

Water threshold  Estimate Std Error DF t-value Pf > |t| 

WW-C-T vs. 350 mm -121.0 58.9 52 -2.05 0.045 

WW-C-T vs. 375 mm -129.4 64.9 52 -1.99 0.051 

WW-C-T vs. 400 mm -149.6 66.7 52 -2.24 0.029 

WW-C-T vs. WW-C-F -243.2 71.0 52 -3.43 0.001 

350 mm vs. 375 mm -8.5 66.9 52 -0.13 0.900 

350 mm vs. 400 mm -28.6 69.5 52 -0.41 0.682 

350 mm vs. WW-C-F -122.3 75.1 52 -1.63 0.110 

375 mm vs. 400 mm -20.2 71.0 52 -0.28 0.778 

375 mm vs. WW-C-F -113.8 78.7 52 -1.45 0.154 

400 mm vs. WW-C-F -93.6 78.4 52 -1.19 0.238 
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Table 18. Statistical comparison of average corn grain yield predicted for each cropping  

system at Sidney, NE.   
Water threshold Estimate Std Error DF t-value Pf > |t| 

WW-C-T vs. 350 mm -14.5 160.9 52 -0.14 0.893 

WW-C-T vs. 375 mm -118.2 112.5 52 -1.05 0.298 

WW-C-T vs. 400 mm -304.1 118.6 52 -2.57 0.013 

WW-C-T vs. W-C-F -94.9 126.1 52 -0.75 0.455 

350 mm vs. 375 mm -103.7 118.0 52 -0.88 0.383 

350 mm vs. 400 mm -289.7 124.0 52 -2.34 0.023 

350 mm vs. W-C-F -80.4 134.7 52 -0.6 0.553 

375 mm vs. 400 mm -185.9 122.9 52 -1.51 0.136 

375 mm vs. W-C-F 23.3 139.1 52 0.17 0.867 

400 mm vs. W-C-F 209.3 145.8 52 1.43 0.157 
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Table 19. Statistical comparison of average triticale biomass yield predicted for each cropping 

system at Akron, CO.   

Water threshold  Estimate Std Error DF t-value Pf > |t| 

WW-C-T vs. 350 mm 8.6 32.3 26 0.27 0.792 

WW-C-T vs. 375 mm -9.0 39.9 26 -0.23 0.823 

WW-C-T vs. 400 mm -31.4 58.1 26 -0.54 0.593 

350 mm vs. 375 mm -17.6 40.0 26 -0.44 0.664 

350 mm vs. 400 mm -40.0 58.2 26 -0.69 0.497 

375 mm vs. 400 mm -22.4 59.8 26 -0.38 0.710 
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Table 20. Statistical comparison of average spring triticale biomass yield predicted for each 

cropping system at Sidney, NE.  

Water threshold Estimate Std Error DF t-value Pf > |t| 

WW-C-T vs. 350 mm -2E-05 0.042 26 0 1 

WW-C-T vs. 375 mm -3E-05 0.049 26 0 1 

WW-C-T vs. 400 mm -3E-05 0.071 26 0 1 

350 mm vs. 375 mm -7E-06 0.049 26 0 1 

350 mm vs. 400 mm -8E-06 0.071 26 0 1 

375 mm vs. 400 mm -2E-06 0.072 26 0 1 
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Table 21. Economic returns for simulated grain yields for winter wheat and corn, and forage yields for triticale, in two fixed rotations [winter wheat-corn-triticale 

(WW-C-T) and winter wheat-corn-fallow (WW-C-F)] and flexible fallow using three different soil water thresholds at planting (350, 375, 400 mm) to determine when to 

plant triticale or use fallow at Akron, CO. using historical weather data from 1988 through 2010. 

 

    375 mm 400 mm WW-C-F 

Year WW     C   T System  WW      C   T System  WW  C T System  WW  C T System  WW     C   T System  

 

 -----------------------------------------------------------------------------------------------US $ ha
-1

------------------------------------------------------------------------------------------------  

1988 129 184 209 174 129 184 209 174 129 184 209 174 129 184 209 174 206 184 -26 121 

1989 58 92 166 106 58 92 -27 41 58 92 -27 41 58 92 -27 41 127 189 -27 96 

1990 6 414 157 192 68 414 115 199 68 414 -28 151 68 414 -28 151 92 422 -28 162 

1991 97 207 117 140 97 226 117 147 169 226 -28 122 169 226 -28 122 169 207 -28 116 

1992 160 328 116 201 160 328 118 202 174 350 -29 165 174 350 -29 165 180 349 -29 167 

1993 53 404 158 205 55 404 158 206 96 411 -29 159 96 411 -29 159 96 413 -29 160 

1994 43 160 152 118 43 178 152 124 121 160 152 145 121 160 -30 84 122 160 -30 84 

1995 334 142 112 196 334 142 112 196 333 142 -31 148 338 142 -31 150 338 142 -31 150 

1996 271 522 184 325 273 522 -33 254 243 529 -33 246 243 529 -33 246 243 529 -33 247 

1997 39 341 218 200 68 351 218 213 68 341 218 209 68 341 -33 126 68 341 -33 125 

1998 -19 195 117 97 -19 227 118 109 -13 227 118 111 26 227 -32 74 26 227 -32 74 

1999 -37 293 118 125 -32 293 -32 76 -37 295 -32 75 40 317 -32 108 40 317 -32 108 

2000 4 57 122 61 46 62 122 77 46 57 122 75 46 58 122 75 46 58 -33 24 

2001 27 232 207 155 27 245 207 160 27 245 207 160 40 245 -34 84 76 245 -34 96 

2002 -6 -253 87 -57 -1 -253 -34 -96 -78 -253 -34 -121 23 -252 -34 -88 22 -206 -34 -72 

2003 84 6 147 79 174 6 147 109 174 6 147 109 174 6 147 109 174 6 -35 48 

2004 122 184 125 144 122 239 -37 108 128 239 -37 110 128 239 -37 110 128 239 -37 110 

2005 -5 155 162 104 86 155 -40 67 86 155 -40 67 86 155 -40 67 86 155 -40 67 

2006 25 256 146 142 90 256 146 164 90 256 -42 101 90 256 -42 101 190 256 -42 135 

2007 147 1 257 135 147 149 290 195 372 149 290 271 372 149 -46 158 372 149 -46 158 

2008 109 399 335 281 274 399 334 336 274 438 -53 219 319 438 -53 235 333 438 -53 239 

2009 140 566 140 282 127 566 140 278 255 566 140 320 255 566 140 320 255 566 -52 256 

2010 346 323 160 277 346 323 160 277 346 323 160 277 346 323 -53 206 -14 323 -53 86 
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Table 22. Economic return for simulated grain yields for winter wheat and corn, and forage yields for triticale, in two fixed rotations [winter wheat-corn-triticale (WW-C-T) 

and winter wheat-corn-fallow (WW-C-F)] and flexible fallow using three different soil water thresholds at planting (350, 375, 400 mm) to determine when to plant triticale 

or use fallow at Sidney, NE using historical weather data from 1988 through 2010. 

  WW-C-T 350 mm 375 mm 400 mm WW-C-F 

Year WW       C T System  WW  C T System  WW  C T System  WW  C T System  WW  C T System  

   ------------------------------------------------------------------------------------------------US $ ha
-1

-----------------------------------------------------------------------------------------------  

1988 79 71 253 134 79 71 253 134 79 71 253 134 79 71 253 134 79 71 -26 42 

1989 138 154 203 165 138 154 -27 88 138 154 -27 88 138 154 -27 88 123 154 -27 83 

1990 -60 260 193 131 10 260 193 154 10 260 193 154 10 260 -28 81 10 244 -28 75 

1991 106 173 156 145 106 252 156 172 106 252 -28 110 144 252 -28 122 144 252 -28 122 

1992 144 362 152 219 144 362 -29 159 136 362 -29 156 136 362 -29 156 135 362 -29 156 

1993 40 451 219 237 78 451 219 249 78 451 -29 167 78 451 -29 167 78 451 -29 167 

1994 82 384 234 233 82 384 234 233 107 384 234 242 107 384 234 242 107 384 -30 154 

1995 245 192 155 197 245 192 -31 135 245 192 -31 135 245 192 -31 135 245 192 -31 135 

1996 187 407 229 274 169 407 -33 181 169 407 -33 181 169 407 -33 181 169 407 -33 181 

1997 52 258 271 194 75 258 271 201 75 258 271 201 75 258 271 201 75 258 -33 100 

1998 25 318 186 176 25 318 186 176 25 318 -32 104 25 318 -32 104 25 318 -32 104 

1999 48 301 159 169 48 301 -32 106 53 301 -32 107 33 301 -32 101 53 301 -32 107 

2000 26 -127 197 32 56 -127 197 42 56 -127 197 42 56 -127 -33 -35 56 -127 -33 -35 

2001 25 295 256 192 25 295 256 192 25 295 256 192 29 295 -34 97 29 295 -34 97 

2002 31 -187 163 3 31 -187 163 3 31 -187 -34 -63 31 21 -34 6 31 21 -34 6 

2003 -2 -126 190 21 -2 -126 190 21 114 -126 190 59 114 -126 190 59 113 -126 -35 -16 

2004 53 111 200 121 53 97 -37 38 53 210 -37 75 54 210 -37 76 70 210 -37 81 

2005 43 260 210 171 61 260 -40 94 61 260 -40 94 61 260 -40 94 61 260 -40 94 

2006 97 247 201 181 115 247 201 187 122 247 201 190 122 247 -42 109 122 247 -42 109 

2007 343 473 367 394 343 473 367 394 343 473 367 394 371 473 -46 266 371 473 -46 266 

2008 253 577 408 413 253 577 -53 259 253 577 -53 259 265 581 -53 264 265 581 -53 264 

2009 146 625 200 324 176 625 200 334 176 625 -52 250 176 625 -52 250 176 625 -52 250 

2010 257 868 221 449 257 868 221 449 257 868 221 449 257 868 -53 357 238 868 -53 351 
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Table 23.  Summary of economic returns for Akron, CO. 

 
WW-C-T 350mm 375 mm 400mm WW-C-F 

 

------------------------------US $ ha
-1

----------------------------- 

Average 160 157 145 129 120 

Standard Deviation 84 93 93 81   73 

Minimum -57 -96 -121 -88  -72 

Maximum 325 336 320 320 256 

Range 383 432 442 408 329 
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Table 24.  Summary of economic returns for Sidney, NE. 

  WW-C-T 350mm 375 mm 400mm WW-C-F 

 

--------------------------------US $ ha
-1

------------------------------ 

Average 199 174 162 142     126 

Standard Deviation 115 112 110 91     93 

Minimum 3 3 -63 -35     -35 

Maximum 449 449 449 357     351 

Range 446 446 512 392     386 
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Table 25. Statistical comparisons of average differences in economic returns between 

cropping systems at Akron, CO.  

Water threshold  US $ ha 
-1

 Std Error DF t-value Pf > |t| 

WW-C-T vs. 350 mm   2.9 8.68 88 0.34 0.733 

WW-C-T vs. 375 mm 15.1 8.68 88 1.74 0.085 

WW-C-T vs. 400 mm 30.6 8.68 88 3.53 <0.001 

WW-C-T vs. W-C-F 40.3 8.68 88 4.63 <0.001 

350 mm vs. 375 mm 12.1 8.68 88 1.4 0.165 

350 mm vs. 400 mm 27.7 8.68 88 3.18 0.002 

350 mm vs. W-C-F 37.3 8.68 88 4.29 <0.001 

375 mm vs. 400 mm 15.5 8.68 88 1.79 0.008 

375 mm vs. W-C-F 25.1 8.68 88 2.89 0.005 

400 mm vs. W-C-F   9.6 8.68 88 1.11 0.271 
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Table 26. Statistical comparisons of average differences in economic returns between 

cropping systems at Sidney, NE.  

Water threshold US $ ha
-1 

Std Error DF t-value Pf > |t| 

WW-C-T vs. 350 mm 25.0 9.24 88 2.71 0.008 

WW-C-T vs. 375 mm 37.2 9.24 88 4.03 <0.001 

WW-C-T vs. 400 mm 57.5 9.24 88 6.22 <0.001 

WW-C-T vs. W-C-F 73.2 9.24 88 7.93 <0.001 

350 mm vs. 375 mm 12.2 9.24 88 1.32 0.189 

350 mm vs. 400 mm 32.5 9.24 88 3.51 <0.001 

350 mm vs. W-C-F 48.2 9.24 88 5.22 <0.001 

375 mm vs. 400 mm 20.2 9.24 88 2.19 0.031 

375 mm vs. W-C-F 36.0 9.24 88 3.9 <0.001 

400 mm vs. W-C-F 15.8 9.24 88 1.71 0.091 
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Figure 1. Simulated vs. observed yield values for corn at Akron, CO. 
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Biomass Corn at Akron, CO
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Figure 2. Simulated vs. observed biomass values for corn at Akron, CO. 
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ET Corn at Akron, CO
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Figure 3. Simulated vs. observed ET values for corn at Akron, CO. 
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Biomass Triticale at Akron, CO
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Figure 4. Simulated vs. observed biomass values for triticale at Akron, CO. 

 

 

 



80 
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Figure 5. Simulated vs. observed ET values for triticale at Akron, CO. 
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Yield Wheat Akron, CO
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Figure 6. Simulated vs. observed yield values for winter wheat at Akron, CO. 
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Biomass Wheat at Akron, CO
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Figure 7. Simulated vs. observed biomass values for winter wheat at Akron, CO. 
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ET Wheat at Akron, CO
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Figure 8. Simulated vs. observed ET values for winter wheat at Akron, CO. 
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Yield Corn at Sidney, NE
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Figure 9. Simulated vs. observed yield values for corn at Sidney, NE. 
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Biomass Corn at Sidney, NE
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Figure 10. Simulated vs. observed biomass values for corn at Sidney, NE. 
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ET Corn at Sidney, NE
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Figure 11. Simulated vs. observed ET values for corn at Sidney, NE. 
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Biomass Triticale at Sidney, NE
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Figure 12. Simulated vs. observed biomass values for triticale at Sidney, NE. 
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ET Triticale at Sidney, NE
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Figure 13. Simulated vs. observed ET values for triticale at Sidney, NE. 
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Yield Wheat at Sidney, NE
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Figure 14. Simulated vs. observed yield values for winter wheat at Sidney, NE. 
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Biomass Wheat at Sideney, NE
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Figure 15. Simulated vs. observed biomass values for winter wheat at Sidney, NE. 
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ET Wheat at Sidney, NE
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Figure 16. Simulated vs. observed ET values for winter wheat at Sidney, NE. 
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Income at Akron, CO
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Figure 17. Box plots of income using different cropping systems at Akron, CO. 

Note: Black circles represent 5
th 

and 95
th
 percentiles. Box contains the 25

th
and 75

th
 percentile. Dash line represents median value. Solid 

line represents median. The ends of the bars represent the 10
th 

and the 90
th 

percentiles. 
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Income at Sidney, NE
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Figure 18. Box plots of income using different cropping systems at Sidney, NE. 
Note: Black circles represent 5

th 
and 95

th
 percentiles. Box contains the 25

th
and 75

th
 percentile. Dash line represents median value. Solid 

line represents median. The ends of the bars represent the 10
th 

and the 90
th 

percentiles. 
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Appendix A. Box plot for winter wheat and corn grain yield, and triticale biomass 

yield at different cropping system for Akron, CO. and Sidney NE.  
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Figure 1. Box plot for winter wheat grain yield at different cropping system at Akron, CO. 

Note: Black circles represent 5
th 

and 95
th
 percentiles. Box contains the 25

th
and 75

th
 percentile. Dash line represents median value. Solid 

line represents median. The ends of the bars represent the 10
th 

and the 90
th 

percentiles. 
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Corn at Akron, CO
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Figure 2. Box plot for corn grain yield at different cropping system at Akron, CO. 

Note: Black circles represent 5
th 

and 95
th
 percentiles. Box contains the 25

th
and 75

th
 percentile. Dash line represents median value. Solid 

line represents median. The ends of the bars represent the 10
th 

and the 90
th 

percentiles. 
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Triticale at Akron, CO

Cropping system

WW-C-T 350 mm 375 mm 400 mm

Y
ie

ld
 (

k
g

 h
a

-1
)

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

 
Figure 3. Box plot for triticale biomass yield at different cropping system at Akron, CO. 

Note: Black circles represent 5
th 

and 95
th
 percentiles. Box contains the 25

th
and 75

th
 percentile. Dash line represents median value. Solid 

line represents median. The ends of the bars represent the 10
th 

and the 90
th 

percentiles. 
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Wheat at Sidney, NE

Cropping system

WW-C-T 350 mm 375 mm 400 mm WW-C-F

Y
ie

ld
 (

k
g

 h
a

-1
)

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

 
Figure 4. Box plot for winter wheat grain yield at different cropping system at Sidney, NE. 

Note: Black circles represent 5
th 

and 95
th
 percentiles. Box contains the 25

th
and 75

th
 percentile. Dash line represents median value. Solid 

line represents median. The ends of the bars represent the 10
th 

and the 90
th 

percentiles. 
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Corn at Sidney, NE
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Figure 5. Box plot for corn grain yield at different cropping system at Sidney, NE. 

Note: Black circles represent 5
th 

and 95
th
 percentiles. Box contains the 25

th
and 75

th
 percentile. Dash line represents median value. Solid 

line represents median. The ends of the bars represent the 10
th 

and the 90
th 

percentiles. 
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Triticale at Sidney, NE

Cropping system
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Figure 6. Box plot for triticale biomass yield at different cropping system at Sidney, NE. 

Note: Black circles represent 5
th 

and 95
th
 percentiles. Box contains the 25

th
and 75

th
 percentile. Dash line represents median value. Solid 

line represents median. The ends of the bars represent the 10
th 

and the 90
th 

percentiles. 
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