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Insect herbivory can have a major influence on plant reproduction, and potentially 

drive selection for strategies that reduce or resist herbivore effects.  I used a combination 

of field experiments and ecological modeling to examine how modifications in the 

patterns and timing of reproductive investment might ameliorate the consequences of 

herbivore damage for plant reproduction. I performed experiments to examine how 

changes in reproductive effort after apical damage and reduction of insect herbivory 

affected seed production in two thistles native to Nebraska.  I then used field data to 

parameterize a life history model predicting the resource allocation among buds and size 

and timing of flowering that would optimize fitness under a continual risk of herbivory. 

In monocarpic Cirsium canescens, insect herbivores had a severe impact on plant 

seed production.  Plants did modify reproductive effort in response to apical damage. 

High seed production from a large apical head, as well as increased flowering and seed 

production with apical damage from later flower heads, played a role in improving seed 

production.  However, changes in flowering and investment patterns were insufficient to 

compensate for high insect damage;  plants had lower seed set under ambient herbivory.  

We found similar effects in the iterocarpic Cirsium undulatum, although plant responses 

were not consistent between years.  The combination of these two experiments allowed 

us to quantify the influence of plant reproductive response on the consequences of insect 

damage, and how it varies between plants with different life history strategies. 



To better understand how the risk of insect herbivory might shape optimal plant 

allocation patterns, I constructed a stochastic dynamic programming model (SDP) to 

examine the optimal allocation between flower heads through time, and the size and time 

at which buds should flower to maximize fitness.  The model predicts optimal allocation 

patterns should vary with survival risk, and plants should favor strategies that reduce the 

duration of risk.  Both the model and experiments demonstrate the pressure insect 

herbivores can exert over plant reproductive strategies, and broaden our understanding of 

how ecological interactions can affect influence basic life history decisions. 
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Chapter 1. 

Variation in cumulative insect floral herbivory affects expression of 

plant tolerance 

Abstract. Insect floral herbivory can dramatically reduce plant reproductive success. 

Thus, plants should have evolved mechanisms that minimize the effect of insect 

herbivores, particularly in monocarpic species that must maximize fitness in a single 

flowering year. Tolerance is one such mechanism; however, few experiments to date 

evaluate underlying mechanisms of plant tolerance under natural conditions. We 

compared plant seed production by the monocarpic Cirsium canescens (Platte thistle) in 

control (undamaged) plants versus plants with damage imposed upon the apical, flower 

head. We hypothesized that C. canescens would tolerate damage to its large, early, apical 

flower head by increasing reproductive effort in subsequent flower heads, compensating 

for potential fitness loss under herbivore pressure during its final, fatal, flowering season. 

In addition, we examined the consequences of each damage treatment in plants with 

versus without experimentally reduced subsequent floral herbivory. We found that plants 

under ambient herbivory (unprotected subsequent heads) undercompensated for the loss 

of apical seed production; total plant seed set was lower when the large apical flower 

head was damaged.  However, when insect herbivory was reduced on the later flower 

heads, significant compensation for apical seed loss occurred. The compensation 

reflected greater seed maturation by later flower heads, rather than greater subsequent 

flower head production, indicating that the total number of flower heads was constrained.  

These results provide the first analysis of plant mechanisms that reduce the effects of 

insect floral herbivores on C. canescens, a well-studied species in which the local 
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abundance and population dynamics are strongly influenced by insect herbivory. Further, 

the study highlights the importance of considering how variation in the intensity of 

biological interactions can determine the success of plant tolerance strategies to 

maximize individual plant fitness.    

Keywords: apical dominance, Cirsium, herbivory, insect herbivory, plant population, 

plant reproductive biology, plant tolerance, plant-insect interaction, thistle  
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INTRODUCTION 

 Insect floral herbivory represents a major challenge to fitness for many 

monocarpic plants. Destruction of developing inflorescences and seeds, sometimes called 

predispersal seed predation, affects many species (Janzen 1971, Harper 1977, Crawley 

1992). Floral consumption often dramatically reduces plant reproductive success (Louda 

1982, Hendrix 1988, Crawley 1992, Karban and Strauss 1993, Louda and Potvin 1995, 

Crawley 1997, Krupnick et al. 1999, McCall and Irwin 2006), and can significantly lower 

plant population growth rate (Tenhumberg et al 2008) and, thus, plant population density 

(Louda 1983, Louda and Potvin 1995, Kolb et al. 2007, Jongejans et al. 2008). Whereas 

iterocarpic plants have multiple reproductive bouts in which to increase fitness in the 

presence of high, but variable, floral herbivore pressure, monocarpic species must 

maximize reproductive fitness in their single flowering season.  Therefore, where 

monocarpic plants are consistently exposed to intense floral herbivory, plant responses 

that increase tolerance for within-season reproductive losses to herbivores would be 

expected to provide an important contribution to plant fitness (Järemo and Palmqvist 

2001).  

 Compensatory reproductive effort has been proposed as an important tolerance 

mechanism to ensure reproductive success despite substantial herbivory (Strauss and 

Agrawal 1999, Huhta et al. 2000, Lehtilä 2000). Compensatory reproductive response to 

floral herbivory has been observed and demonstrated in some species (Whigham and 

Chapa 1999, Hawkes and Sullivan 2001, Klimešová et al. 2007). However, the ecological 

dynamics, magnitudes of response, and fitness consequences of reproductive 
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compensation as a tolerance mechanism for floral herbivory under field conditions 

remain largely unexplored (Hendrix 1988, Tiffin 2000, Valladares et al. 2007).    

 Plant resistance to herbivory, involving minimization of damage by enhanced 

defenses, has received extensive study (e.g., Ehrlich and Raven 1964, Agrawal 2005, 

Boege et al. 2007, Heil 2008). Plant tolerance to herbivory, involving minimization of the 

consequences of herbivore damage on plant growth or reproduction (e.g., Pilson 2000, 

Tiffin 2000, Pilson and Decker 2002, Wise et al. 2008), has received much less attention 

(Stransky 1984, Stowe et al. 2000, Banta et al. 2010). Further, previous research on 

tolerance has focused primarily on compensation for foliar losses, especially to ungulate 

grazing (e.g., McNaughton, 1983, Tuomi et al. 1994), and on evolutionary aspects of the 

reproductive response to herbivory, such as flowering pattern (Lloyd 1980, Lovett Doust 

and Lovett Doust 1988), optimal resource allocation to reproduction (Miller et al 2008), 

sex allocation (Brunet 1996, Sanchez-Lafuente 2007), and suites of traits that give rise to 

tolerance (Pilson and Decker 2002, Östergård et al. 2007, Wise et al. 2008). Few 

experimental field studies to date have evaluated the degree to which changes in the 

within plant distribution of flowering and seed production occur in response to insect 

floral herbivory or the extent to which such responses succeed in compensating for 

herbivory losses within natural plant populations (Trumble et al. 1993, Huhta et al. 2000). 

Herbivory tolerance due apical damage has been perceived as arising from a 

quantitative response in branch number or in flower head number, i.e., more branching or 

more flower head buds activated or developed when apical dominance is broken (Aarssen 

1995).  However, more experimental evaluation of this expectation is needed under 

natural conditions, to provide information on: components of the plant flowering 
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response; consequences for fitness following damage to the initial apical flower head; and 

the relative contribution of apical dominance and subsequent flowering to tolerance.  

The aim of our experiment was to develop a better mechanistic understanding of 

plant tolerance to herbivory and quantify the benefit of plant tolerance with respect to the 

fitness of monocarpic plants under field conditions. As a case study, we manipulated 

apical damage and subsequent floral herbivory to quantify the response in flowering and 

successful fruit by Cirsium canescens Nutt. (Platte thistle), a well-studied, monocarpic, 

native plant characteristic of sand prairie in the Great Plains (Kaul et al. 2007).   Prior 

experimental evidence has shown that intense insect floral herbivory significantly reduces 

average plant fitness and population density, and lowers the population growth rate of C. 

canescens (Lamp and McCarty 1981, Louda et al. 1990, Louda and Potvin 1995, Rose et 

al. 2005). Therefore, we would expect to find modifications in plant growth and 

allocation that increase individual plant fitness might provide some degree of insect 

herbivory tolerance.   

We evaluated this prediction by quantifying patterns in plant response to 

experimentally-imposed early-season insect herbivory on the largest flower head, the 

initial apical head, compared to controls. In addition, each apical treatment was divided 

into plants with versus and without experimental reduction of herbivory on the 

subsequent, later flowering heads. Previous work showed that herbivory on the apical 

flower head is often severe, but highly variable in occurrence (Louda and Potvin 1995); 

also, the proportion of individuals within a season that have aborted apical flower heads 

due to insect damage can be as high as 50% (Lamp 1980).  Similarly, herbivory on 

subsequent heads is severe, but highly variable among individuals (Lamp 1980, Louda 
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and Potvin 1995).  When the apical flower head of C. canescens escapes herbivory, it 

contributes substantially to plant fitness by producing more seeds than do later flower 

heads (Louda and Potvin 1995).  Since apical dominance leads to unequal partitioning of 

resources (Cline 1991, Obeso 2002), loss of this particular flower head could have 

disproportionate consequences for plant fitness.  

Based on plant allocation theory, we expected damage to the apical head to lead 

to significant increases in the number of subsequent, lower-positioned flower heads that 

develop and reach anthesis, compensating or potentially overcompensating for early 

apical head seed losses (Tuomi et al. 1994, Aarssen 1995, Banta et al. 2010).  

Reproductive structures represent high priority resource sinks, and loss of apical 

dominance allows activation of dormant buds (Cline 1991, Obeso 2002).  Therefore, 

increase in branching or in subsequent flower head development after release from apical 

dominance is expected to aid in plant tolerance for herbivory (Cline 1991, Marquis 1996, 

Strauss and Agrawal 1999, Obeso 2002).   

We also expected that a reduction of herbivory on subsequent flower heads, 

simulating the observed variation in insect damage among individuals, would show the 

plant’s capacity for compensatory response under field conditions (Figure 1.1A). Seed 

production in C. canescens is not resource limited (Louda and Potvin 1995).  Thus, we 

reasoned that when herbivory on subsequent flower heads was reduced, relatively more 

later, lower positioned, sub-apical flower heads (Figure 1.1B) would develop through 

flowering and set seed than would develop under higher average (ambient) levels of 

herbivory. If so, then the flowering response would demonstrate the extent of tolerance 

via plant compensatory response to apical flower head damage (Figure 1.1A). Thus, the 
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overall aim of the experiment was to evaluate the magnitude and ecological dynamics of 

potential compensatory reproductive effort as a tolerance mechanism for floral herbivory. 

Thus, we asked three questions:  1) Does the outcome of apical damage interact 

with variation in subsequent insect floral herbivory to affect total seed reproduction by C. 

canescens?;  2) What changes occur in plant structural investment (i.e., numbers of 

flower buds or branches) or in plant reproductive effort (i.e., numbers of flowering heads 

or seeds matured), and are these response patterns similar under different levels of 

herbivory?; and, 3) Is the within plant distribution of subsequent flowering effort and 

seed production altered after apical damage, and do differences in the level of floral 

herbivory on the subsequent, later-flowering heads affect the realized plant fitness 

outcome? The experimental results demonstrate complex variation in the ecological 

tolerance response. 

 

METHODS 

Study System 

 Cirsium canescens (Platte thistle) is a short-lived, monocarpic perennial that is 

native to sand and gravel soils of the upper Great Plains and southern Rocky Mountains 

(Kaul et al. 2007).  This taprooted, monocarpic plant grows as a rosette for two – eight 

years prior to its reproductive year (Louda and Potvin 1995). As a flowering adult, C. 

canescens produces large flower heads with cream-colored flowers, opening from mid- to 

late-May through late-June; reproduction is solely by seed (Lamp 1980, Kaul et al. 2007). 

Flowering is determinate and begins with the initial, terminal, apical flower head 

(capitulum); the undamaged apical flower is usually the largest flower head produced 
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(Louda and Potvin 1995). Over the season, subsequent flower heads (capitula) develop 

basipetally, flowering sequentially from the terminal apical head down the stem or down 

each branch below the apical head.  

 The five native floral- and seed-feeding herbivores at our site were:  two tephritid 

flies (Paracantha culta Wiedemann, Orellia occidentale Snow), two pyralid moths 

(Pyrausta subsequalis Gn., Homoeosoma eremophasma Neunzig [complex]), and a 

weevil (Baris nr. subsimilis Walker) (Lamp 1980, Louda and Potvin 1995). In addition, 

the Eurasian flower head weevil (Rhinocyllus conicus Frölich) invaded the floral-feeding 

guild in 1993 (Louda et al. 1997, Louda 1998). The feeding damage (Lamp and McCarty 

1981) and the population level impacts (Louda et al. 1990, Louda and Potvin 1995, Rose 

et al. 2005, Russell and Louda 2005) of floral herbivory by these six floral herbivores 

have been documented. However, no analysis to date has experimentally evaluated plant 

flowering responses and their role as potential tolerance mechanisms for the extensive, 

but variable ambient floral herbivory documented in this system. 

 Study Site 

 The study was done at six sand prairie sites in Arthur County, western Nebraska, 

in the upper Great Plains, USA. Three sites were within Arapaho Prairie Preserve, a 

1,200 ha reserve owned by The Nature Conservancy and managed for research by the 

University of Nebraska Cedar Point Biological Station. Management since 1977 has 

involved the exclusion of cattle grazing, plus hay mowing in successive quarters on a 

four-year rotation (Keeler et al. 1980, Louda and Potvin 1995). Three additional sites 

were in private ranchlands surrounding Arapaho Prairie; these are managed for sustained 

long term cattle productivity (Delwin Wilson, personal communication).   
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Experimental Protocol 

 We did two experiments (2007, 2008), and used the same protocol for each year’s 

flowering cohort. The experimental design involved manipulating both apical head 

damage [AD] (damaged: “Apical Damage” [D]; versus not damaged, protected with 

insecticide: “No Apical Damage”[N]), and subsequent floral herbivory [H] on the later, 

lower, non-apical flower heads (insecticide-in-water = “Reduced Herbivory” [R] versus 

water-only control = “Ambient Herbivory” [A]) in a 2 x 2 factorial experiment with a 

completely randomized design (Figure 1A).  We therefore had four treatment groups: 1) 

apical damage with reduced subsequent herbivory on lower heads (ADD x HR); 2) apical 

damage with ambient subsequent herbivory on lower heads (ADD x HA); 3) undamaged, 

protected apical head with reduced subsequent herbivory on lower heads (ADN x HR), 

and 4) undamaged, protected apical head with ambient subsequent herbivory on lower 

heads (ADN x HA). 

In early season each year at each site, we selected and marked plants that were 

initiating an apical flower head bud within the center of the rosette (5 - 10 May 2007, 26 

April - 10 May 2008); new plants had to be chosen each year because flowering is fatal. 

In 2007, we had 15 replicates of each of the four treatments (total n = 60 plants). In 2008, 

we increased the number of replicates to 35 for each of the four treatments (total n = 140 

plants). Each replicate block consisted of four plants, matched by initial plant and apical 

flower head size to control for any effect of variation in early season size on treatment 

response. Initial plant size was measured as a combination of rosette diameter (cm), 

apical bud diameter (mid, mm), and total number of flower head buds initiated. We 

assigned the four treatment combinations randomly within each replicate block. 
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 The apical head damage treatment simulated flower bud damage observed in the 

field that severely slows or stops apical flower head development, often causing the 

flower head to abort (unpublished data);  up to 50% of flowering individuals a season 

suffer this damage in the field (Lamp 1980).  We imposed apical flower head damage on 

the two plants randomly assigned to the apical head damage treatment within each 

replicate. To impose damage in 2007, we collected and caged three early thistle-feeding 

insects onto the flower head in 1 mm-mesh bags for 1 wk. (one native moth larva, P. 

subsequalis plus two adult native weevils, B. subsimilis), after drilling a small hole into 

the lower part of each flower head to facilitate moth larval entry. At the end of the week, 

we removed the bag. If the damage imposed did not appear to be comparable to that 

which impeded flower head development naturally, we further damaged the head using a 

razor blade to partially sever vascular transport from the stem to the flower head.  In 

2008, early insect abundances were low; thus, we set up both five replicates using insects, 

as in 2007, and an additional 30 replicates using only the mechanical damage (drilled 

hole + partial girdling), as in 2007. The effects of the two techniques of apical head 

damage (insect + mechanical damage vs. mechanical damage only) did not differ 

significantly in their effect on seed production (mixed effects GLM with plant as a 

random effect: seed set per head, p = 0.77; seed set per plant, p = 0.69). Thus, we present 

the combined data here.  Plants in the apical damage treatment differed in the severity of 

damage realized.  However, plant response did not differ qualitatively between plants 

with more versus less severe apical damage; plants with relatively less severe damage 

actually had a slightly greater response (Appendix 1.1).  Apical heads assigned to the 

undamaged treatment were treated with insecticide (see below) to prevent apical damage. 
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 The second treatment compared reduction of subsequent floral herbivory (HR, 

reduced herbivory) to controls (HA, ambient herbivory), simulating the variation observed 

in later insect herbivory during the season (Louda and Potvin 1995, unpublished data). 

On one apically damaged plant and one apically undamaged plant per replicate, we 

reduced subsequent floral herbivory by spraying all non-apical flower heads individually 

with insecticide-in-water. The other two plants (one apically damaged, one apically 

undamaged) received water-only spray as a control.  In 2007, we used the insecticide 

Acephate (IsotoxR, Chevron Corp), applied every 7 – 10 d in a 1% solution.  In 2008, in 

an effort to increase insecticide effectiveness, we used the insecticide bifenthrin (FMC 

Corporation Pty Ltd.), applied every 14 d in a 0.06% solution. The insecticide treatment 

each year was only partially effective, reducing floral herbivory on the later, lower flower 

heads by 28 - 30% (see Results). 

Data Collection 

 After quantifying initial plant and flower head sizes when replicate blocks were 

created and the treatments imposed (8 - 10 May 2007; 11 - 13 May 2008), we measured 

the magnitude and distribution of reproductive effort every 2 wk in 2007 (to 31 July), and 

every 4 wk in 2008 (1 - 3 June, 1 - 3 July, 29 July – 2 Aug).  On each sampling date for 

each plant, we recorded flower head diameters (mm) of terminal flower heads on all 

branches and counted the total number of smaller, subtending flower heads on each 

branch (Figure 1.1B).  We also recorded plant height (cm), rosette diameter (average of 

two perpendicular diameters, cm), total number of branches per plant (> 1 cm long), and 

total number of flower heads initiated per plant. These data allowed us to incorporate the 

effects of plant size on treatment response in the statistical analyses (below). 
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 As flower heads and branches senesced, we collected each flower head that 

matured (exerted at least one floret) for dissection. For each mature flower head 

collected, we recorded: mass (g); diameter (mm); number of developed, undamaged 

seeds; and amount of insect damage to the inflorescence receptacle, florets, and 

developing seeds. To quantify amount of internal damage by insects, we divided each 

flower head into four sections, and assigned a damage score to each quarter; this damage 

score was based on the percent area of the receptacle, florets and seeds in a quarter that 

were damaged: 0 = 0 - 1%; 1 = 1.1 - 10%; 2 = 10.1- 30%; 3 = 30.1 - 50%;  4 = 50.1 - 

75%;  and, 5 = 75.1 - 100%. The total damage score for the flower head was calculated as 

the average of the four individual quarter scores. For analysis, this mean score was 

converted to a proportion represented by the mid-point of its damage interval (e.g., score 

1 = 0.005, score 2 = 0.15, etc.), providing a conservative estimate of mean damage per 

flower head. 

Data Analysis 

 Plants were significantly larger in 2007 than in 2008 (both initial and final size 

estimates: Appendix 1.2); most parameters of plant performance and reproduction 

differed significantly between years (below). Thus, we first analyzed the interaction 

between treatment and year; we found no significant qualitative differences in the effects 

of treatment between years (p > 0.10 for all treatment x year interactions).  Further, 

treatment effect on plant seed number did not differ significantly between the two annual 

experiments (ANCOVA, number of branches as a covariate for plant size, p = 0.69).  So, 

to maximize our sample size for the analysis of treatment response, we combined the data 
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from both years and incorporated year either as a random effect or as a covariate 

depending on the analysis.   

All analyses were performed in R (R Core Development Team 2011).  To ensure 

that initial size differences among treatments did not affect treatment outcomes, we first 

analyzed initial measurements (5 - 10 May 2007, 26 April - 10 May 2008) for number of 

flower heads per plant, mean rosette diameter, and apical head diameter, as a composite 

dependent variable representing plant size, using MANOVA with Pillai’s trace test 

statistic.  Although initial plant size parameters were significantly larger in 2007 

compared to 2008 (p < 0.001; Appendix 1.2), no significant differences in initial size 

occurred among the four treatments within year (treatment x year: p > 0.10 for all 

variables).  

To examine the effect of insecticide treatment on the amount of insect damage to 

flower heads, the mean internal damage per flower head proportion was arcsine-

transformed prior to analysis to improve normality. Transformed proportions were 

evaluated in a mixed effects model, with year and plant as random effects.     

To evaluate treatment effects on plant structural investment, we performed a 

MANOVA with year as a covariate.  We analyzed final measurements of plant height, 

rosette diameter, number of branches, and number of flower heads per plant as a 

composite dependent variable representing final differences in plant structural 

investment.   

To determine treatment effects on plant reproductive effort, we performed a 

second MANOVA with year as a covariate. We included both total number of flowering 

heads and number of flower heads that produced seeds (matured) in a composite 
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dependent variable in that MANOVA.  Both variables were included into the measure of 

reproductive effort since many heads that matured (exerted flowers) were heavily 

damaged and did not succeed in producing any viable seeds (see below).   

When significant treatment effects or interactions occurred in the MANOVA, we 

subsequently examined each of the significant dependent variables included, using 

separate ANOVAs to determine which plant characters contributed to the differences 

observed among treatments. When ANOVAs were significant, we examined: (1) effect of 

apical damage within each herbivory treatment (HA: Apical Damage versus No Apical 

Damage; HR: Apical Damage versus No Apical Damage), and (2) the overall effect of 

subsequent herbivory (H: Ambient versus Reduced).  These contrasts were designed to 

evaluate the evidence as tolerance for floral losses. First, did plants compensate for loss 

of the large apical head and, if so, under ambient as well as reduced herbivory? Second, 

among apically damaged plants, was seed production by plants under ambient herbivory 

equivalent to that found under reduced herbivory?  

 Under the high levels of ambient floral herbivory, we found that many flower 

heads produced few or zero undamaged seeds, resulting in a strongly left-biased 

distribution.  Therefore, to analyze seed production by treatment, we used maximum 

likelihood to determine the most appropriate distribution for analysis of plant seed 

production; for the generalized linear model to evaluate plant seed production by 

treatment, the best fit was a negative binomial distribution (function glm.nb).  When an 

interaction was significant in the overall ANOVA, we evaluated the effect of herbivory, 

and the effect of apical damage within insecticide treatment, with separate models (as 
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above).  We found a significant effect of year on plant seed production (p < 0.010), so 

year was included in the analysis as a covariate.   

We analyzed seed set per flower head by head position on a plant (Figure 1.1B) 

and by treatment, with plant and year as random variables, in a linear mixed effects 

model (lme function), in order to evaluate how treatments influenced distribution of seed 

production within plants.  Prior to analysis, number of undamaged, filled (“good”) seeds 

per head was square root-transformed to approximate normality.   

To examine the relative amount of seed production among treatments, we also 

calculated an estimate of expected (potential) seed production per flower head based on 

flower head size. To do so, we used published regressions for the number of undamaged 

filled seeds expected in relation to flower head size (Louda and Potvin 1995).  To 

estimate the proportion of potential seed production realized, we divided observed seed 

count per head by the seed production potential expected per head, in order to assess 

whether a plant displayed tolerance after apical damage by compensatory seed 

production, under reduced and ambient herbivory.  Both estimated whole plant seed 

production potential, and the percent realized good seeds per plant, were analyzed with 

generalized linear models followed by separate subsequent analyses of effects of 

herbivory and of apical damage within herbivory treatment, as above.  Potential and 

realized seed production per flower head by treatment and by flower head position were 

analyzed with linear mixed effects models, with year and plant included as random 

effects.  Proportions were square root-transformed before analysis. 

For simplicity, relevant p-values for all analyses are reported in the Results, and 

full statistical tables are presented in the appendices (Appendix 1.3 and 1.4).   
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RESULTS 
 

Initial size and floral herbivore damage levels 

 Initial size. Plant size initially did not vary among treatments (MANOVA: pH = 

0.67; pAD= 0.59, Appendix 1.3Bi.).  Rosette diameters ranged between 28 - 31 cm, and 

apical bud diameters ranged from 21 - 24 cm. Each plant had 3 - 4 flower head buds at 

the start of each experiment. Also, no interaction occurred between apical damage 

treatment and herbivory treatment (MANOVA: pH x AD= 0.21).  Because initial conditions 

among treatments were comparable, final plant differences represent treatment responses.   

 Levels of Flower Head Damage. Variation in the level of damage we succeeded in 

imposing to the apical flower head did not influence the level of internal insect feeding 

on later, lower flower heads (Table 1.1Ai, Appendix 1.3A). The average damage score 

per non-apical head did not differ significantly between apical damage treatments within 

each herbivory treatment (pAD = 0.64). As is typical, the insecticide treatment did not 

eliminate floral herbivory, but only decreased it, in this case, by 28 - 30% (Table 1.1A). 

The insecticide did significantly reduce insect damage to later flowering heads (pH < 

0.01). With ambient herbivory (water-only spray), later heads averaged 72% and 78% 

internal insect damage for plants with and without experimental apical damage, 

respectively. However, with reduced herbivory (insecticide spray), later heads averaged 

48% internal insect damage both with and without experimental apical damage (Table 

1.1A).  Additionally, individual plants varied widely in the amount of subsequent flower 

head damage they experienced; variation was higher in the reduced herbivory treatment 

(Fig. 1.2A) than in the ambient herbivory treatment (Fig. 1.2B).  Overall, we found no 

evidence that apical damage altered floral herbivory to later flowering heads. 
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 Effects of apical damage and subsequent insect herbivory on total plant seed 

production 

The outcome of apical damage for the plant was altered (Fig. 1.3), and total plant 

seed production was significantly increased (Table 1.1A), by reducing subsequent 

herbivory.  Apical damage and herbivory on later, non-apical, heads interacted to 

influence the total number of undamaged (“good”) seeds produced by a plant (pAD x H = 

0.042); the interaction also influenced estimated potential seed production and the degree 

to which seed production potential was realized (Table 1.1Aii, Appendix 1.4B: potential 

seed production pAD x H = 0.023, realized seed production pAD x H = 0.021).    

Apical damage increased the number of undamaged seed successfully produced 

per plant under reduced subsequent herbivory, but decreased the number produced under 

ambient herbivory (Fig. 1.3A).  Apical damage alone, however, did not significantly alter 

average plant seed production (pH: R = 0.20, pH: A = 0.07; Appendix 1.4A). Thus, 

compensation for apical head damaged occurred, but only when subsequent herbivory 

was lower. 

Similar patterns occurred in the proportion of estimated potential seed that was 

actually realized per plant (Table 1.1Aii, Fig. 1.3B). No significant difference in 

estimated seed potential occurred between apical damage treatments (pH: R = 0.15, pH: A = 

0.05, Table 1.1Aii); however, under ambient herbivory, the proportion of potential seed 

production realized decreased with apical damage, whereas under reduced herbivory it 

increased (Table 1.1Aii, Appendix 1.4B).  This decrease in potential seed production 

under ambient herbivory, in addition to the direct seed losses under ambient herbivory, 

led to a significantly lower realized plant seed production with apical damage (pH: A = 
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0.03, Fig. 1.3, Appendix 1.4B).  However, under reduced herbivory there was no 

difference in potential seed production realized with apical damage (pH: R = 0.32). 

Therefore, apical damage did influence the pattern of seed production, but the 

consequences of apical damage depended on subsequent herbivory.  Although strong 

compensation for apical damage occurred within the reduced herbivory treatment, plants 

within the ambient (higher) herbivory treatment had a decrease in seed production with 

apical damage, under-compensating for the damage to the initial large flower head.  

Regardless of apical damage condition, seed production by plants under higher ambient 

herbivory did not equal that of plants under reduced herbivory (Table 1.1).  Therefore, 

even with apical damage, plants under-compensated for floral herbivory overall.  

Effects on plant structure and subsequent reproductive investment  

Neither apical damage nor insect herbivory treatments significantly affected final 

plant size (structural investment, Table 1.1B) or reproductive investment (Table 1.1C) 

directly (MANOVA: pH = 0.17; pAD = 0.22; pH x AD = 0.32; Appendix 1.3Bii).  However, 

the treatments interacted in their effect on plant reproductive investment, which was 

quantified as the combination of number of flower heads matured and number of matured 

flower heads that produced any undamaged seeds (pH x AD = 0.04, Table 1.1C; Appendix 

1.3B).  Specifically, the number of flower heads matured (reached anthesis) was higher 

with apical damage only when herbivory on subsequent heads was reduced (pH x AD = 

0.03, Table 1.1C, Appendix 1.3C).  This increase reflected more mature flower heads on 

plants in the apical damage plus reduced herbivory treatment (pH: R = 0.049). Apical 

damage made no difference in number of mature flower heads with ambient levels of 

subsequent herbivory (pH: A = 0.229, Appendix 1.3C). Finally, the number of mature 
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flower heads that actually produced any undamaged seeds was highest for plants in the 

apical damage plus reduced subsequent herbivory treatment (pH x AD = 0.01; Table 1.1C; 

Appendix 1.3C); no increase was realized in mature seed-producing heads in the apical 

damage plus ambient subsequent herbivory treatment (p = 0.696).   

Therefore, apical damage did not influence plant structural investment regardless 

of insect herbivory treatment on later heads.  However, apical damage led to an increase 

in reproductive investment realized by plants with reduced levels of subsequent herbivory 

that was not observed for plants with ambient subsequent herbivory. 

 Influence of floral herbivory and apical damage on within-plant seed distribution 

Floral herbivory affected the degree to which non-apical flower heads contributed 

to plant fitness and exerted a major, negative influence on total seed production and 

realized reproductive effort.  Specifically, when floral herbivory on subsequent, non-

apical heads was reduced, apical damage increased the potential seed production of those 

flower heads (Table 1.1A), strongly increasing the contributions made by lower 

positioned flower heads (pAD x Position = 0.040).  As a result, both potential seed production 

and realized seed production per non-apical head increased when later floral herbivory 

was reduced (Fig. 1.4, pAD x H = 0.008; Appendix 1.4), with greater realized seed 

contribution per lower positioned flower head (Fig. 1.5A, prealized seed = 0.022, ppotential  seed 

= 0.021; Appendix 1.4). 

No such pattern was seen, however, under ambient (higher) herbivory on 

subsequent non-apical heads.  Position alone explained both the potential and realized 

seed per non-apical head; higher positioned heads contributed the majority of the 
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successful seed production (Fig. 1.5B, prealized seed: position = <0.01, pseeds per head: position = 

0.001).  

Therefore, apical damage altered the distribution of seed contribution within a 

plant, but subsequent herbivory affected the degree to which the alteration in distribution 

resulted in actual realized changes in seed contribution overall and by head position.  

Apical damage increased the contribution of lower heads to total plant seed production 

only under reduced subsequent herbivory conditions. As a result, plants with both apical 

damage and reduced herbivory had a similar, and even somewhat greater, overall realized 

seed set compared to plants without apical damage plus insecticide treatment. 

 

DISCUSSION 

Plants experiencing ambient (high) levels of herbivory on later, non-apical heads 

were unable to fully tolerate floral herbivory through the breaking of apical dominance.  

Plants with untreated later flower heads did not produce as many seeds as plants with 

insecticide-treated later heads, regardless of apical damage treatment.  This result is 

consistent with earlier studies of C. canescens that found that ambient levels of insect 

floral herbivory had severe consequences for average realized seed production (Louda 

and Potvin 1995, Rose et al. 2005). These earlier studies, however, did not explore the 

plant’s potential tolerance for floral herbivory, especially under varying levels of 

herbivory over the season.  In this study, plants were able to fully compensate, and even 

slightly over-compensate, for early loss of the apical head through increases in 

reproductive effort and seed production by the later flower heads under some conditions, 

specifically when herbivory on subsequent, non-apical heads was lower.  This result 
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demonstrates the role of apical dominance as a contributor to plant seed reproductive 

fitness in the field.   

Apical damage under reduced subsequent herbivory increased the number of 

flower heads that matured, and it also increased the relative seed contribution from later, 

lower-positioned flower heads.  This finding is consistent with previous studies 

suggesting the release of lower, later buds by apical damage can provide a mechanism to 

compensate for fitness losses to herbivory (e.g., Nilsson et al. 1996, Huhta et al. 2000, 

Juenger and Bergelson 2000, Pilson and Decker 2002).  Thus, we found that both apical 

damage, and variation in the level of herbivory on non-apical flower heads, affected the 

amount of successful seed production realized as well as its distribution within a plant. 

Life history theory leads to the expectation that a monocarpic plant, like C. 

canescens, should have high compensatory ability to optimize lifetime reproductive 

fitness in the presence of herbivory (Huhta et al. 2000). Also, the expectation is that the 

plant should withhold some resources from reproduction to enable compensation when 

herbivory is high (Vail 1992).  Apical dominance suppresses axillary meristems, and the 

existence of this dormant bud reserve is fundamental to compensation via this tolerance 

mechanism (Tuomi et al 1994, Aarssen 1995, Nilsson et al 1996).  Optimality models 

favoring plant tolerance, or even over-compensation, in response to apical damage to date 

(i.e., McNaughton 1983, Tuomi 1994) have focused mainly on ungulate grazing, where 

herbivory is predictable, though often infrequent, and where the dormant bud bank can 

remain largely unavailable to herbivores.  However, these models likely over-estimate the 

possibility of tolerance via compensation for the more variable, repeated herbivory 

imposed by insects (Stowe et al. 2000).  
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This field test directly examined this question, by evaluating the potential for 

tolerance through the breaking of apical dominance in a species where floral herbivory 

often causes severe seed reproductive losses.  In this case, apical damage did result in 

relatively higher potential and realized seed production under the condition of reduced 

subsequent herbivory such as is observed in the field for some individuals (Louda and 

Potvin 1995, unpublished data).  Under the mean levels of ambient herbivory, however, 

later flower heads were not able to produce sufficient seed to compensate for herbivore 

damage to the apical head, compared to the performance of reduced herbivory plants, 

even though the apical damage occurred early in the growing season.  In this intensive 

study of C. canescens, we found that compensatory ability, while present, was suppressed 

on average by the generally high ambient level of insect herbivory during the growing 

season. This result suggests that, given that herbivory varies among individuals, strong 

apical dominance as a tolerance strategy for insect floral herbivory has the potential to 

provide important increases in fitness for some individuals in the population (Louda and 

Potvin 1995).  However, this tolerance mechanism will not in general provide the average 

plant with a way of compensating and performing as well as the individual plant that 

escapes by occurring in a local environment with low herbivory. 

Our results show that C. canescens plants had the potential to tolerate loss of the 

apical head, but that the consequences of apical head loss were greater on average for 

plants under ambient herbivory. Plants under ambient levels of floral herbivory realized 

significantly lower seed production when their apical head was damaged.  The 

contribution of the apical head to total seed production for C. canescens presumably 

mitigates both the potential fitness costs associated with inhibition of later flower heads 
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due to apical dominance (e.g., Aassen 1995, Irwin and Aarssen 1996) and the persistent 

floral herbivory reported (Louda and Potvin 1995, Fig. 1.5), at least for some individuals.  

In contrast, the observation that apical damage led to higher seed set under reduced 

herbivory supports the suggestion of a potential cost of apical dominance in the absence 

of herbivory (Aarssen 1995).  However, because apical dominance did not significantly 

increase plant seed set even with reduced herbivory, and because herbivory pressure 

appears high on average, it seems unlikely that a cost of apical dominance would be 

realized under typical field conditions for this species. 

Classic bet-hedging theory predicts that plants should maintain an alternative 

resource allocation strategy in an uncertain herbivory environment (Crawley 1997). 

Further, flowering strategies that allocate compensatory responses flexibly through time 

should increase reproductive success under conditions of repeated herbivory (Loeb 1986, 

Tuomi et al. 1994, Lehtilä 2000).  In this Cirsium species, apical dominance resulted in 

priority investment in the apical flower head, which can produce ≥ 30% of total plant 

seed production if it is undamaged (Louda and Potvin 1995, Figure 1.5).  Since the most 

common and one of the earliest native floral feeders on C. canescens, the tephritid fly 

Paracantha culta, oviposits preferentially on small flower heads (10 – 15 mm diameter)  

(Lamp and McCarty 1982), high investment in this early season flower head may confer 

a potential “size escape” (i.e., Vail 1992) from adapted floral herbivores.  

Impairment of apical dominance by herbivore damage, however, resulted in more 

heads flowering and in more seed contributed from those lower-positioned flower heads, 

at least with reduced subsequent herbivory. However, under mean levels of ambient 

herbivory, the later, lower flower head positions on the average plant were less likely to 
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realize seed set.  Nevertheless, because of the basipetal nature of flowering in this 

species, we hypothesize that continued investment in lower positioned heads will be 

useful for some individuals, e.g., those that attract less subsequent herbivory, for 

partitioning reproductive effort through time, increasing the flowering period, and 

providing a partial escape from herbivores.  This hypothesis is suggested by previous 

studies. For instance, later flower heads produced by clones of Erigeron glaucus had a 

higher probability of escaping herbivory by specialist tephritid flies (English-Loeb and 

Karban 1992). Also, flexible allocation to later-developing umbels by Sanicula 

arctopoides led to compensation under ambient levels of floral herbivory (Lowenburg 

1994). Further, extended flowering time led to greater compensation capacity in 

Helianthus annus (Pilson and Decker 2002). Finally, models with gradual activation of 

dormant buds over time show decreases in the overall consequences of repeated 

herbivory in monocarpic species (Lehtilä 2000).  Plant tolerance often occurs via a 

combination of different traits, each of which contributes to compensation and helps 

minimize impacts on plant fitness (Wise et al. 2005).  In C. canescens, both the 

disproportionate apical investment, and the sustained bud release that arose after loss of 

strong apical dominance, provided potential plant tolerance, particularly under lowered 

levels of ambient herbivory. 

The compensatory potential of C. canescens in response to damage to the apical 

flower head observed was not realized on average under ambient levels of floral 

herbivory in this study.  We attribute this finding to the high incidence and high average 

level of damage per flower head under ambient herbivory in both years, consistent with 

previous studies (Louda and Potvin 1995, Rose et al. 2005).  While more flower heads 
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succeeded in flowering and producing seed in the apical damage treatment, seed 

production by the lower, later heads undercompensated, both for apical flower head loss 

and for whole plant seed production.   

Because the lack of complete compensation was due to the insect herbivore 

environment, rather than obvious inherent constraints on the plants’ ability to 

compensate, we argue that the compensatory capacity of C. canescens should be 

sufficient to fully compensate for apical loss for some individuals, maintaining their plant 

fitness.  First, individuals vary in the probability of apical damage, and of subsequent 

damage, as well as the degree to which they compensate for damage (Strauss and 

Agrawal 1999, Juenger and Bergelsen 2002, Strauss and Agrawal 1999, Juenger and 

Bergelson 2000).  Our analysis focused on the overall mean responses across individuals 

in order to understand the interactions.  However, the variance in magnitude of floral 

herbivory is typically high among C. canescens plants (Fig. 1.2; Louda and Potvin 1995, 

Rose et al. 2005, Fornoni 2011). Thus, identifying the traits and conditions that lead to 

lower levels of herbivory among individuals in the population, and so confer higher 

fitness to them, has the potential of further elucidating mechanisms that are obscured by 

the usual emphasis on measuring treatment means (Pilson and Decker 2002, Wise et al. 

2005).   

Second, the effectiveness of response to herbivory for any plant will depend upon 

the interaction between the plant and its environment.  The ability of plants to respond to 

herbivory, and the range of damage levels at which tolerance works, is expected to vary 

with environmental context (Maschinski and Whitham 1989, Huhta et al. 2003, Wise and 

Abrahamson 2007, Brody et al. 2007, Banta 2010).  Plant resource condition, herbivore 
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numbers, behavior and feeding intensity, and timing of damage have all been found or 

suggested to be factors controlling the degree of plant tolerance (Maschinski and 

Whitham 1989, Trumble et al. 1993, Honkanen and Haukioja 1998, Stowe et al. 2000, 

Hawkes and Sullivan 2001, Wise and Abrahamson 2007).  For instance, we controlled for 

effects of plant size by matching plants into replicates by early season size, and there 

were no early season differences in size among treatments.  However, we observed a 

trend for plants with reduced floral herbivory to be taller at the end of the season on 

average than plants with ambient floral herbivory.  Such a resulting size difference could 

reflect an additional effect of resource limitation on tolerance capacity under high 

herbivory (see Wise and Abrahamson 2007, Gonzáles et al. 2008).  Also, experimental 

logistics led to use of plants in areas with relatively high average patch density for this 

sparse native thistle (unpublished data).  If herbivory is higher on plants in dense patches 

(e.g., Root 1973, Ehrlén 1996), then we predict more isolated individuals would be likely 

to encounter lower relative herbivore loads and, thus, have a greater probability of 

realizing the demonstrated potential for compensation.   

Third, if the magnitude of herbivore damage effect is contingent upon the timing 

or synchrony with plant flowering phenology (Loeb and Karban 1992, Honkanen and 

Haukioja 1998, Russell and Louda 2004, 2005), then plants that distribute reproductive 

effort over longer time periods will reduce the probability of damage to at least a subset 

of flower heads. Therefore, further research aimed toward quantifying and predicting the 

circumstances under which the demonstrated compensatory potential is realized would be 

useful.   
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In summary, the results of this study demonstrate the magnitude and dynamics of 

potential reproductive compensatory response to floral herbivory on both the apical and 

later-flowering heads of a monocarpic plant. The study, thus, furthers our understanding 

of tolerance mechanisms and their operation under field conditions in increasing the 

chance of persistence of such characteristic, sparse prairie species.  
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Table 1.1.  End-of-season plant performance measures. Values are means (± S. E.) for 

each variable measured by treatment over two years for experimentally reduced (HR) vs. 

ambient (HA) subsequent herbivory on plants without (DND) versus with (DD) 

experimental apical damage. (*) represents a significant main effect, and (^) indicates a 

significant treatment interaction.  Letters indicate treatment differences for each 

significant variable (see Methods). 

 
 Herbivory Reduced (HR) Herbivory Ambient (HA) 

 DND DD DND DD 

A. Effects of Insect Damage     

  i. Per Non-Apical Head     

    % Flower Head Damage* 48.1(+2.6)a 48.4(+2.9)a 78.5(+2.5)b 72.9(+4.3)b 

    Potential Seeds per Head 141.1(+4.8) 156.1(+4.4) 157.0(+3.9) 151.1(+4.6) 

    Seeds Matured per Head 69.6(±7.5)a 99.0(±6.8)a 30.7(±5.3)b 31.5(±6.5)b 

  ii. Whole Plant     

    Potential Seeds per Plant 562.7(+55.1) 721.8(+99.4) 604.6(+64.6) 446.4(+46.2) 

    Seeds Matured per Plant^ 355.9(±49.0)a 477.8(±81.8)a 186.3(±29.6)b 112.0(±27.9)b 

B. Plant Structural Investment     

    Plant Height (cm) 53.3(+2.0) 53.9(+2.1) 50.6(+1.7) 47.5(+1.9) 

    Rosette Diameter (cm) 32.2(+1.6) 34.6(+1.7) 34.0(+1.6) 30.6(+1.4) 

    # Branches 5.2(+0.9) 6.6(+0.6) 5.9(+1.0) 5.4(+0.4) 

    # Buds per Plant 9.6(+0.9) 12.6(+1.4) 10.4(+1.8) 10.2(+0.8) 

C. Plant Reproductive Investment (excluding Apical) ^   

    # Mature Flower Heads^ 2.9(+0.4)ab 4.2(+0.6)b 2.8(+0.4)a 2.3(+0.3)a 

    # Flowered with Seed^ 1.9(±0.3)a 3.5(±0.5)b 1.5(±0.2)a 1.3(±0.2)a 
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Figure Legends 

FIG. 1.1. Experimental predictions and explanation of thistle structure. (A) Prediction for 

the consequences of apical damage and reduced subsequent floral herbivory for C. 

canescens in the field. We expected greatest seed production from plants with apical head 

protected and subsequent herbivory reduced, and the least seed production from plants 

with both apical damage and ambient subsequent herbivory.  (B) Diagram of the main 

thistle flower head structure, with positions numbered starting with the apical flower head 

successively down the stem for later emerging branches and flower heads. 

 

FIG. 1.2.  Average damage score per flower head for individual plants. The distribution 

(range and 95% CI) of average insect damage score per non-apical flower head for each 

individual plant in the herbivory treatments on later (non-apical) flowering heads: (A) 

reduced herbivory, and (B) ambient herbivory.  Plants are presented in a random order 

within treatment.  Damage scores (see Methods) were based on the proportion of 

receptacle base damaged by insects averaged over all later heads per plant.  Overall, 

individuals in the reduced herbivory treatment experienced lower average herbivore 

damage on the treated heads.  

 

 FIG. 1.3. Cirsium canescens whole plant seed production (mean, SE): (A) number per 

plant and (B) proportion of seed production potential realized per plant by herbivory 

treatment: reduced herbivory (black, solid line) and ambient herbivory (gray, dashed 

line).  Reducing insect herbivory on subsequent (non-apical) heads significantly 

increased whole plant seed production overall, and apical damage lead to a significant 
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increase in seed production.  Percent realized seed set was quantified by dividing actual 

matured seed counts from field data by estimated potential seed production based on 

flower head sizes (See Methods).  Potential seed set was estimated using data from Louda 

and Potvin (1995). 

 

FIG. 1.4. Cirsium canescens seed production per flower head. Mean (SE) number (A) 

and percent (B) estimated seed set realized, per flower head, by treatment. Reducing 

insects increased seed set overall and showed that apical damage could increase realized 

seed production per head when herbivory was lowered, providing a mechanism for the 

whole plant response (Figure 1.3).  Percent realized seed set was quantified by dividing 

actual matured seed counts from field data by estimated potential seed production based 

on flower head sizes (See Methods).  Potential seed set was estimated using data from 

Louda and Potvin (1995). 

 

FIG. 1.5.  Cirsium canescens seed contribution per flower head position. Average 

percent of whole plant seed production contributed by each flower head position with: 

(A) experimentally reduced herbivory, and (B) ambient herbivory.  Values indicate mean 

(SE) of the percent of the total undamaged seeds per flower head position for no apical 

damage (black bars) and experimental apical damage (gray bars) treatments.  Notation: 

“b” heads are those below the branch terminal flower heads; “up” refers to positions 

below the 9th branch (numbered 10 - 13 in this study); and, “0” indicates positions where 

heads flowered, but did not produce undamaged, viable, seeds.  Under reduced 

subsequent herbivory, lower-positioned flower heads made a greater contribution to 
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realized total seed in plants with apical damage compared to plants without apical 

damage. However, under mean levels of ambient subsequent herbivory, no increase in 

seed contribution by lower-positioned heads was observed in plants with apical head 

damage. 
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FIGURE 1.2. 
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FIGURE 1.3. 
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FIGURE 1.4. 
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FIGURE 1.5. 
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Appendix 1.1 

The apical damage treatment varied in its effectiveness in simulating the severe damage 

observed in the field (Figure A1.1:1). Any damage that affects apical regions can result in 

release of the axillary buds (Cline 1991).  Plants vary in the strength of their response to 

apical damage, and the sensitivity of buds to apical inhibition is an important aspect of 

tolerance capacity (Tuomi et al. 1994, Nilsson et al. 1996).  Therefore, we examined the 

effects of different levels of experimental apical damage. In the treatment with no 

experimental damage imposed, we expected large numbers of filled, undamaged seeds in 

the apical head, but we found that some apical flower heads were damaged and 

developed 0 or only a few (< 100) seeds (Figure A1.1:1A). Alternately, in the treatment 

with experimental damaged imposed, we expected few filled seeds in the apical flower 

head, but we found that some apical flower heads produced large numbers of seeds (>150 

seeds).  Consequently, we analyzed treatment effects for plants that had low apical 

damage (< 100 seeds), as intended for the undamaged apical treatment, versus those that 

had high apical damage (>150 seeds), as intended for the damaged apical treatment 

(Figure A1.1:2A). In this contrast, three key results emerge. First, plants with low 

damage to the apical flower head produced as many, but not more, seeds in later flower 

heads on average as plants with high apical damage, under reduced herbivory. Second, 

under ambient subsequent herbivory conditions, the plants with low damage to the apical 

head produced more seeds per later, lower flower head than did plants with high damage 

to the apical head. Third, the pattern of response to high versus low levels of apical 

damage was similar per flower head, but stronger when examined as the proportion of the 

potential number of seeds that were actually realized (Figure A1.1:2B). Thus, we found 
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evidence of compensatory ability for the early loss of the apical seeds, but unexpectedly 

the average contribution by later heads was greater on plants with low damage, rather 

than high damage, to the apical flower head. 

 

 

Figure Legends 
 
FIG. A1.1:1. Seeds per apical flower head in the apical damage treatment. The frequency 

distribution of filled, undamaged seeds per apical flower demonstrates the variation in 

severity in the apical damage treatment and, so, the effectiveness of the imposed 

treatment. 

 

FIG. A1.1:2. Seeds per lightly damage versus heavily damaged apical head.  (A) Number 

of filled, undamaged seeds per non-apical flower head by treatment on plants with either 

low damage (>150 seeds produced) or high damage (< 100 seeds produced) to the apical 

flower head as intended in the apical damage treatment (n = 5 per category); (B) Percent 

of realized potential seed production per flower head  for non-apical heads on plants with 

either low damage or high damage to the apical flower head, with potential seed 

production by flower head size estimated with regression from Louda and Potvin (1995).   
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FIGURE A1.1:1. 
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FIGURE A1.1:2. 
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Appendix 1.2. 

Table A1.2:1. Initial size parameters for experimental Cirsium canescens plants by 

subsequent treatment manipulating both damage to the initial (apical) flower head and 

insect feeding on subsequently produced flower heads during the season (2007, 2008) at 

Arapaho Prairie, NE.  Values presented represent the mean; standard errors of the mean 

are in parentheses. 

  Herbivory Reduced (HR) Herbivory Ambient (HA) 

Variable Year* DND DD DND DD 

Rosette Diameter 

 2007 33.2 (+2.0)a 37.3 (+2.6) a 37.5 (+2.0) a 32.7 (+1.3) a 

 2008 29.6 (+2.2)b 26.9 (+1.6) b 27.2 (+1.7) b 25.3 (+1.4) b

 Overall 31.1 (+1.5) 31.1 (+1.7) 31.9 (+1.6) 28.4 (+1.1) 

Apical Bud Diameter 

 2007 29.9 (+1.6) a 31.4 (+1.9) a 33.2 (+2.2) a 29.6 (+1.6) a 

 2008 17.4 (+1.7) b 17.5 (+1.6) b 16.4 (+1.5) b 15.5 (+1.3) b

 Overall 22.8 (+1.6) 23.2 (+1.7) 24.0 (+1.9) 21.5 (+1.6) 

Number of Buds 

 2007 3.9 (+0.5) a 5.4 (+1.0) a 5.6 (+0.9) a 4.5 (+0.4) a 

 2008 2.8 (+0.5) b 3.0 (+0.5) b 2.9 (+0.5) b 2.3 (+0.3) b 

 Overall 3.2 (+0.4) 4.0 (+0.5) 4.1 (+0.5) 3.2 (+0.3) 

      

N 2007 15 13 15 14 

 2008 35 32 33 33 
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Appendix 1.3. 

Analyses of treatment effects on initial and end-of-season plant characters. Bolded values 

indicate significant effects reported in the Results. (A) Insect damage per flower head by 

treatment; (B) MANOVA tables for initial and end-of-season plant characters. Dependent 

variables included in (i.) are: average rosette diameter; apical bud diameter; and number 

of flower buds.  Dependent variables included in (ii.) are: plant height, average rosette 

diameter, number of flower buds, and number of branches.  Dependent variables in (iii.) 

are: number of flowered heads and number of heads with matured seeds.  We used 

Pillai’s trace test statistic. (C1 & 2) Separate ANOVA tables and subsequent ANOVAs 

for each of the dependent variables included as measures of plant reproductive 

investment.  Dependent variables are: (i.) number of flowered heads, and (ii.) number of 

heads with matured seeds. 

 
(A)  Treatment effects on insect damage per C. canescens flower head (Mixed Model 
GLM, plant as random effect) 
 

Source Value Std.Error DF t-value p-value 
Intercept 0.468 0.0478 279 9.801 <0.001* 
Apical Damage (D: N)  0.031 0.0664 127 0.464 0.644 
Herbivory (H: A) 0.409 0.0699 127 5.857 <0.001* 
D x H -0.007 0.0966 127 -0.075 0.940 
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(B)   Treatment effects on plant characters (MANOVA) 
 
Source Pillai’s Approx. F num Df dens DF Pr(>F) 

(i.) Initial Measurements 
Apical Damage (D) 0.015 0.637 3 125   0.593 
Herbivory (H) 0.012 0.522 3 125   0.668 
Year 0.546 50.209 3 125 <0.001* 
D x H 0.032 1.415 3 125   0.242 

(ii.) Plant Structural Investment 
Apical Damage (D) 0.044 1.449 4 126   0.222 
Herbivory (H) 0.0488 1.615 4 126   0.175 
Year 0.167 6.33 4 126 <0.001* 
D x H 0.037 1.193 4 126   0.317 

(iii.) Plant Reproductive Investment 
Apical Damage (D) 0.078 5.419 2 128 <0.001* 
Herbivory (H) 0.1075 7.704 2 128 <0.001* 
Year 0.104 7.394 2 128 <0.001* 
D x H 0.049 3.324 2 128   0.039* 
 
 
(C) Separate treatment effects on measures of reproductive investment (ANOVA) 
 
C1 
Source Sum Sq Df F value Pr(>F) 

(i.)  Number of Heads Flowered   
 

Apical Damage (D) 5.82 1 0.9813 0.324 
Herbivory (H) 28.69 1 4.8413 0.0296* 
Year 11.95 1 2.0171 0.158 
D x H 30.18 1 5.0937 0.0257* 
Residuals 764.44 129   

(ii.) Number of Heads Flowered with Seeds   

Apical Damage (D) 18.62 1 4.9973 0.0271* 
Herbivory (H) 45.87 1 12.3131 0.00062* 
Year 4.17 1 1.1207 0.292 
D x H 24.73 1 6.6392 0.0111* 
Residuals 480.53 129   
 
 



47 

 

 
C2 
Source Sum Sq Df F value Pr(>F) 

(i.) Number of Heads Flowered 

Reduced Herbivory     
Apical Damage (D) 32.79 1 4.0043 0.04956* 
Year 36.7 1 4.4817 0.03809* 
Residuals 532.29 65   
     
Ambient Herbivory     
Apical Damage (D) 4.829 1 1.4764 0.2289 
Year 1.364 1 0.4171 0.5207 
Residuals 206.046 63   
     

(ii.) Number of Heads Flowered with Seeds 

Reduced Herbivory     
Apical Damage (D) 44.35 1 7.7925   0.006881* 
Year 0.8 1 0.1402 0.709313 
Residuals 369.91 65   
     
Ambient Herbivory     
Apical Damage (D) 0.244 1 0.1539 0.696151 
Year 14.305 1 9.0398    0.003791* 
Residuals 99.695 63   
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Appendix 1.4. 

Analyses of treatment effects on estimated seed production potential and realized seed 

production.  Bolded values indicate significant effects reported in the Results.  (A) Total 

seed production per plant; (B1-3) MANOVA table for analysis of potential and realized 

seed production per plant; (C) Separate ANOVA tables for potential and realized seed 

production per plant; (D) MANOVA table for analysis of seed production potential and 

realized seed production per flower head; (E) Separate ANOVA tables for seed 

production potential and realized seed production per flower head; (F) Results of the 

analysis of seed production by head position. 

 
(A)  Total seed production per plant (GLM, negative bionomial distribution) 
 
Source Estimate Std. 

Error 
z-value P(>|z|) Null 

df 
Residual 

df 

Good Seeds per Plant       

Intercept 6.4205 0.2481 25.882 <0.001* 133 129 
Apical Damage (D: N) -0.2893 0.2927 -0.989 0.320 
Herbivory (H: A) -1.5756 0.3032 -5.197 <0.001* 
Year (2008) -0.3756 0.2109 -1.781 0.075 
D x H 0.8435 0.4166 2.025 0.043* 

Reduced Herbivory       

Intercept 6.1691 0.220 27.612 <0.001* 67 66 
Apical Damage (D: N) -0.296 0.233 -1.270 0.204 
Year 0.135 0.238 0.566 0.571   

Ambient Herbivory       

Intercept 5.054 0.315 16.054 <0.001* 65 64 

Apical Damage (D: N) 0.615 0.345 1.786 0.074 

Year -0.856 0.347 -2.468 0.014*   
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(B)  Treatment effects on seed production potential and realized seed production per 
plant (GLM and subsequent ANOVAs) 
B1 
Source Sum Sq Df F value Pr(>F) 

(i.)  Potential Seeds per Plant    

Apical Damage (D) 3.5 1 0.0619 0.8039 
Herbivory (H) 124.9 1 2.2095 0.13953 
D x H 297.7 1 5.266 0.02332* 
Residuals 7518.2 133   

(ii.)  Realized Seeds per Plant    

Apical Damage (D) 0.0559 1 0.8492 0.358 
Herbivory (H) 3.362 1 51.081 <0.001* 
D x H 0.357 1 5.4281 0.0213* 
Residuals 8.754 133   
 
B2 

Source Estimate
Std. 

Error 
t-value P(>|t|) 

Null 
df 

Residual 
df 

(i.) Potential Seeds per Plant 
Intercept 741.18 81.56 9.087 <0.001 136 132 
Apical Damage (D: N) -158.68 95.65 -1.659 0.0995   
Herbivory (H: A) -275.96 98.92 -2.79 0.0061*   
Year (2008) -32.65 69.15 -0.472 0.6376   
D x H 316.31 136.54 2.317 0.0221*   

Reduced Herbivory       
Intercept 721.8 80.42 8.975 <0.001 69 68 
Apical Damage (D: N) -159.06 109.15 -1.457 0.150   

Ambient Herbivory       
Intercept 446.43 56.89 7.848 <0.001 66 65 
Apical Damage (D: N) 158.18 79.86 1.981 0.0519   
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B3 

Source Estimate 
Std. 

Error 
t-value P(>|t|) 

Null 
df 

Residual 
df 

(ii.) Percent Realized Seed Potential per Plant     
Intercept 0.81047 0.05238 15.472 <0.001* 136 132 
Apical Damage (D: N) -0.05936 0.06143 -0.966 0.3356   
Herbivory (H: A) -0.42199 0.06353 -6.643 <0.001*   
Year (2008) -0.05495 0.04441 -1.237 0.2182   
D x H 0.20313 0.08769 2.316   0.0221*   
       
Reduced Herbivory       
Intercept 0.77784 0.04382 17.75 <0.001* 69 68 
Apical Damage (D: N) -0.06 0.05948 -1.009 0.317   
       
Ambient Herbivory       
Intercept 0.35684 0.04618 7.727 <0.001* 66 65 
Apical Damage (D: N) 0.1447 0.06483 2.232 0.0291*   
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(C)  Mature seeds produced per flower head by head position (Mixed Model GLM, 
plant as random effect) 
 
Source Value Std.Error DF t-value p-value 

(i.)  Good Seeds by Head Position     

Intercept 11.5803 0.999 275 11.597 <0.001* 
Apical Damage (D: N)  -0.1101 1.492 127 -0.0738 0.941 
Herbivory (H: A) -5.0540 1.849 127 -2.734 0.0072* 
Head Position (Pos) -0.00812 0.002022 275 -4.0163 0.0001* 
D x H  1.523 2.4704 127 0.617 0.537 
D x Pos  -0.00931 0.00347 275 -2.679 0.0078* 
H x Pos -0.00301 0.005109 275 -0.590 0.556 
D x H x Pos 0.00553 0.00665 275 0.832 0.4063 

(ii.) Insecticide      

Intercept 11.633 1.0742 171 10.82976 <0.001* 
Apical Damage (D: N) -0.241 1.612 64 -0.1498 0.881 
Head Position (Pos) -0.00808 0.00223 171 -3.62909 0.0004* 
D x Pos -0.00889 0.00382 171 -2.32725 0.0211* 

(iii.) Ambient Herbivory      

Intercept 6.772 1.286 103 5.267 <0.001* 
Apical Damage (D: N) 1.425 1.637 63 0.8706 0.387 
Head Position (Pos) -0.0124 0.00375 103 -3.315 0.0013* 
D x Pos -0.00376 0.00452 103 -0.831 0.4077 
 
(D) Estimated seed production per flower head (Mixed Model GLM, plant as random 
effect) 
 
Source Value Std.Error DF t-value p-value 

 Estimated Potential Seeds by Head Position    

Intercept 183.8833 9.461253 274 19.4354 0 
Apical Damage (D: N)  3.22079 14.20232 127 0.226779 0.821 
Herbivory (H: A) -1.19875 17.71206 127 -0.06768 0.9461 
Head Position (Pos) -0.07501 0.019652 274 -3.81683 0.0002* 
D x H  -10.4521 23.65633 127 -0.44183 0.6594 
D x Pos  -0.06946 0.033732 274 -2.05922 0.0404* 
H x Pos -0.04333 0.049557 274 -0.87433 0.3827 
D x H x Pos 0.11616 0.064562 274 1.799157 0.0731 
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(E) Realized seed production per flower head (Mixed Model GLM, plant as random 
effect) 
Source Value Std.Error DF t-value p-value 

Percent Realized Seed by Head Position
    

Intercept 0.874947 0.073764 274 11.86139 0 
Apical Damage (D: N)  -0.01512 0.110129 127 -0.13731 0.891 
Herbivory (H: A) -0.37526 0.136411 127 -2.75094 0.0068*
Head Position (Pos) -0.00056 0.000149 274 -3.76582 0.0002*
D x H  0.095597 0.182247 127 0.524546 0.6008 
D x Pos  -0.00068 0.000256 274 -2.65776 0.0083*
H x Pos -0.00027 0.000377 274 -0.72299 0.4703 
D x H x Pos 0.000457 0.00049 274 0.932217 0.352 

(ii.) Reduced Herbivory      
Intercept 0.87312 0.079597 171 10.96925 0 
Apical Damage (D: N) -0.01858 0.119426 64 -0.1556   0.8768
Head Position (Pos) -0.00055 0.000165 171 -3.35596 0.001* 
D x Pos -0.00066 0.000283 171 -2.31703 0.0217*

(iii.) Ambient Herbivory      
Intercept 0.518232 0.094236 103 5.499275 0 
Apical Damage (D: N) 0.079903 0.120107 63 0.665266 0.5083 
Head Position (Pos) -0.00093 0.000274 103 -3.40359 0.0009*
D x Pos -0.00022 0.00033 103 -0.6569 0.5127 
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Chapter 2. 

Effects of Apical Damage and Insect Herbivory on the iterocarp  

Cirsium undulatum Spreng. 

Abstract Plants that experience steep reproductive losses from insect herbivores should 

favor strategies that promote tolerance or resistance against insect damage.  However, the 

degree to which such strategies influence plant fitness in the field remains inconclusive, 

particularly for iterocarpic plants.  Therefore, we examined whether modifying 

reproductive effort would result in predictable variation in reproductive success, given 

ambient levels of herbivory over two seasons (2007, 2008).  We manipulated the strength 

of apical dominance, as well as subsequent insect herbivory on non-apical flower heads, 

in the native iterocarpic perennial Cirsium undulatum Spreng (wavyleaf thistle) in sand 

prairie.  We evaluated whether C. undulatum plants under strong herbivore pressure had 

the potential to tolerate apical flower head loss by increased reproductive effort in later 

flower heads, and whether such tolerance influenced total seed production each flowering 

season.  We found that plants compensated in seed production for apical head loss 

through increased seed contributions by lower positioned, later-flowering heads. Levels 

of insect floral herbivory varied among plants and among years.  Although some 

compensation for apical head loss was possible, total seed production per plant was low 

in each season; this may have obscured the overall fitness consequences of altered 

reproductive allocation within this plant.  We conclude that variation in insect load and in 

growing conditions may limit the contribution of within-season compensation for overall 

plant fitness through time. 

Keywords: Insect herbivory, plant tolerance, Cirsium undulatum, apical dominance 
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INTRODUCTION 

Insect floral herbivores and predispersal seed predators are common (e.g., Janzen 

1971). Interactions with these organisms can considerably reduce plant seed production 

(Louda 1982, 1983, Louda and Potvin 1995, Kelly and Dyer 2002, Maron and Crone 

2006), as well as population density and lifetime fitness (Louda and Potvin 1995).  

Tolerance mechanisms that promote compensation for reproductive losses provide one 

way for individual plants to ameliorate the negative effects of such herbivory on 

reproductive fitness.  However, the potential for compensatory responses often depends 

on changes in source-sink dynamics, and investment in alternative functions such as 

competition and resource capture that are important for other ecological interactions 

(Aarssen and Irwin 1991, Kotanen et al. 1998, Tiffin 2000).  Therefore, the magnitude of 

positive compensatory contribution by plant herbivory tolerance can be constrained by 

environmental context. Debate continues over whether insect herbivore effects are strong 

enough relative to other costs in the environment for tolerance mechanisms to be 

consistently adaptive (Aarssen 1995, Ehrlén 2003).   

Whether herbivory tolerance mechanisms provide a consistent benefit may also 

vary with life history strategy and reproductive mode (Hendrix 1984, Karlsson and 

Méndez 2005, Maron and Crone 2006). For monocarpic plants, previous studies 

examining tolerance have shown that plants can modify expression of reproductive 

characters in response to floral herbivory (Chapter 1, Pilson and Decker 2002, Kliber and 

Eckert 2004, Östergård et al. 2007, Wise et al. 2008).  Monocarpic plants, dependent on 

their reproductive effort in a single season, should favor strategies that increase fitness for 

their one, fatal, flowering episode, leading to the prediction of successful compensatory 
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responses. We know much less about the actuality and role of tolerance to floral 

herbivores in the current reproductive success of iterocarpic plants (Doak 1992, Kelly 

and Dyer 2002).  In iterocarpic perennials, investment in reproduction in a single season 

should be prioritized to optimize current reproductive effort with plant survival and 

fitness over successive seasons (Crawley 1997).   

The degree to which an iterocarpic plant compensates for herbivory within any 

particular season is predicted to depend heavily on the environmental conditions present 

as well as the consistency of insect pressure on reproductive output (i.e., Maschinski and 

Whitham 1989, Gonzáles et al. 2008).  For instance, in a year of low resources, the 

allocation cost of compensating for loss of reproductive effort may offset the fitness 

advantages of that compensation (Brody et al. 2007).  Further, mechanisms, such as 

apical dominance, that can restrain reproductive effort in years with weak herbivore 

pressure may be offset by mechanisms that produce over-compensatory reproduction in 

years with high herbivory pressure (Tuomi et al. 1994, Nilsson et al. 1996).  Alternately, 

however, seed limitation does not need to occur every year to have negative effects on 

population growth (Maron and Gardner 2000), and herbivore/predator effects that reduce, 

rather than suppress, population growth can still have important implications for plant 

fitness and recruitment (Kelly and Dyer 2002). In fact, although the potential for future 

reproduction might buffer a plant against within season fitness losses, optimizing annual 

reproductive success should reduce variation across seasons (Crawley 1997).  Further 

examination of the degree to which iterocarpic plants compensate, within season and 

between years, for insect floral herbivory provides needed insight into how plants under 
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high ambient insect pressure might balance the tradeoff between both proximate and 

lifetime reproduction.   

Investment in alternate patterns of reproductive effort over time provides a 

potential mechanism to compensate for reproductive losses to insect consumers, to 

increase overall individual fitness, and to explain the variation in success among 

individuals within a population. We tested whether apical damage, and consequent 

changes in the distribution of reproductive effort, resulted in differences in reproductive 

success within a season, over two years, among individuals of the iterocarpic perennial 

Cirsium undulatum Spreng. (wavyleaf thistle).  In order to manipulate plant reproductive 

effort, we altered the strength of apical dominance and the amount of herbivore pressure 

on later-flowering, non-apical, flower heads.  The ability to respond to apical head 

damage that impairs apical dominance can be an important component of realizing seed 

set under intense herbivory (Aarssen 1995).  Further, the breaking of apical dominance, 

through release of dormant buds that leads to an increased number of flowering heads, 

has been hypothesized to provide a tolerance strategy for plants under herbivory (Marquis 

1996, Strauss and Agrawal 1999). 

Our previous study of the co-occurring, monocarpic congener, Cirsium canescens 

(Platte thistle), showed the potential to compensate for apical head damage through 

increased seed production from the lower, later flower heads (Chapter 1).  However, this 

potential was unrealized under ambient levels of herbivory; the plant response did not 

fully compensate for total reproductive losses to insects (Chapter 1).  The flowering 

phenology of C. undulatum overlaps the latter half of the flowering period of C. 

canescens and these two congeners share the same suite of specialist floral herbivores 
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(Lamp 1980, Russell and Louda 2005).  Therefore, we expected insect herbivory to 

impose high within-season costs on seed reproduction, providing a situation in which 

within-season compensation should be advantageous.   

We predicted apical dominance created a meristem reserve of dormant buds that 

would allow compensation for apical flower head loss, reducing the negative effects of 

insect floral herbivory on seed production (Aarssen 1995, Marquis 1996).  Further, we 

expected that protection of the later, non-apical flower heads, simulating years or 

situations with lower levels of seasonal herbivory, would increase compensation and the 

probability of high seed set when the apical flower head was damaged.  Alternatively, 

however, delayed flowering of those later flower heads might not allowe sufficient 

development time or resources, or potentially reduce the probability of successful seed 

set through longer exposure to insect attack (Aarssen 1995, Freeman et al. 2003, Piippo et 

al. 2009). If so, we expected reproductive success to depend primarily on seed production 

by the initial early apical flower head. The results suggest that both the apical and 

subsequent flower heads played a role in reducing the net effect of floral herbivores, thus 

contributing to plant tolerance of herbivory. 

 

METHODS 

Study System 

Cirsium undulatum (wavyleaf thistle) occurs in dry prairie meadows and pastures 

throughout the Great Plains (Kaul et al. 2007). The light purple flowers are produced 

from late June (early season) through August into September (late season). In the Sand 

Hills prairie of Nebraska, C. undulatum plants are often iterocarpic (S. M. Louda, 
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unpublished data). Reproduction can occur by asexual shoots from the perennial taproot 

as well as by seed (Kaul et al. 2007, Brozek 2009).  Flowering begins with the terminal 

apical flower head of the main stem. Subsequent flower head development occurs 

sequentially by branch down the stem, and down a branch from its terminal flower head 

(unpublished data).  

 Herbivores. The five main native floral- and seed-feeding herbivores at our site 

were: Pyrausta subsequalis Gn. and Homoeosoma eremophasma Neunzig [complex] 

(pyralid moths), Paracantha culta Wiedemann and Orellia occidentale Snow (tephritid 

flies), and Baris nr. subsimilis Walker (weevil) (Lamp 1980, Louda and Potvin 1995). In 

addition, the Eurasian flower head weevil (Rhinocyllus conicus Frölich) entered the 

floral-feeding guild in 1994 (Louda et al. 1997, Louda 1998). The patterns of feeding and 

the population level impacts of floral herbivory by these floral herbivores on the closely 

related, co-occurring monocarpic thistle, Cirsium canescens (Platte thistle) have been 

published (Lamp and McCarty 1982, Louda and Potvin 1995, Rose et al. 2005, Russell 

and Louda 2005). Less research has been published on C. undulatum (Louda and Arnett 

2000, Russell and Louda 2005), and this previous work has focused on overall seed loss 

with vs. without attack by the flower head weevil, R. conicus. Whether C. undulatum is 

able to compensate for extensive ambient floral herbivory via altered patterns of 

reproductive investment has not been examined. 

  Study Site. We studied reproductive responses of C. undulatum to experimental 

modification of apical dominance and subsequent herbivory in 2007 and 2008 in Arthur 

County, western Nebraska, in the upper Great Plains, USA. Sites were located within 

Arapaho Prairie, a 1,200 ha Sand Hills prairie reserve owned by The Nature Conservancy 
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and managed for research by the University of Nebraska-Lincoln Cedar Point Biological 

Station. Management since 1978 has involved the exclusion of cattle grazing, plus hay 

mowing in successive quarters on a four-year rotation (Keeler et al. 1980, Louda and 

Potvin 1995).  

Experimental Protocol 

In order to test for compensatory responses, we manipulated the level of apical head 

damage, and so apical dominance (D treatments), in two experiments (2007, 2008). The 

two D treatments consisted of an undamaged, insecticide-protected, control apical head 

(N), and an intentionally damaged apical head (D). In addition, to separate any limits on 

plant capacity for compensatory response from the effects of insect herbivory on plant 

reproduction, we tested the interaction of the apical damage treatments with two different 

levels of subsequent floral herbivory to non-apical heads (H treatments). The herbivory 

treatments were: reduced herbivory (R), using insecticide-in-water, and ambient 

herbivory (A), with water-only as a control. We used a completely randomized 2 x 2 

factorial experimental design.   

 In early season each year, we marked plants that were initiating an apical flower 

head (20 - 22 May 2007, 30 May - 4 June 2008). We had to select new individuals each 

year, as aboveground ramets are usually monocarpic and new rosettes take several 

seasons to mature (S. M. Louda, unpublished data).  In addition, using different plants 

each year eliminated the chance that individual effects would cloud identification of 

general mechanisms promoting within year tolerance.  We quantified initial plant size by 

measuring: rosette diameter (cm), apical head bud diameter (mm), and number of flower 

head buds initiated.  Each replicate block consisted of four plants matched by initial plant 
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size, to control for any effects of variation in initial size on treatment response. Within 

each replicate block, we randomly assigned the four treatment combinations: no apical 

head damage (N): reduced (insecticide, R) versus ambient (water control, A) herbivory; 

and apical head damage (D): reduced (insecticide, R) versus ambient (water control, A) 

herbivory) randomly within each replicate. We established 15 replicate blocks of four 

treatments (total n = 60 adult plants) in 2007. We increased the number of replicate 

blocks to 25 (total n = 100 adult plants) in 2008. Only plants that survived to anthesis 

were included in the final analysis.  As a result, in 2007, in the no apical damage (DN) 

treatment, we had 10 surviving plants each in both the reduced (HR) and ambient (HA) 

herbivory treatments; whereas in the apical damage (DD) treatment, we had 11 surviving 

plants with the reduced (HR) herbivory treatment, and 10 surviving with the ambient (HA) 

treatment.  In 2008, in the no apical damage (DN) treatment there were 21 and 15 plants 

with reduced (HR) and ambient (HA) herbivory, respectively; whereas in the apical 

damage (DD) treatment, there were 19 and 12 plants with reduced (HR) and ambient (HA) 

herbivory, respectively.    

 The apical head damage treatment was intended to simulate the severe damage 

observed in the field that significantly slows or ends apical flower head development (see 

Lamp 1980). Two randomly chosen plants in each replicate block received apical 

damage. To impose damage in 2007, we caged three, field collected, native insects from 

the resident floral feeding guild onto the flower head in 1 mm-mesh bags for 1 wk (1 one 

moth larva, P. subsequalis; 2 weevils. B. subsimilis). We also hand-drilled a small hole 

(1mm diameter) into the lower part of each flower head to facilitate moth larval entry. At 

the end of the week, we removed the bag and checked the level of damage imposed. If 



61 
 

 

the damage did not appear to be similar to levels observed to impede flower head 

development, we partially severed the vascular transport from the stem below the apical 

flower head using a razor blade, further mimicking the girdling observed with insect 

feeding. In 2008, early insect abundances were lower than in 2007. Therefore, we set up 

five replicates with insects as in 2007, but also added 20 replicates with only the 

mechanical damage (drilled hole + partial girdling). Because the effects of both 

techniques of apical head damage (insect + mechanical damage; mechanical damage 

only) were similar (ANOVA, P > 0.10), we present the pooled data. 

 Further, because herbivory mid-to-late in the season contributes most to the 

variability in overall floral herbivory (Louda and Potvin 1995; unpublished data), we also 

manipulated subsequent floral herbivory. Our aim with this treatment was to quantify the 

effects of variation in mid-to-late season herbivory on reproductive success when the 

first, apical, head was versus was not subject to floral herbivory, i.e., when apical 

dominance was broken versus not. Thus, we sprayed two plants within each replicate 

(one with apical damage, one without) with the appropriate herbivory treatment. We used 

insecticide-in-water to reduce floral herbivory, and water only to provide a control with 

ambient levels of herbivory. For the insecticide, in 2007, we used acephate (Isotox, 

Chevron Corp), and applied it every 7 – 10 d in a 1% solution as recommended.  

However, in 2008, in an effort to increase the effectiveness of insect exclusion, we used 

bifenthrin (FMC Corporation Pty Ltd.), and applied it every 14 d in a 0.06% solution as 

recommended. As found in other studies (i.e., Louda and Potvin 1995), the insecticide 

treatment was only partially effective; it reduced floral herbivory on the subsequent, 

lower flower heads by about 40% (see Results). 
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Data Collection 

After quantifying initial plant and flower head sizes when the treatments were imposed 

(20 - 22 May 2007, 30 May - 4 June 2008), we recorded the number and position of each 

flowering head on each plant every 2 wk in 2007 (to 31 July), and every 4 wk in 2008 (to 

1 August).  On each sampling date, for each plant, we recorded flower head diameters of 

the apical head and terminal flower heads on branches, noted external evidence of insect 

damage, and we counted the total number of all smaller, subtending flower heads beneath 

the terminal head on each branch.  On each sampling date, for each plant, we also 

recorded: plant size, as plant height (cm); average rosette diameter (the average of two 

perpendicular diameters, cm); and flowering effort. Flowering effort was defined as total 

number of flowering branches per plant and total number of heads where flowering had 

been initiated.  Herbivory was quantified at the end of the flowering season (see below). 

 We covered each flower head with a mesh bag as it finished flowering to prevent 

seed dispersal.  After flower heads matured and their subtending branches senesced, we 

collected all of the matured flower heads for dissection. For each mature flower head 

collected, we recorded: dry weight (g); diameter (mm); number of developed, undamaged 

seeds; and amount of insect damage to the inflorescence receptacle and to the developing 

seeds. To quantify the amount of insect damage, we divided each flower head into four 

sections and recorded damage in each quarter based on the percent area of the receptacle 

and seeds in that quarter that were insect-damaged. We calculated damage per flower 

head as the average of the four quarter values, and we divided damage into five 

categories, each represented by the midpoint of the category range.  The categories were: 
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0 = 0 - 1% (very little evidence of damage); 1 = 1 - 5%; 2 = 10- 30%; 3 = 30 - 50%; 4 = 

50 - 75%; 5 = 75 - 100% (heavily damaged). 

Data Analysis 

To evaluate and compare initial size differences, we analyzed initial 

measurements for number of flower heads per plant, mean rosette diameter and apical 

head diameter, using a multivariate analysis of variance (MANOVA) in R (R Core 

Development Team 2011).  Initial plant size parameters were significantly larger in 2007 

than in 2008 (p < 0.001). However, we found no significant differences among treatments 

in initial size within years (Treatment x Year: p > 0.10 for all variables).  Therefore, the 

data were pooled for analysis, and year was treated as an additive effect in the MANOVA 

for initial size differences.  At season end, the average insect damage per flower head was 

greater in 2008 than in 2007 (p = 0.025). However, no interaction between treatment and 

year occurred (pD = 0.67, pH = 0.15).  Therefore, we evaluated the average damage per 

flower head by treatment from dissection data using a mixed model GLM, with plant and 

year as random effects.  

Treatment effects on final plant size were examined in MANOVA, with final 

plant height, rosette diameter, number of branches, and number of flower heads as the 

composite dependent variable.  We examined both treatment effects and the potential 

interaction of treatments with year.  We then used subsequent ANOVAs to determine 

treatment effects for each significant individual dependent variable to identify factors that 

contributed to a treatment or year effect in the MANOVA.    

 To examine treatment effects on plant reproductive effort, we used MANOVA, 

with total number of flower heads that developed to maturity (reached anthesis) and total 
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number of flower heads that produced seed as the composite dependent variable, 

followed by subsequent ANOVAs of significant individual dependent variables (as 

above).  

Plant seed set had a severely left biased distribution, because many plants 

produced zero or very few seeds under the high levels of ambient floral herbivory. We 

used maximum likelihood to select the most appropriate distribution against which to test 

treatment effects on whole plant seed set. As a result, to evaluate plant seed production 

by treatment, we used a generalized linear model with a negative binomial distribution in 

R (function glm.nb).    

Because the consequences of reducing herbivory varied between years (pHxYear < 

0.001 for most variables measured), each analysis incorporated a potential interaction of 

treatments with year.  Tables of complete statistical results are presented in Appendix 2.1. 

This experiment mirrors a parallel study of co-occurring, monocarpic, Cirsium canescens 

(Chapter 1), and the main comparative results of these two studies can be found in 

Appendix 2.2. 

RESULTS 

Treatment effects by year 

Plant sizes were significantly larger in 2007 (p > 0.001, see above), and many 

response variables displayed a treatment by year interaction (see below).  Therefore, 

results are presented separately for each year (e.g., Table 2.1). 

Seed production 

The average number of filled, undamaged, seeds per plant did not vary between 

years (p = 0.28). Apical damage did not affect total plant seed production (p = 0.46, 
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Table 2.1).  However, the effect of reducing herbivory by insects varied between years 

(pHxYear < 0.001, Figure 2.1). Seed production in C. undulatum increased when 

subsequent herbivory was reduced by insecticide spray in 2008 (Figure 2.1B, p < 0.001), 

but there was no average herbivory treatment effect in 2007 (p = 0.38, Figure 2.1A).  

Therefore, in 2007, plants did compensate for herbivory and apical damage; however, in 

2008, plants under-compensated for overall insect herbivory.   

Apical damage treatments did not differ in internal feeding damage levels overall 

per plant (p = 0.81, Table 2.1).  However, herbivory treatments differed in floral damage 

per plant (p < 0.001, Table 2.1). The flower heads of plants in the reduced subsequent 

herbivory treatment had less internal feeding damage than did control plants in the 

ambient herbivory treatment (p < 0.001, Table 2.1).  Plants averaged 38 - 44% damage 

(2007), and 46 - 48% damage (2008) with insecticide-reduced herbivory, compared to 61 

- 67% (2007) and 80 - 86% (2008) internal insect damage with water-only treatment 

under ambient herbivory. Therefore, while flower head damage per plant did not differ 

between apical damage treatments, the insecticide treatment reduced herbivory on 

subsequent flower heads by roughly 40%.   

 Seed production per flower head came from fewer heads and fewer seeds per head 

under ambient herbivory than with reduction of subsequent herbivory in 2008 (p < 0.001, 

Figure 2.2).  Overall, however, plants with apical damage produced on average more 

seeds per lower head position compared to plants without apical damage in both 

herbivory treatments.  Therefore, plants with apical damage compensated for early apical 

head loss with increased seed production in later heads (Fig. 2.3), although the number of 
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heads in lower positions contributing was reduced in plants under ambient insect 

herbivory.  

Both apical damage and herbivory on subsequent heads affected seed production 

per flower head, but these effects varied between years.  In 2007, there were no 

discernible differences among treatments (p > 0.10 for apical damage, herbivory, flower 

head position, and all interactions, Figure 2.2A).  In 2008, apical damage interacted with 

head position to influence per-flower head seed production (pDxPosition = 0.009, Figure 

2.2B).  Apical damage increased the contribution from lower heads (Fig. 2.3B), but it did 

not change the result that the majority of seed came from the first few heads.  Reducing 

insects increased the number of seeds per flower head overall (p < 0.001) and, further, it 

centered seed contributions into higher-positioned heads.   

Plant Size 

Plants were larger in 2007 compared to 2008, and apical damage did not affect 

plant size (MANOVA: pD = 0.31). However, reducing herbivory on the later heads had a 

positive influence on final plant size in both years (MANOVA: pYear < 0.001; pH = 0.016, 

Table 2.1).  Plants with reduced levels of herbivory on subsequent heads were taller than 

plants in the control spray treatment under ambient herbivory (pHeight = 0.013). Reducing 

subsequent herbivory, however, did not affect any of the other measured size variables (p 

> 0.10 for rosette diameter, number of flower heads, and number of branches).  Thus, 

apical damage had no significant effect on either non-apical head damage or final plant 

size.  Reducing herbivory on non-apical flower heads reduced insect damage per flower 

head (above) and increased plant height. 
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Flowering Effort 

The treatments had mixed effects on flowering effort. Apical damage increased 

both the number of heads that flowered, and the number of heads that succeeded in 

producing seed per plant (Table 2.1). Reduction of herbivory on later heads, however, 

varied in its effect on the number of heads that flowered and the number of flower heads 

that set seed between years (MANOVA: pD = 0.031; pHxYear < 0.001, Table 2.1). 

Reduction of subsequent insect herbivory increased the number of heads that set seed in 

both years (p = 0.001), but had no effect of the number of heads that flowered (reached 

anthesis) (pFlowering = 0.87).  Overall, reproductive effort was higher in 2007 than in 2008 

(pFlowering = 0.014; pwith seeds <0.001). No herbivory x year interaction occurred in the 

univariate analyses (pFlowering = 0.60; pwith seeds = 0.053), although there was a trend toward 

greater effects of herbivory in 2008 (Table 2.1).  Thus, apical damage and reduction of 

subsequent herbivory on later heads increased the realized reproductive effort of the non-

apical flowering heads, although the magnitude of difference varied between years. 

 

DISCUSSION 

In this study of an iterocarpic plant, C. undulatum, plants on average demonstrated the 

ability to compensate for damage to the apical flower head. Plants with deliberate early 

apical damage tended to produce more heads that flowered, and more flower heads that 

succeeded in maturing some seeds, than did plants without apical damage. These 

responses increased overall seed set by plants with damage to the apical head to a level 

equivalent to plants without experimental damage to the apical head (Fig. 2.3).  However, 
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this compensatory ability did not provide consistent tolerance between years for overall 

herbivory effects.   

 The compensation for apical damage seen here parallels responses reported for 

several other plant species, including Haplopappus spp., Cirsium canescens, Helianthus 

annuus, and Solanum carolinense (Louda 1982, 1983, Louda and Potvin 1995, Pilson and 

Decker 2002, Wise et al. 2008).  These previous studies also found alteration in patterns 

of subsequent reproductive effort compensated, at least in part, for early season 

reproductive losses to insects.  Here, plants with and without apical damage and 

experimental reduction of subsequent insect feeding had similar average seed production 

in 2007.  However, in 2008, we found that C. undulatum plants encountered significant 

within-season reductions in reproductive fitness due to insect herbivory, evidenced by 

substantial increases in seed production when herbivory was reduced.  Neither apical 

seed contribution nor increased investment in subsequent flower heads was sufficient to 

compensate for the high average ambient floral herbivory. 

Life history theory predicts an iterocarpic plant like C. undulatum may not 

maximize fitness under high herbivory within an unfavorable season (Crawley 1997).  In 

2008, both relatively lower reproductive effort, due to smaller mean plant size, and higher 

average damage level per flower head contributed to the lack of herbivory tolerance and 

particularly low seed set (Table 2.1).  However, differences in plant size were insufficient 

to explain tolerance consequences, because average seed set per plant did not differ 

between years.  Plants with reduced herbivory in 2008 contributed more seeds than did 

their 2007 counterparts, offsetting the effects of extremely low seed set in plants exposed 

to ambient levels of herbivory.  This result suggests plants had a reproductive potential in 
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2008 that was not realized under ambient herbivore pressure, and it highlights the 

importance of herbivore effects on maternal seed reproduction of this iterocarpic species. 

Apical dominance plays an important role in plant architecture and phenology (Cline 

1991). The investment hierarchy maintained by apical dominance induces positional 

effects that can influence the effectiveness of such dominance as a tolerance mechanism 

(Rosenthal and Kotanen 1994).  Architectural effects and competition for resources 

among flower heads means the relative condition of non-apical flower heads is strongly 

influenced by flower head position and the interactions among sinks (Lloyd 1980, 

Rosenthal and Kotanen 1994).  Because of hormone-driven dynamics and optimization 

for vertical growth, the first inflorescences may better avoid light limitation by 

surrounding vegetation, and these inflorescences occupy hormonally-favored, resource 

rich positions at the cost of decreasing investment along plant axes (Honkanen and 

Haukioja 1998, Naber and Aarssen 1998, Ortiz et al. 2009).  If seeds in upper head 

positions get better provisioning, and contribute disproportionately to plant fitness, then 

even increases in seed number from later heads may not compensate for fitness losses of 

higher positioned seed heads (Cline 1991, Aarssen 1995, Pilson and Decker 2002).  

 We evaluated these predictions for C. undulatum by imposing apical damage on plants 

early in the flowering season, predicting they would maximize their potential for 

compensation from lower, later heads.  However, while there is evidence of some 

compensation, successful plant seed set was still centered in the higher positioned heads. 

This result suggests that herbivore damage to the apical flower head merely shifted 

priority control to nearby, early-flowering branch terminal heads, as predicted (i.e., Cline 

1991). 
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The quality of later reproductive effort may not always equal early effort, and it 

may actually be hindered by initial effort.  Tolerance may not be realized, despite greater 

numbers of flowers, if lower flower heads lack the time or resources to compensate for 

higher positioned reproductive losses.  Theory suggests that, as resources become scarce, 

plants should stop investing in flowering once primary heads have produced seeds to 

maximize seed provisioning and store up reserves for subsequent seasons (Lloyd 1980).  

High levels of ambient herbivory may give rise to similar effects. For example, in 

Solanum carolinense, incidence of higher floral herbivory led to greater investment in 

root growth (Wise et al. 2008).  Also, in Erigeron glaucus, increases in shoot biomass 

under insect herbivory came at the expense of root biomass (Karban and Strauss 1993), 

and compensation for within season herbivory led to reduced reproduction in the next 

year in Ipomopsis aggregata (Brody et al. 2007). Finding that plants with reduced 

herbivory in our study were taller on average than plants under ambient herbivory 

suggests a cost of herbivory beyond reproductive effects. 

In addition, logistics limit what we know about below-ground dynamics of C. 

undulatum (Brozek 2009, Louda et al. unpublished data). We do not yet know to what 

degree allocation to storage or clonal reproduction in C. undulatum contributes to 

population growth or affects flowering effort or seed allocation. Even in a reproductive 

year, iterocarpic plants should allocate some resources to storage reserves (Iwasa 2000), 

although this allocation might be low under herbivore pressure (Klinkhamer et al. 1997).  

Further studies examining the interaction between sexual and asexual allocation in this 

species could lend more insight into the degree to which clonal reproduction might buffer 

the negative effects of seed loss to insects (i.e., Maron and Crone 2006).  We focused on 
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within-year effects to identify general mechanisms that might confer tolerance under the 

intense herbivory experienced by this species.  Future studies that examine to what 

degree floral herbivore damage affects structures and processes associated with long term 

survival and growth will be better able to identify the relative contributions and costs of 

tolerance to lifetime fitness.  

Previous investments in growth or reproduction, as well as conditions of past 

seasons, also may affect current reproduction in iterocarpic plants (Aragón et al. 2010). 

Further, different environments can select for different optimal flowering sizes and 

reproductive effort (Kelly and Dyer 2002, Hesse et al. 2008).  The number of flowering 

individuals can vary substantially between years (Maron et al. 2002, Hesse et al. 2008, 

Sletvold and Ågren 2011), and differences in tolerance may also reflect a variation in the 

range of individuals available to take advantage of favorable flowering conditions. The 

aboveground ramets of C. undulatum are monocarpic in Sand Hills prairie, and plants at 

our site can remain in the rosette stage for multiple years before flowering (Louda et al. 

unpublished data). Disproportionate flowering by a particular subset of individuals may 

reduce the pool of individuals that initiate flowering in the following year.  A previous 

study of C. undulatum and its co-occurring congener, C. canescens, found more thistle 

heads were produced in years following cool, dry, summers (Russell and Louda 2005), 

suggesting environmental conditions in the previous year influence plant reproductive 

effort in this species.   

That timing, frequency, and intensity of herbivory affect tolerance potential is 

well known (Strauss and Agrawal 1999, Stowe et al. 2000, García and Ehrlén 2002).  We 

would expect differences in herbivory tolerance between years might arise, in part, from 
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variation in resources as well as variation in herbivore attack among years.  For instance, 

differences in resource availability may result in differences in plant sizes among years.  

Smaller plants with higher average damage, as in 2008, might reflect increased herbivore 

feeding per flower head as a result of limited flower head availability and lack of floral 

predator saturation (Crawley 1989). Larger plants, as in 2007, should be less vulnerable 

to numerical herbivory effects on total seed production and, thus, be better able to invest 

in higher numbers of non-apical heads (Crawley 1989, Bonser and Aarssen 2003); this 

response may be modified, however, if higher reproductive effort also results in higher 

relative herbivore attraction (Miller et al. 2008, Brys et al. 2011).  Also, resource 

differences that affect compensation potential, e.g., that result in low numbers of flower 

buds or a limited growing season, might also influence the strength of apical dominance.  

Low resource availability can lead to an increased strength of apical dominance, if early 

apical suppression of lateral buds conserves limited resources to maximize reproductive 

success in high positioned heads.  In high resource environments, plants might better 

benefit from weaker apical control that enables release and provisioning of a greater 

number of buds (Bonser and Aarssen 2003).   

For C. undulatum, apical control could constrain the tolerance potential offered by 

non-apical flower heads, as well as exacerbate seed reduction already affected by floral 

herbivores.  However, apical dominance would be advantageous if it confers a potential 

phenological escape from adapted floral herbivores. For instance, C. undulatum shares a 

suite of specialized thistle-feeding floral herbivores with C. canescens, an earlier-

flowering, co-occurring congener.  Previous work has shown that greater phenological 

overlap with C. canescens results in a lower average attack rate on C. undulatum by the 
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Eurasian flower head weevil, Rhinocyllus conicus (Russell and Louda 2005).  Weevils 

preferentially oviposited on the earlier flowering C. canescens, resulting in associational 

resistance for C. undulatum. The C. undulatum plants that can realize a large reproductive 

effort in successful seed set while C. canescens is still flowering might lower or resist the 

effects of damage by this herbivore.  Alternatively, delayed investment in later heads 

might decrease flower head susceptibility to a prominent native floral herbivore, the 

tephritid fly Paracantha culta, that oviposits preferentially on flower heads 10 – 15 mm 

in diameter (Lamp and McCarty 1982).  For instance, in Erigeron glaucus, plants that 

flowered longer were more likely to avoid herbivory by another tephritid fly (English-

Loeb and Karban 1992). If damage is contingent upon the timing and synchrony with 

plant flowering phenology, plants that distribute reproductive effort over different or 

longer time periods may reduce the probability of damage per head. 

Classical bet hedging theory predicts that plants should maintain alternative 

resource allocation strategies in an uncertain, high herbivory environment (Crawley 

1997).  In our study, early priority investment by C. undulatum in a large apical head, 

along with regrowth potential from subsidiary, later-flowering, dormant buds after apical 

damage, likely provided two parts of an optimized bet-hedging strategy to reduce 

herbivory effects in the uncertain, high risk, herbivory environment. More information is 

required to understand under what circumstances the demonstrated compensation 

potential is realized and contributes to lifetime fitness.  The results of this study 

demonstrate the magnitude and dynamics of potential reproductive compensatory 

response to both apical and subsequent floral herbivory by an iterocarpic plant species 

within season (over two years), and it furthers our understanding of tolerance 
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mechanisms that contribute to ameliorate temporally and spatially variable insect effects 

on populations of this characteristic prairie species.  
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Table 2.1. Cirsium undulatum final, end-of-season, plant performance measures (mean, + 

SE) for plants in each of the four treatments (2007 and 2008 experiments; D = Apical 

damage, H = Herbivory on subsequent flower heads). Best plant performance was 

expected with no apical damage imposed and reduced herbivory (HR:DN), whereas 

poorest plant performance was expected with apical damage imposed under ambient 

herbivore pressure (HA:DD). Variables contributing significantly to treatment effects in 

MANOVA were analyzed individually using ANOVA (p values presented in Results).  

(^) indicates a significant treatment interaction with year.  (*) indicates significant 

treatment differences within year.  Letters indicate significant treatment differences. 

 

  Herbivory Reduced (HR) Herbivory Ambient (HA) 

  DN DD DN DD

Seeds Matured per Plant^ 2007 88.4 ± 31 60 ± 19.6 53.2 ± 17.6 52.3 ± 20.6 

 2008* 138.4 ± 27.3a 151.9 ± 25.6a 2.7 ± 2.3b 8.9 ± 3.7b 

% Damage per Flower Head 2007 41.2 ± 4.8a 49.4 ± 3.8a 67.3 ± 4.9b 70.6 ± 3.8b 

 2008 50.6 ± 4.2a 52.2 ± 3.6a 85.9 ± 1.4b 82.7 ± 2.5b 

Structural Effort^      

Plant Height 2007a 63.2 ± 4.0 63 ± 2.4 62.4 ± 2.3 64 ± 4.6 

 2008b* 55.9 ± 1.9a 58.8 ± 2.1a 50.4 ± 3.1b 47.4 ± 2.1b 

Rosette Diameter 2007a 29.6 ± 2.4 30.7 ± 2.2 28.5 ± 1.3 32.7 ± 2.9 

 2008b 22.3 ± 1.5 24.9 ± 2.4 23.6 ± 2.1 21.2 ± 1.2 

# of Branches 2007 3.1 ± 0.3 3.7 ± 0.3 3.0 ± 0.4 4.6 ± 0.5 

 2008 2.7 ± 0.3 3.2 ± 0.4 3.3 ± 0.6 2.9 ± 0.3 

# of Flower Buds 2007a 7.7 ± 1.2 9.6 ± 1.4 7.7 ± 1.4 11.0 ± 1.0 

 2008b 3.1 ± 0.4 4.8 ± 0.7 5.1 ± 0.8 3.9 ± 0.4 

Reproductive Effort^      

# Mature Flower Heads 2007a 1.7 ± 0.5a 2.4 ± 0.6b 1.6 ± 0.4a 1.6 ± 0.5b 

 2008b 1.0 ± 0.2a 1.8 ± 0.3b 0.2 ± 0.1a 0.6 ± 0.1b 

# Flowered with Seeds 2007a 2.3 ± 0.6a,b 3.2 ± 0.6a,c 2.2 ± 0.5b,d 2.4 ± 0.5c,d 

 2008b 1.2 ± 0.2a,b 2.2 ± 0.3a,c 1.5 ± 0.3b,d 1.9 ± 0.4c,d 
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FIGURE LEGENDS 
 
FIG 2.1. Cirsium undulatum whole plant seed production (mean ± SE) by treatment in 

2007 (A) and 2008 (B).  Treatment effects differed between years.  Plants compensated 

for apical head damage in both years, but compensated for insect herbivory to all heads 

only in 2007. 

  

FIG. 2.2.  Average seed contribution per flower head position.  Average proportion of 

undamaged, developed seeds per flower head (mean ± SE) contributed by each flower 

head position in 2008: (A) with reduced herbivory on subsequent flower heads, and (B) 

with ambient subsequent herbivory (control), in the no apical damage treatment (control, 

dark bars) and the apical damage treatment (light bars).  Zeroes indicate positions where 

heads flowered but produced no undamaged seeds.  Half positions (i.e., 2.5) indicate all 

the subsequent (subordinate) heads that occurred below the terminal flower head on a 

particular lower branch (e.g., branch 2).  

 

FIG. 2.3. Relative seed contribution of apical versus non-apical flower heads in C. 

undulatum in 2007 (A) and 2008 (B).  The height of the bars indicate total plant seed 

production (mean ± SE) by treatment; the black lower portion indicates the average 

contribution of the apical head, and the upper gray portion indicates the average 

contribution per plant from all lower positioned, non-apical, flowering heads. 
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FIGURE 2.1. 
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FIGURE 2.2. 
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FIGURE 2.3. 
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Appendix 2.1. 

Statistical results for key Cirsium undulatum response variables: (A) Seeds per plant; (B) 

Average damage per flower head; (C) Treatment effects on plant structure, with 

subsequent ANOVA’s; (D) Plant Reproductive Effort with subsequent ANOVA’s; (E) 

Seed Set per Flower Head by Head Position.  “D” refers to the Apical Damage treatment 

(N: No Damage v. D: Damage), “H” refers to the Herbivory treatment (R: Reduced v. A: 

Ambient).  Bolded items within tables indicate significant p-values reported in the 

Results. 

 
A.  Seeds per Plant (GLM, negative binomial distribution) 
 
 Estimate Std. Error z value Pr(>|z|)  
(Intercept) -1860.09 925.2229 -2.01 0.044386 * 
Apical Damage (D: N) 965.162 1317.067 0.733 0.463673  
Herbivory (H: A) 5414.583 1408.922 3.843 0.000122 *** 
Year 0.9288 0.4609 2.015 0.043853 * 
D X H 1514.932 1975.512 0.767 0.443167  
D x Year -0.4807 0.656 -0.733 0.463706  
H x Year -2.6979 0.7018 -3.844 0.000121 *** 
D x H x Year -0.755 0.984 -0.767 0.442927  
 
2007 (GLM, negative binomial distribution) 
 Estimate Std. Error z value Pr(>|z|)  
(Intercept) 4.2976 0.2616 16.427 <2e-16 *** 
Herbivory -0.3255 0.3703 -0.879 0.379  
 
2008 (GLM, negative binomial distribution) 
 Estimate Std. Error z value Pr(>|z|)  
(Intercept) 4.9754 0.2049 24.277 <2e-16 *** 
Herbivory -3.2808 0.3328 -9.857 <2e-16 *** 
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B. Average Damage per Flower Head (Mixed Model GLM, plant and year random 
effects) 
 
 Value Std Error DF t-value p-value 
(Intercept) 0.451025 0.033215 117 13.57898 0 
Apical Damage (D: N) -0.00524 0.051312 90 -0.10215 0.9189 
Herbivory (H: A)  0.289335 0.053142 90 5.444569 0 
D x H 0.028681 0.079199 90 0.362139 0.7181 
 
C. Effect of Treatment on Plant Structure (MANOVA, composite size variable)  
 
 Df test stat approx F num Df den Df Pr(>F)  
Apical Damage (D) 1 0.0546 1.2283 4 85 0.30497  
Herbivory (H) 1 0.1321 3.2368 4 85 0.01599 * 
Year 1 0.4685 18.7349 4 85 4.49E-11 ***
D x H 1 0.0165 0.3571 4 85 8.38E-01  
D x Year 1 0.0526 1.1809 4 85 0.32507  
H x Year 1 0.0583 1.3176 4 85 0.27002  
D x H x Year 1 0.0325 0.7145 4 85 0.5843  
 
Number of Heads (ANOVA) 
 SS Df F Pr(>F)  
Herbivory 9.71 1 0.8796 0.3505  
Year 570.6 1 51.6712 1.12E-10 *** 
Residuals 1126.37 102    
 
Plant Height (ANOVA) 
 SS Df F Pr(>F)  
Herbivory 632.9 1 6.3709 0.01314 * 
Year 2352.6 1 23.6801 4.16E-06 *** 
Residuals 10133.6 102    
 
Rosette Diameter (ANOVA) 
 SS Df F Pr(>F)  
Herbivory 4.2 1 0.0842 0.7724  
Year 1264.4 1 25.2961 2.35E-06 *** 
Residuals 4698.5 94    
 
Number of Branches (ANOVA) 
 SS Df F Pr(>F) 
Herbivory 1.56 1 0.6976 0.40553
Year 7.674 1 3.431 0.06688
Residuals 228.133 102   
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D. Reproductive Effort (MANOVA, composite reproductive variable) 
 
 Df test stat Approx. F num Df den Df Pr(>F)  
Apical Damage (D) 1 0.06695 3.5881 2 100 0.03125 * 
Herbivory (H) 1 0.19166 11.8558 2 100 2.40E-5 ***
Year 1 0.11652 6.5945 2 100 0.00204 ** 
D x H 1 0.00632 0.3183 2 100 0.72811  
D x Year 1 0.01012 0.5112 2 100 0.60136  
H x Year 1 0.09610 5.3162 2 100 6.40E-3 ** 
D x H x Year 1 0.01076 0.5439 2 100 0.58216  
 
Number Heads that Succeeded in Flowering (Matured heads; ANOVA) 
 SS Df F Pr(>F)  
Apical Damage (D) 1.6774 1 6.9678 0.009576 ** 
Herbivory (H) 0.0063 1 0.0262 0.871841  
Year 1.5126 1 6.2833 0.013737 * 
H x Year 0.0669 1 0.278 0.599139  
Residuals 25.0371 104    
 
Number Heads that Flowered that Produced Viable Seeds (ANOVA) 
 SS Df F Pr(>F)  
Apical Damage (D) 1.3414 1 5.3614 0.022551 * 
Herbivory (H) 3.2192 1 12.8669 0.000511 *** 
Year 3.3678 1 13.4609 0.000386 *** 
H x Year 0.959 1 3.833 0.052932 . 
Residuals 26.0203 104    
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E.  Seed set per Head Position (Mixed Model GLM, plant as random effect) 
 
 Value Std.Error DF t-value p-value  

(Intercept) -162541 36802.54 112 -4.41657 0 * 

Apical Damage (D: N) 193015.4 67912.33 89 2.842126 0.0056 * 

Herbivory (H: A) 195495.5 72376.83 89 2.701079 0.0083 * 

Head Position (Pos) 24853.75 10901.51 112 2.279845 0.0245 * 

Year 81 18.33 89 4.418391 0 * 

D x H -187912 104581.5 89 -1.7968 0.0758  

D x Pos -47534.3 22238.37 112 -2.13749 0.0347 * 

H x Pos -24658.1 23906.65 112 -1.03143 0.3046  

D x Year -96.14 33.83 89 -2.84211 0.0056 * 

H x Year -97.4 36.05 89 -2.70146 0.0083 * 

Pos x Year -12.38 5.43 112 -2.28055 0.0245 * 

D x H x Pos 42542.99 34920.39 112 1.218285 0.2257  

D x H x Year 93.59 52.09 89 1.796614 0.0758  

D x Pos x Year 23.68 11.08 112 2.137346 0.0347 * 

H x Pos x Year 12.28 11.91 112 1.031427 0.3046  

D x H x Pos x Year -21.19 17.39 112 -1.21808 0.2258  

 
2007 (Mixed Model GLM, plant as random effect) 
 Value Std.Error DF t-value p-value  

(Intercept) 23.89634 11.27778 62 2.118887 0.0381 * 

Apical Damage (D: N) 25.89396 18.15045 36 1.426629 0.1623  

Head Position (Pos) -1.62755 3.259052 62 -0.49939 0.6193  

Herbivory: (H: A) -5.40726 6.586237 36 -0.82099 0.4171  

D x Pos -7.66754 5.853479 62 -1.30991 0.1951  
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2008 (Mixed Model GLM, plant as random effect) 
 Value Std.Error DF t-value p-value  

(Intercept) 92.15663 10.76299 55 8.562366 0 * 

Apical Damage (D : N) -41.3985 13.56846 55 -3.05108 0.0035 * 

Head Position (Pos) -11.6674 3.348197 54 -3.48467 0.001 * 

Herbivory (H: A) -53.3851 7.954483 55 -6.71132 0 * 

D x Pos 11.31765 4.16291 54 2.718687 0.0088 * 
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Appendix 2.2. 

Additional data on Cirsium undulatum (Wavyleaf thistle) and summarized results of a 

qualitative comparison with co-occurring congener Cirsium canescens (Platte thistle, 

Chapter 1).     
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Table A2.2:1. Initial C. undulatum measurements.  As in C. canescens (Chapter 1), there 

were no significant differences in early season sizes among treatments, though plant size 

did vary between years (see Results).  

  Reduced Herbivory (HR) Ambient Herbivory (HA) 
Variable Year DN DD DN DD

Rosette Diameter     

 2007 33.2 (+2.0) 37.3 (+2.6) 37.5 (+2.0) 32.7 (+1.3) 

 2008 29.6 (+2.2) 26.9 (+1.6) 27.2 (+1.7) 25.3 (+1.4) 

 Overall 31.1 (+1.5) 31.1 (+1.7) 31.9 (+1.6) 28.4 (+1.1) 

Apical Bud Diameter     

 2007 29.9 (+1.6) 31.4 (+1.9) 33.2 (+2.2) 29.6 (+1.6) 

 2008 17.4 (+1.7) 17.5 (+1.6) 16.4 (+1.5) 15.5 (+1.3) 

 Overall 22.8 (+1.6) 23.2 (+1.7) 24.0 (+1.9) 21.5 (+1.9) 

Total Number of Buds     

 2007 3.9 (+0.5) 5.4 (+1.0) 5.6 (+0.9) 4.5 (+0.4) 

 2008 2.8 (+0.5) 3.0 (+0.5) 2.9 (+0.5) 2.3 (+0.3) 

 Overall 3.2 (+0.4) 4.0 (+0.5) 4.1 (+0.5) 3.2 (+0.3) 

N 2007 15 13 15 14 
 2008 35 32 33 33 
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Table A2.2:2.  Combined experimental results on the effect of apical damage and subsequent herbivory on co-occurring C. undulatum 

and C. canescens (Chapter 1).  Cirsium undulatum results are separated by year, as they were analyzed by year.  Numbers in gray 

represent results from variables that were unaffected by treatments.  Bolded vs. italicized numbers illustrate whether herbivory or 

apical damage had the principle effect; high values in the comparison are bolded, and a summarized comparison is provided in the last 

column. 

Variable H 
C. undulatum 2007 C. undulatum 2008 C. canescens (2007, 2008) 

Results 
DN DD DN DD DN DD

% Flower head Damage HR 41.2 ± 4.8 49.4 ± 3.8 50.6 ± 4.2 52.2 ± 3.6 48.1 ± 2.6 48.4 ± 2.9 H effects, 
HR Hi HA 67.3 ± 4.9 70.6 ± 3.8 85.9 ± 1.4 82.7 ± 2.5 78.5 ± 2.5 72.9 ± 4.3

Plant Reproductive Effort 

Seeds per Flower head HR 28.6 ± 8.6 12.0 ± 3.5 48.6 ± 7.8 0.9 ±0.7 69.6 ± 7.5 99.0 ± 6.8 H effects 
HR Hi HA 14.7 ± 3.9 20.7 ± 5.2 59.3 ± 7.2 4.7 ±2.1 30.7 ± 5.3 31.5 ± 6.5

Non-apical position 
contributing most seed 

HR 2.6 ± 0.2 2.9 ± 0.4 2.4 ± 0.1 2.2 ± 0.1 2.4 ± 0.1 3.0 ± 0.2 
n.s. 

HA 2.3 ± 0.3 2.3 ± 0.3 3.0 ± 1.0 2.4 ± 0.2 2.5 ± 0.2 2.4 ± 0.1 

# Heads Flowered HR 1.7 ± 0.5 2.4 ± 0.6 1.0 ± 0.2 1.8 ± 0.3 2.9 ± 0.4 4.2 ± 0.6 ADD Hi, 
PT: HR onlyHA 1.6 ± 0.4 1.6 ± 0.5 0.2 ± 0.1 0.6 ± 0.1 2.8 ± 0.4 2.3 ± 0.3

# Flowered with Seeds HR 2.3 ± 0.6 3.2 ± 0.6 1.2 ± 0.2 2.2 ± 0.3 1.9 ± 0.3 3.5 ± 0.5 ADD Hi, 
PT: HR onlyHA 2.2 ± 0.5 2.4 ± 0.5 1.5 ± 0.3 1.9 ± 0.4 1.5 ± 0.2 1.3 ± 0.2

Plant Structural Effort 

Plant Height HR 63.2 ± 4.0 63 ± 2.4 62.4 ± 2.3 64 ± 4.6 53.3 ± 2.0 53.9 ± 2.1 H effects, 
WL only HA 50.4 ± 3.1 47.4 ± 2.1 55.9 ± 1.9 58.8 ± 2.1 50.6 ± 1.7 47.5 ± 1.9

Rosette Diameter 
HR 29.6 ± 2.4 30.7 ± 2.2 22.3 ± 1.5 24.9 ± 2.4 32.2 ± 1.6 34.6 ± 1.7 

n.s. 
HA 28.5 ± 1.3 32.7 ± 2.9 23.6 ± 2.1 21.2 ± 1.2 34.0 ± 1.6 30.6 ± 1.4 

# of Branches 
HR 3.1 ± 0.3 3.7 ± 0.3 3.3 ± 0.6 2.9 ± 0.3 5.2 ± 0.9 6.6 ± 0.6

n.s. 
HA 3.0 ± 0.4 4.6 ± 0.5 2.7 ± 0.3 3.2 ± 0.4 5.9 ± 1.0 5.4 ± 0.4

# of Flower Buds 
HR 7.7 ± 1.2 9.6 ± 1.4 3.1 ± 0.4 4.8 ± 0.7 9.6 ± 0.9 12.6 ± 1.4

n.s. 
HA 7.7 ± 1.4 11.0 ± 1.0 5.1 ± 0.8 3.9 ± 0.4 10.4 ± 1.8 10.2 ± 0.8

9
0 



 

91 
 

Variable H 
C. undulatum 2007 C. undulatum 2008 C. canescens (2007, 2008) 

Results 
DN DD DN DD DN DD

Overall Effects on Plant Fitness through Seed Production 

Seeds per Plant  
HR 88.4 ± 31 60 ± 19.6 138.4 ± 27.3 151.9 ± 25.6 355.9 ± 49.0 477.8 ± 81.8  W: H 2008 

PT: ADD:HR HA 53.2 ± 17.6 52.3 ± 20.6 2.7 ± 2.3 8.9 ± 3.7 186.3 ± 29.6 112.0 ± 27.9
 
 

9
1 
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Figure Legends 

Figure A2.2:1. Average damage per individual plant with (A) herbivory reduced and (B) 

herbivory ambient.  Dashed vertical lines represent the mean damage per head for each 

herbivory treatment.  Reduction of insects did not totally exclude herbivores, but it did 

lower the amount of flower head damage.  Plants are presented in a random order. 

 

Figure A2.2:2.  Evaluation of apical damage treatment.  (A) Variation in apical seed 

production among plants in the apical damage treatment when herbivory was reduced 

(black) versus ambient (gray) and (B) Average total number of filled, undamaged seeds 

in the non-apical flower heads by herbivory treatment for plants with either low imposed 

damage (>50 seeds produced, black) or high imposed damage (< 50 seeds produced,gray 

) (n = 5 per category).  Only one plant in the ambient herbivory treatment produced more 

than 50 seeds, and there was little difference in the number of seeds produced from 

subsequent heads between the high and low imposed damage.
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Figure A2.2:1. 
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Figure A2.2:2. 
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Chapter 3. 

Apical dominance is an optimal resource allocation strategy under a 

constant risk of flower head destruction by herbivores 

ABSTRACT:  Apical dominance is important to plant architecture and resource 

partitioning, but its influence on the consequences of plant-herbivore interactions remains 

relatively uncertain.  Prolonged priority investment in apical regions, accompanied by 

lateral bud suppression, may constrain fitness through limits on the number or size of 

flowers.  Alternatively, under high herbivory risk, apical dominance may increase fitness 

if it provides a temporal herbivory escape through either large early-season investments 

in apical regions or high late-season investments from early suppressed lateral buds.  

High priority investment in the apical flower head can be an advantage if herbivore 

attacks are infrequent at the beginning of the flowering season and the apical head is 

likely to escape herbivores.  Disruption of apical dominance releases lower flower heads, 

but the degree to which these heads contribute to fitness depends on their probability of 

survival.  The degree to which strong apical dominance affects plant fitness if the risk of 

insect damage remains high throughout the season is not clear.  Using a stochastic 

dynamic programming (SDP) approach, we identified optimal resource allocation among 

different flower heads, and optimal timing of flowering, assuming no temporal variation 

in mortality risk of the flower heads.  The model addresses trade-off between the longer  

flower head growth, resulting in higher the potential number of seeds produced (larger 

heads produce more seeds), versus the risk that the resulting longer exposure time to 

herbivores increases the likelihood of being destroyed by herbivores and receiving no 
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fitness (zero seeds). Our motivating example is Cirsium canescens Nutt., a well-studied 

prairie species with intense but variable insect floral herbivory.  We found that strong 

apical dominance did emerge as an optimal strategy in this system, and that both optimal 

growth investment patterns and flowering size varied with flower head survival 

probability. When survival between flower heads was equal, the small initial size 

advantage afforded the early emerging apical head resulted in prolonged priority 

investment.  However, when apical and non-apical heads had unequal survival 

probabilities, the identity of the priority head varied with the overall herbivory risk 

environment.  In a high risk environment (high herbivore attack rate), plants invested 

initially in the lower risk head until flowering, and both heads flowered at the same size.  

In a low risk environment (low herbivore attack rate), plants invested initially in the 

relatively higher risk head and the lower risk head flowered at a slightly larger size 

compared to the higher risk head.  The model suggests that maintaining apical dominance 

can provide a fitness advantage under a constant risk of herbivory.  

Keywords: apical dominance, reproductive allocation, herbivory, stochastic dynamic 

programming (SDP) 
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Introduction 

 Apical dominance refers to the control exerted by the apical regions of the plant 

shoot over the growth and development of later, dormant, axial buds. The resultant 

unequal partitioning of resources among individual flower heads leads to disproportionate 

investment between the apical region and the axial bud regions. The influence of apical 

dominance on flowering head size and pattern varies with the strength and duration of 

apical control (Cline 1991, Honkanen and Haukioja 1998, Obeso 2002).  Therefore, 

apical dominance is an important determinant of plant architecture, phenology and 

resource allocation (Cline 1991, Marquis 1996).  

 Consequently, apical dominance may also influence the interactions of plants with 

their herbivores.  For instance, the risk of damage and seed loss from floral herbivores 

and predispersal seed predators is often highest during flowering peaks (Elzinga et al. 

2007).  If so, then theory postulates that if there is a sufficiently high chance of floral and 

seed losses, as well as a chance of compensating for those losses, a plant will restrain the 

magnitude of its initial investment in favor of later investments (Vail 1992). Gradual 

release of lateral axillary buds also can extend the plant flowering period, allowing 

development of a subset of flower heads to escape herbivory temporally (English-Loeb 

and Karban 1992, Pilson and Decker 2002).  

 Further, the strength of apical dominance, along with its relative contribution to 

plant fitness under herbivory, varies among different environments.  Optimization models 

allow a theoretical prediction for how plants should allocate resource investment to 

reduce fitness losses to insect herbivores. In this study, we developed a model to examine 
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how the optimal resource allocation among flower heads should vary in relation to insect 

floral herbivore pressure in high versus low herbivory risk environments. 

 Apical dominance can confer a fitness advantage directly, through its effect on 

plant competitive ability for light and subsequent resource capture, and indirectly, 

through its influence on flowering phenology and patterns of resource allocation (Aarssen 

and Irwin 1991).  Since apical dominance represents a disproportionate meristem 

commitment to vertical growth and development, it can be important for faster initial 

growth, and such growth can lead to competitive preemption of incoming light and 

reduction of shading from neighbors (Cline 1991, Aarssen 1995).  

 Also, the apical meristem, as a high priority resource sink, can produce larger 

inflorescences that are also more conspicuous to pollinators.  Thus, such flowers can 

make substantial early contributions to plant fitness (Tiffin 2000, Chapters 1 and 2).  By 

unequal investment among flower heads, plants can speed up the growth of priority 

flower buds and, thus, reduce the duration of time a portion of flower head buds remain 

highly vulnerable to herbivores. For instance, Arabadopsis halleri plants that flowered 

and developed fruit early avoided herbivory by beetle larvae that feed extensively on its 

flowers and buds (Kawagoe and Kudoh 2010).  Earlier flowering also increased fruit set 

in Lupinus lepidus despite greater late season fruit production, because early flowers 

avoided high fruit predation by the relatively common butterfly larvae that damaged both 

flowers and developing seeds (Bishop and Schemske 1998).    

 Additionally, because favored apical sinks inhibit investment in lower positioned 

buds, the duration and strength of apical dominance represents a bet hedging mechanism 
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by which plants can partition resource investment in flowering through time.  Delayed 

investment in later flower heads can allow buds to compensate for early season 

conditions or early losses, or to escape herbivores altogether. For example, Ipomopsis 

aggregata increased tolerance to early season damage by regrowth of numerous branches 

after ungulate herbivory (Juenger and Bergelson 2000).  The delayed flowering induced 

by ungulate herbivores also decreased the magnitude of subsequent insect damage and, 

so, led to increased seed production by I. aggregata (Freeman et al. 2003).  Also, 

Helianthus annuus was able to compensate for apical damage by an extended flowering 

period and by seed production in high positioned branches (a consequence of sustained 

apical control), as well as by an investment in later flower heads that escaped the peak in 

insect herbivory (Pilson and Decker 2002). 

 Alternately, apical dominance can incur costs. For example, initial 

disproportionate investment, such as into a single, large composite apical head, increases 

risk of a significant loss of resource investment that may not be replaceable (Aarssen 

1995). Furthermore, priority apical investment that delays or limits resource investment 

in non-apical heads might reduce the developmental rate and size potential of these later 

heads, as well as increase their exposure time to herbivores; it could also lead to 

reduction in overlap with pollinators that consequently lowers the contribution of those 

heads to plant fitness (Cline 1991, Aarssen 1995, Tiffin 2000). Further, total plant seed 

set may also be reduced if dormant buds are activated relatively late, i.e., without enough 

time in the season to reach flowering size or to successfully develop seeds (Huhta et al. 

2000, Hesse et al. 2008).  
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 The net fitness consequence of strong apical dominance depends on the tradeoff 

between the aforementioned costs and benefits, as well as the predictability of herbivore 

damage.  For instance, if the damage risk is relatively high only during a crucial 

developmental time, such as during bud expansion or seed development, priority 

investment could speed up development and the resulting early flowering individuals 

would experience a shorter period of risk, providing them with a better chance of 

avoiding herbivores (Järemo et al. 1999).  Alternatively, if herbivory events are most 

likely early in the season plants may benefit from reserves of dormant buds maintained 

through apical dominance (Marquis 1996). For example, when early ungulate herbivory 

is likely, investment in initial apical reproductive structures should be low; in this case, 

fitness is expected to be maximized through release of later, undamaged flower buds after 

apical damage impairs dominance (Vail 1992, Tuomi et al. 1994, Nilsson et al. 1996).  

Finally, if there are multiple brief herbivores attacks throughout the season, plants should 

gradually activate buds over time to increase the likelihood of overlap with conditions 

allowing some buds to develop (Lehtilä 2000). Thus, if herbivory is intense but variable 

in time, fewer flower buds should remain dormant (Nilsson et al. 1996).  Haphazard 

variation in the timing and duration of herbivory would eliminate any predictability of a 

cost of apical dominance (Aarssen 1995).   

Given these considerations, we constructed a stochastic dynamic programming 

(SDP) model to examine the optimal allocation of resources over a growing season 

between two, large, composite flower heads (apical, non-apical) exposed to a constant 

risk of herbivory.  In many monocarpic species, the total seed production of lower level 

heads is similar to the seeds produced from the apical head alone. Thus, the non-apical 
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head in our model can be thought of as a proxy for all lower level flower heads.  As 

commonly observed, resource allocation determined the growth rate of flower heads in 

the model, and the resulting flower head size determined potential seed production. The 

model predicted optimal allocation strategies in response two life history tradeoffs. First, 

it predicted the optimal resource allocation between flower heads; prioritized investment 

in one head would delay investment and subsequent growth of the other head.  Delayed 

growth influenced head survival because it increased the exposure time to herbivores. 

Second, the model predicted optimal flowering time.  The longer a flower head grows, 

the larger its size and the higher is the potential seed production, but an extended growing 

period also extends exposure time to herbivores, resulting in a reduced flower head 

survival.   

We parameterized our model with field data for Cirsium canescens Nutt. (Platte 

thistle) in sand prairie. In this thistle species, insect herbivory on flower heads is common 

and intense, but variable; floral herbivory can cause significant reductions in plant fitness 

that has population-level consequences (Louda and Potvin 1995, Rose et al. 2005).  Our 

model predicted strong apical dominance as the optimal strategy when a small size 

advantage of the apical head at the beginning of the season was the only difference 

between the flower heads. If survival risk varied between the two heads the optimal 

resource allocation to the apical head depended on the intensity of the overall herbivore 

pressure (high vs. low herbivory risk environments) as well as the relative survival 

difference between the two heads.  
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Methods 

Model Structure 

 Stochastic dynamic programming (SDP) models identify state-dependent optimal 

decisions for all possible combinations of the state variables. In this study, the decisions 

represented state-dependent reproductive allocation strategies that were expected to be 

optimized over evolutionary time. The model considered five state variables: the size of 

the apical flower head (MA), the size of the second flower head or all non-apical flower 

heads (MB), the flowering state of the apical (A) head (HA: yes or no), the flowering state 

of the non-apical (B) head(s) (HB: yes or no), and time (t). The model only considered 

two flower heads to keep the state space manageable. We considered 45 different size 

classes of each flower head, 21 time steps (t), and two flowering states for each head, 

which produced a state space of 170,100 (t *MA* HA*MB *HB). Adding only one 

additional flower head would have increased the state space to over 15 million 

(15,309,000) and was too large to get an exact solution. For plants that commonly only 

produce one to three seed-producing inflorescences, as is often seen in the Asteraceae and 

Apiaceae, the interpretation of the non-apical head (B) was relatively straightforward; it 

represented investment in only one or two lower heads with combined seed production 

comparable to that of the apical inflorescence. Similarly, the non-apical head (B) might 

correspond to the combined total investment in all other lower heads; in this paper we 

assumed that the total seed production of all other flower heads was the same as the 

apical head (Chapter 1 and 2).   
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 A SDP model uses backward iteration to find the optimal solution starting at the 

final time horizon (T), which in our model was the end of the growing season, and then 

stepping backward through time. At each time step for each combination of states, the 

SDP model calculated the fitness consequences of all possible decisions in the next time 

step, and chooses the decision that maximizes expected future fitness (see detailed 

descriptions of SDP models in Bellman (1957) and Clark and Mangel (2000)).  

 The model incorporated two life history decisions: the optimal flowering size and, 

thus, flowering time (trade-off between current and future reproduction) and the optimal 

resource allocation to growth of the apical (A) head versus the non-apical (B) head(s) 

before flowering. In the model, if one of the heads flowered or was destroyed by 

herbivores, all subsequent resource inputs were allocated to the growth of the remaining 

head. The expected fitness produced by flowering heads generally increased with head 

size; expected fitness based on head size (q(M)) at time t was described by the equation:  

ሻܯሺݍ ൌ 1/ሺ1 ൅	݁
ି௖∗ቀ

ಾ
ಾ೘ೌೣ

ି௩ቁ
ሻ       Eq. 1 

where M is the head size, Mmax represents the largest possible head size, and c and v are 

constants that affect the shape of the S-shaped fitness curve (from Kokko 2007).  q(M) 

varied between 0 (no fitness) and 1 (maximum expected fitness). This function 

incorporates the rarity with which small flower heads produce any seeds, and that at very 

large head sizes, partitioning resources among an increasing number of seeds would 

decrease the fitness advantage of continuing to increase in size (a diminishing return). 

q(M) indirectly incorporated the survival of developing seeds. For instance, if a head of 
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size M produces an average of n seeds, and y is the proportion of seeds surviving until the 

end of seed maturation, then q(M)=ny.  

 The model considered allocation of available resources, R, between the apical (A) 

and non-apical (B) heads. We specified r as the proportion of R allocated to the A-head, 

and (1-r) the proportion of resources allocated to the B-head. For each time step, the 

model determined the optimal r-value for each size combination of the two heads (MA , 

MB). The expected size of a flower head in the next time step (t+1) depended on the 

resource allocation it received for growth (see below) and on its size at time t.  We 

assumed that flower head size at time t+1 is a linear function of flower head size at time t. 

This is consistent with empirical observations for many plant species, and it is a common 

way to model size changes from t to t+1 in integral projection models (Ellner and Rees 

2006, Briggs et al. 2010). 

M (t + 1) = a + b M(t)  

In the model, flower heads could not decrease in size, thus if zero resources were 

allocated to a flower head then the growth function represented the 1:1 line (a=0, b=1). If 

100 % of the resources were allocated to a single flower head then the intercept of the 

growth function, a,  specified the maximum size increment of flower heads at their 

smallest possible size; the slope b <1 ensured that the growth increment of small heads 

exceeded that of large heads. This growth function produced a concave down growth 

curve of individual head sizes over time (fig. 3.1, inset).  

The growth functions of flower heads that received less than 100% of the 

resources fell between MA (t + 1, r=1)  or MB (t + 1, r=0)  and the 1:1 line. The growth 



105 
 

 

increment, g, at head size M was a linearly decreasing function of resource allocation. For 

example, a head that received 50% of the resources (r = 0.5) would grow half its potential 

growth increment in one time step (fig. 3.1). So  

M (t + 1, r) =  g(M(t), r) + M (t),      Eq. 2 

We denoted g(MA(t), r) as the growth increment for head A, and g(MB(t),1-r) the growth 

increment for B. Since size is a continuous variable, we discretized the size distribution 

by slicing it into equally spaced intervals. Typically, the growth increment from one time 

step to the next fell between two size categories. Thus, we used linear interpolation (see 

Clark and Mangel 2000 for details) to calculate the size of both flower heads resulting 

from a particular resource investment, r, from time t to t+1.  

Each time step, a vegetative flower head could start flowering. Flowering 

decisions could not be reversed, i.e. a head that flowered at time t could no longer 

increase in size, but also could not be destroyed by insect herbivores attacking vegetative 

heads. In the field, heads can be partially or completely destroyed during or after 

flowering. The resource partitioning between vegetative flower heads and the time when 

a flower head switched to the flowering state should not influence the chances of 

herbivore attacks after flowering; hence, this post flowering mortality risk could be 

included as a scaling factor in the expected fitness calculation associated with a flower 

head of size M.  

The longer a plant delays flowering and continues growing, the higher the 

potential fitness of each flower head. However, delay also increases the probability of 

destruction by insect herbivores prior to flowering (fig. 3.2), so even if 92% of the flower 
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heads survive herbivore attack for one time step, only half of the flower heads survive 11 

time steps (0.9211 = 0.5). Thus, postponed flowering initially increased the expected 

fitness (increase in flower head size) up to a point beyond which it began to decrease 

because the additional mortality risk incurred by growing one more time step exceeds the 

benefit of attaining a larger size (fig. 3.3). A consequence of the humped shape expected 

fitness curve was to flower before the end of the season. We assumed that the mortality 

risk for apical and non-apical flower heads were independent probabilities.   

Our model found the solution that maximized the expected fitness of the entire 

plant, i.e. the sum of the fitness contributions of both flower heads. At each time step, the 

SDP model identified which of four possible life history decisions maximized the plant’s 

future fitness. The general programming equation was:  

         F [MA, MB, HA, HB, t] =  Eq. 3 

 max (“A and B flower”,” only A flowers”,” only B flowers”,” A and B grow"),   

where MA and MB were the size of flower heads A and B, and HA or HB denoted their 

reproductive state. A reproductive state of one indicated that the head was flowering, 

whereas a reproductive state of zero indicated that the head was growing. We denoted the 

survival probabilities (S) of the apical (A) head or non-apical (B) as SA and SB. The 

expected future fitness was zero for a vegetative flower head destroyed by insect 

herbivores. In the model, we indicated this by setting the head size M to zero. For 

example, if the A-head flowered at size MA and the B-head was going to flower in the 

next time step then the expected future fitness was F[MA(t), MB(t), 1, 1, t+1] . However, if 

the B-head was to continue growing, it automatically got all resources (r=0) to grow to 
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size MB(t)+g(MB(t), r=0) with probability SB. Thus, for this scenario, the expected future 

fitness resulting from the decision for the B-head to keep growing is  

            (1-SB)  F [MA(t), 0, 1, 0, t+1] + SB  F [MA(t), MB(t) + g(MB(t), r=0), 1, 0, t+1].  

The future fitness associated with each of the four life-history decisions in Eq 3 was:  

“A and B flower”:   

 F [MA(t), MB(t), 1, 1, t+1]        

“Only A flowers”:   

SB  F [MA(t), MB(t)+g(MB(t), 1), 1, 0, t+1]  +  (1-SB)  F [MA, 0, 1, 0, t+1]   

“Only B flowers”             

SA  F [MA(t) + g(MA(t), 1), MB(t), 0, 1, t+1] + (1-SA) F [0, MB(t), 0, 1, t+1]  

“A and B grow”    

r
max  {SA SB F [MA(t) +g(MA(t), r), MB(t)+g(MB(t), 1-r), 0, 0, t+1]} +  

           (1-SA) SB F [0, MB(t)+g(MB(t), 1-r), 0, 0, t+1] +                             

           SA (1-SB) F [MA(t)+g(MA(t), r), 0, 0, 0, t+1]  

The possibility that both heads die is not presented here for the sake of brevity, as the 

fitness if neither head survived was always zero (Clark and Mangel 2000). If both heads 

were equal in size the expected fitness associated with r was equal to 1-r.  When fitness 

was tied, the A-head received a slight priority investment. 

Motivating Example 

 We parameterized the growth and fitness functions of the model using field data 

for Cirsium canescens (Platte thistle, Appendix 3.1). Cirsium canescens is a short-lived, 

taprooted, monocarpic perennial plant native to sand and gravel soils of the upper Great 

Plains and southern Rocky Mountains (Kaul et al. 2007).  This plant grows as a rosette 
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for two – eight years (Louda and Potvin 1995) prior to its single, fatal reproductive year. 

As a determinate flowering adult, C. canescens produces several large flower heads, 

starting with the apical head (unpublished data).   All heads open from mid- to late May 

through late June/early July, and reproduction is solely by seed (Lamp 1980, Kaul et al. 

2007). Because flowering is determinate, the terminal, apical, flower head emerges first. 

Over the season, subsequent flower heads (capitula) develop basipetally, sequentially 

down the stem and down toward the stem on each branch. The apical flower head is 

critically important to fitness in this plant; this single flower head often produces 40-60% 

of whole plant seed production (Louda and Potvin 1995, Chapter 1), though it may also 

have an up to 50% chance of destruction by insects (Lamp 1980).  The six main thistle-

specific insect floral herbivores in this system, including two noctuid moths, two tephritid 

flies and two weevils, maintain consistent, but a quantitatively variable, pressure on C. 

canescens within each growing season and among years (Lamp and McCarty 1982, 

Louda et al. 1990, Louda and Potvin 1995, Rose et al. 2005, Russell and Louda 2005). 

Insect herbivore damage on C. canescens in the field is high and can result in complete 

abortion of all developing flower heads (Louda and Potvin 1995) 

Estimation of plant flower head growth 

 In early spring 2009, we selected 30 individual plants with an apical flower bud 

within the rosette that indicated they were preparing to flower.  We quantified subsequent 

flower head growth over time by measuring the diameters of the apical and first branch 

terminal head. Measured flower heads were marked with permanent markers to ensure 

measurements were taken at the same location on the flower head each time, and we used 

the average of two perpendicular measurements.  In addition, the area of the flower head 
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receptacle, which produces the florets and, so, seeds, was estimated using the two 

diameter measurements. Because growth measurements in receptacle area and head 

diameter produced qualitatively similar patterns, we used diameter as the direct estimate 

of flower head size in our model. To quantify (maximum) growth rate per head, we 

divided the 30 plants into three treatment groups, in which we removed all but the apical 

head (N = 10), all but the second head (N = 10), or all but the first two heads (apical and 

second bud, N = 10). 

REDUCTION OF INSECT HERBIVORY: Because insect herbivory is frequent and 

severe in this system, and because we wanted to quantify maximum growth rate, we also 

protected these developing flower heads with insecticide.  We sprayed individual flower 

head buds on experimental plants with bifenthrin (FMC Corporation Pty Ltd.) at 14 day 

intervals in a 0.06% solution, as recommended.  Once flowering was initiated, we only 

applied insecticide to the flower head base, to avoid discouraging pollination; however, 

this caution allowed some floral herbivory to continue.  After pollination, we covered 

flower heads with 1- mm mesh bags to prevent post-senescence seed dispersal.  We 

collected flower heads in their bags after senescence and dissected them in the lab, 

quantifying seed production as well as insect damage that might have influenced growth 

rate estimates.  The average internal insect damage was 20.5% (± 4.2%), which was 

considerably lower than the average damage sustained by untreated plants (68 - 71% per 

flower head: Chapter 1). On our experimental plants, we observed little external evidence 

of insect damage that was sufficient to affect final head size.  
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Estimation of size-dependent seed production 

 We recorded the seed production per head as a function of head size. We assumed 

that the highest number of seeds per flower head recorded in our growth estimation 

experiment (450 seeds) was the maximum seed fitness value. This maximum fitness 

value was a conservative estimate because our model predicted that that flower heads 

should flower before reaching the maximum size, and it is larger than average seed 

maximums recorded from flower heads without insecticide protection (Louda and Potvin, 

Chapter 1). Flower heads < 10 mm rarely flowered, and if they did, produced no seed 

(unpublished data).  We used a logistic function to describe the relationship between head 

size and fitness in our data (Eq. 1 above, Appendix 3.1) and assumed that fitness was 

approximately zero for heads <10 mm diameter. We rescaled the parameters such that the 

maximum possible fitness value was 1. Our sensitivity analysis suggested that the 

qualitative predictions of the model were insensitive to parameter variation in the fitness 

function (Appendix 3.2).  

Model Implementation 

 We programmed the SDP model in R v. 2.14.0 (v. 2.14.0; R Development Team, 

2011). Time steps were three days, consistent with the data collected on flower head 

growth (above). Since a typical growing season was ~ 9 wks, we used 21 time steps as 

the final time horizon, T, consistent with the observation that plants typically completed 

flowering by the end of the growing season (unpublished data). We chose the range over 

which we varied flower head survival probabilities per time step using field estimates; 

probabilities ranged from 0.80 to 0.94, which was equivalent to 17 to 62% flower head 

survival during the season assuming all heads flowered by t = T.   
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 We explored three scenarios. In the first scenario, we assumed that the risk of 

being destroyed by insect herbivores was equal for both the apical (A) and non-apical (B) 

heads.  We tested this scenario over a range of ambient survival probabilities (S) from S= 

0.80 to S = 0.92 per time step.  In the second and third scenarios, we assumed unequal 

survival probability between the A and B heads. For example, if we envision the non-

apical (B) head as representing all non-apical flower heads, the complete destruction of 

all seed production by insect herbivores was less likely compared to that of the single 

apical (A) head. We examined the plant decisions with unequal flower head survival in 

an environment with a relatively low overall survival risk (second scenario) versus a 

higher overall survival risk (third scenario), in order to determine whether the optimal 

strategy changed with ambient risk.  Because heads were identical in the first scenario, 

which led to an initial fitness tie, for all scenarios, we allowed the apical (A) head a small 

initial size advantage, as seen in the field.   

Forward Simulation 

 The SDP predicted optimal life history decisions in a five-dimensional space, 

given five state variables. In order to make the results of the SDP more easily understood, 

we performed a forward simulation using 10,000 plants for each survival parameter 

combination. In the simulation, the plants followed the optimal life history decisions from 

the SDP model. Every time step, the SDP results determined whether a flower head 

should flower.  If it was best for flower heads to remain vegetative, the SDP determined 

the resource allocation given the time of the season, and the size and flowering states of 

the two flower heads. Then the simulation used a random number generator to determine 

how many vegetative flower heads survived until the next time step. Based on the 
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simulation results, we calculated the means for the flowering times of the different heads, 

the proportion of heads surviving to flowering, the size of flowering heads, the change in 

resource allocation over time, and the average plant fitness for each scenario.  

Results 

 The model predicted a plant should prioritize initial investment into a single 

flower head under all parameter combinations. However, the predicted degree of optimal 

apical dominance, and the identity of the head with prioritized investment, depended 

upon the survival scenario. The proportion of heads surviving until flowering was 

dependent both on the survival probabilities of the two heads in each time step and the 

optimal flowering date, as flowering date determined the number of time steps a flower 

head was subject to mortality. 

Both heads with equal probability of being destroyed by herbivory 

 The model predicted apical dominance was the optimal strategy for all survival 

scenarios. In the first time step, the expected fitness of equally-sized flower heads was 

identical, resulting in a fitness tie.  In order to break the tie, the apical (A) head received 

the priority investment in the the first time step, in congruence with field data. Our model 

predicted that, at the beginning of the season, all resources should be allocated to the 

larger, hence, the apical (A), head (fig. 3.4) until it flowered (10 time steps, ~ 30 days). 

However, in the simulation, the apical head frequently died before flowering, in which 

case all resources were allocated to the remaining head. In general, a higher risk of being 

destroyed by herbivores resulted in earlier flowering of the non-apical B heads (fig. 3.4), 

and smaller head sizes at flowering (fig. 3.5A). Interestingly, within the survival 
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scenarios considered in this model, the flowering time of the apical-head was not 

influenced by survival risk. The combination of both smaller flower heads and a reduced 

proportion of heads surviving until flowering drastically reduced the average fitness of 

plants in environments with a high risk of herbivory (fig. 3.6).  

Both heads with unequal probability of being destroyed by herbivores 

 Our model predicted two distinct reproductive strategies for the high herbivory 

risk environment versus the lower herbivory risk environment (fig. 3.7). In the high risk 

environment, the model predicted that the head with high survival probability (low risk) 

received initial priority in resource investment, continuing until it flowered or was 

destroyed by insect herbivores (~70%: S = 0.88, fig. 3.2). Resources were then allocated 

to the head with low survival probability (high risk), if it was still alive; there was on 

average only a 20% chance that the low survival head (S = 0.84 after 10 time steps, fig.3. 

2) had not already been destroyed.  Only 0.86% of plants had both heads survive to 

flowering. If, however, the head with low survival probability did survive, it flowered at 

the same size as the head with priority resource acquisition (fig. 3.5B).  

 In the low risk environment, in contrast, the model predicted the opposite 

strategy. The head with low survival probability (high risk, S = 0.88) had initial priority 

resource investment, rather than the head with high survival probability (low risk: S = 

0.92, fig. 3.7), until the low survival probability head flowered (~30% of heads) or was 

destroyed by insect herbivores (~70% of heads, fig. 3.2). Then, resources were allocated 

to the low risk head (high survival probability), which subsequently grew to a larger size 

than did the high risk head (low survival probability) that initially received priority 
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investment (fig. 3.7). This flowering strategy produced 20% survival of the high risk 

head, and 30% survival of the low risk, though only 1.5% of plants had both heads 

survive. As a consequence, the relative fitness of the plant as a whole was higher in the 

low risk environment than in the high risk environment (fig. 3.6).   

 The switching point between the different strategies for high versus low risk 

environments occurred between S = 0.84 and S = 0.86 survival probability per head per 

time step. This same pattern occurred regardless of whether A or B had the survival 

advantage. 

Discussion 

 Both plant tolerance and resistance of herbivory can provide strategies to decrease 

the effects of herbivory (Järemo et al. 1999, Boege and Marquis 2005).  Through these 

general mechanisms, plants can minimize losses to  herbivory by resource investment 

decisions that decrease the likelihood of strong negative effects on plant performance 

(Strauss et al. 2002). Plant tolerance involves growth responses after herbivory that 

minimize the consequences of herbivores (Tiffin 2000).  Conversely, plant resistance 

involves strategies to avoid or minimalize the likelihood or severity of herbivory 

(Agrawal 2005).  Our model identifies optimal resource allocation patterns that reduce 

the likelihood that herbivores will destroy reproductive investment (resistance).  Plants 

can replace losses caused by herbivory to some extent. Regrowth ability after herbivory, 

a form of plant tolerance, is often influenced by apical dominance (Strauss and Agrawal 

1999), and has been studied extensively (Strauss and Agrawal 1999, Stowe et al. 2000, 

García and Ehrlén 2002). However, how phenological variation in resource allocation 
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and flowering might aid in decreasing the effects of herbivory is less understood (Strauss 

and Whittal 2006).   

 In this study, we focused on determining whether apical dominance would emerge 

as an optimal strategy to minimize the effect of herbivory on plant reproductive fitness. 

Priority investment in a single flower head provided an optimal strategy under all three 

fitness scenarios. In the first scenario, both flower heads were assumed to be identical and 

have equal probability of survival. An initial small size advantage was sufficient for 

strong apical dominance, realized here as initial priority investment in only one of the 

two developing heads at a time, to emerge as the optimal strategy, regardless of the 

ambient herbivory risk.  The initial size advantage is congruent with field observations, 

as it was reasonable to assume that one of the heads, the apical head, should emerge first 

and, as a consequence, grow somewhat larger than the secondary, later, non-apical 

head(s).  

Priority investment in a single flower head produced one head that grew to 

flowering size as quickly as possible. In the model, as in the field, plants can be destroyed 

by herbivores at any time, and flower heads need to become large quickly to achieve a 

high reproductive fitness payoff. Regardless of the population-level predictability of 

herbivory in this system (Louda and Potvin 1995, Rose et al. 2005), the chance that a 

particular individual will suffer herbivore damage, and the magnitude of that damage, are 

always uncertain (Simons and Johnston 1999).  Rapid growth will reduce the number of 

time steps that a flower head is exposed to herbivore-imposed mortality before reaching 

flowering and setting seed.  In our model, the apical head had a slight initial size 

advantage and, as a consequence, was one step closer to flowering. This advantage led to 
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the prediction that the apical head should receive the priority in resource investment 

when the probability of survival was equal for apical and non-apical flower heads.  

Because the increase in fitness per unit head size increase decreased as size increased 

(diminishing return, fig 3.3), there came a point at which it became more advantageous to 

stop allocating resources to the apical (A) flower head in favor of the non-apical (B) 

head.  

  In the second and third scenarios, when survival probability for apical and non-

apical flower heads was unequal, the optimal strategy depended on the overall survival 

probability, and relative survival differences between flower heads, independent of the 

initial size difference. We examined the consequences of unequal flower head survival in 

both a relatively low herbivory risk environment with a relatively higher probability of 

head survival overall (hereafter, low risk environment, second scenario) versus a higher 

herbivory risk environment with a low probability of head survival overall (hereafter, 

high risk environment, third scenario). In a high risk environment, the model predicted 

that initial investment should focus on the flower head with the relatively high survival 

probability. However, in a low risk environment, the optimal strategy was to invest 

initially in the flower head with the lower survival probability. This strategy is 

counterintuitive at first, but there is > 40% chance that the low risk head will not be 

destroyed by herbivores by the time the priority head flowers (fig. 3.2, S = 0.92 after 10 

times steps), and hence, there is a good chance that the second head will also survive until 

flowering. In contrast, in the high risk environment it is rather unlikely that both heads 

will survive until flowering, so it was best to be safe and invest in the low risk head first.     
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The optimal strategies in the different environments were robust regardless of 

whether A or B had the relatively higher herbivory risk. Hence, when survival 

probabilities of the apical and non-apical head were unequal, it was the difference in 

survival probabilities, rather than in initial head sizes, that determined the optimal 

investment strategy. These results show how apical dominance that influences patterns of 

resource investment can contribute to optimizing reproductive fitness under floral 

herbivory in three reasonable ecological scenarios. 

Survival probability of a head also influenced predicted optimal flowering size.  

In general, the model predicted that plants should flower relatively later at larger sizes if, 

and only if, the survival probability per time step was relatively high (i.e., low risk). 

When survival probabilities were the same for both flower heads, the optimal flowering 

size was equal for both heads if the survival was low (high risk), but the head with 

priority investment flowered earlier at smaller sizes if survival was high (low risk). If 

survival was unequal between the two flower heads, both flower heads flowered at the 

same size in the high risk environment, but in the low risk environment the head with the 

priority investment flowered first at a smaller size.  

The results here illustrate that risk of insect herbivory influenced the optimal 

resource allocation between reproductive structures within a plant.  Previous empirical 

evidence shows that plant phenology and resource allocation can affect the magnitude of 

herbivory losses by avoidance of  a large overlap with potential principal predators 

(Russell and Louda 2005, Elzinga et al. 2007).  For instance, insect herbivores influenced 

optimal plant resource allocation to growth versus reproduction in Opuntia imbricata 

(Miller et al. 2008). Further, plants of Erigeron glaucus that allocated flowering through 
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time avoided floral herbivory by tephritid flies more successfully (English-Loeb and 

Karban 1992).  Also, Pilson (2000) found selection for later-flowering heads of 

Helianthus annuus reduced total damage by a complex of seed predators.  Thus, our 

results are consistent with prior theoretical and empirical work suggesting that the fitness 

costs imposed by herbivores have the potential to shape plant life history strategies. 

The role of herbivory risk in plant life history has received extensive attention in 

research on the evolution of bud dormancy. The timing and type of herbivory 

experienced may directly determine the degree to which plants are susceptible or resistant 

to herbivore effects (Honkanen and Haukioja 1998). If herbivores are large grazers 

roaming through the landscape, herbivory can be envisioned as an isolated event 

followed by a lull in herbivory risk during which plants can replace investment from 

protected buds. In this case, bud dormancy models predict that plants should release all 

buds early in the season (no dormancy) when risk of herbivory is less than 0.5, but 

release all buds late (full dormancy) when risk of herbivory is more than 0.5 (i.e., Vail 

1992, Tuomi et al. 1994, Simons and Johnston 1999).  Bet-hedging by partially investing 

in both early and late reproduction was found to be optimal only when herbivory risk was 

exactly 0.5, or when there were other influences determining the effects of herbivory; 

such influences include: low fitness returns from late season reproduction relative to early 

season reproduction (Simons and Johnston 1999); size-selective herbivory (Vail 1992); 

variation in bud release potential at different levels of damage (Tuomi et al. 1994); and 

variation in herbivory risk between years (Nilsson et al. 1996). Bud dormancy models 

also suggest that repeated risk of herbivory should lead to the evolution of some sort of 
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bet-hedging (Nilsson et al. 1996), such as gradual activation of the entire bud bank, rather 

than a release triggered by damage (Tuomi et al. 1994, Lehtilä 2000).   

In contrast to the effect of large grazers, insect herbivore communities can impact 

individual plant fitness consistently throughout the growing season; thus, vulnerable 

plants have a more or less constant risk of being attacked by insect herbivores.  In this 

model, we did not find any evidence of bet-hedging, as defined above, as partial 

investment in both heads simultaneously.  Resource investment in apical versus non-

apical heads was optimized by investing in one flower at a time.  Partial investment in the 

two flower heads at once would have reduced the growth rate of both, and so decreased 

the probability that either bud would survive to flower and set seed under constant 

herbivore risk. 

Our basic model did not incorporate the effect of apical dominance on the 

positional hierarchies among multiple lower, non-apical, heads nor resource investment 

in seed maturation.  As a result of architectural position effects, and competition for 

resources among flower heads, the relative condition of non-apical flower heads are 

strongly influenced by flower head position and the interactions among such resource 

sinks (Lloyd 1980, Rosenthal and Kotanen 1994).  In this model, we wanted the optimal 

strength of apical dominance under constant herbivory risk to be predicted by the model; 

thus, position effects were incorporated very simply. Subsequent research could 

incorporate the role of positional effects to address more of the complexity and influence 

of plant modular nature on the dynamics of allocation among flower heads, as heads 

close together are most likely to compete and be influenced by similar considerations 

(Lehtilä 1999, Vuorisalo and Mutikainen 1999).  Future models that included analysis of 
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positional effects, such as a greater fitness payoff or a higher growth rate in the apical 

head, could broaden our understanding of how apical dominance might mediate a bet-

hedging strategy for the intense, but variable, fitness effects of insect herbivores. 

 In summary, we explored whether initial priority investment in a single 

developing flower head, defined as strong apical dominance, could confer an optimal 

strategy under a constant high risk of damage and seed loss, similar to that which plants 

can experience under intense insect floral herbivory.  We found that priority investment 

provided an optimal strategy under herbivory, but the relative allocation of investment 

varied with differences in survival probability and the overall level of risk in the 

environment.  The model and our results provide a framework for future studies, as well 

as furthering our understanding of how herbivory can contribute to the evolution of plant 

reproductive strategies. 
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Figure Legends 

Figure 3.1. Flower head growth trajectories.  The solid black line represents the change 

in head size from one time step to the next if all resources are allocated to a single head.  

The narrower gray line represents the 1 : 1 line (if no resources are allocated, the head 

stays the same size from one time step to the next). As a result of this growth function, 

the growth trajectory of flower heads is a concave down function (inset).  A head that 

gets half the resource investment can only realize half the maximum growth increment, 

which is indicated by the grey circle.  The dashed line in the inset indicates the growth 

trajectory of a flower head that receives fewer resources compared to the flower head 

indicated by the solid line.  

Figure 3.2.  Proportion of flower heads surviving over time.  The curves illustrate the 

cumulative mortality over the growing season resulting from the different survival 

probabilities per time step, S, used in our model.   

Figure 3.3.  Expected fitness for different flowering times.  This assumes all resources 

were allocated to a single flower head. Initially, postponing flowering increases expected 

fitness because it produced larger flowers. However, the cumulative probability of 

surviving until flowering is lower the later the flowering date. As a consequence, the 

expected fitness curve is humped shaped (unless survival probability is 1, dashed line); 

circles represent the peak fitness value for different survival probabilities. The lines 

indicate different survival probabilities (S) per time step: 1.0 (black dashed line) 0.92 

(black solid line), 0.8 (dark gray solid), and 0.84 (light grey solid line). The inset displays 

the change in head size over time. 
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Figure 3.4. Optimal resource allocation if survival probability of all heads is the same. 

The lines indicate different survival probabilities (S) per time step (gray line, S = 0.92; 

black line, S = 0.84). Diamonds indicate initial flowering time for the apical (A) head 

(black diamond, S = 0.84; grey diamond, S = 0.92) and non-apical (B) head in each 

herbivory risk environment (black circle, S = 0.84; grey circle, S = 0.92). The results 

show that both heads tended to initiate flowering earlier when the survival probability 

was lower (i.e., risk was higher).  

Figure 3.5.  Comparison of average flowering sizes from the forward simulation when 

head survival rates were equal (A) versus unequal (B).  The x-axis shows the (A-head; B-

head) survival probabilities. The black bars indicate the apical (A) head (equal survival, 

fig. A), or the low survival head (unequal survival, fig. B); the grey bars indicate the non-

apical (B) head (equal survival, fig. A), or the high survival head (unequal survival, fig. 

B). 

Figure 3.6.  Average plant fitness from the forward simulation represented by total 

number of seeds per plant (seeds from apical head + seeds from non-apical head). The x-

axis shows the (A-head; B-head) survival probabilities.  

 Figure 3.7.  Optimal resource allocation when flower head survival was unequal. The 

gray line depicts the scenario for the low herbivory risk environment (S = 0.924 and  

0.880) and the black line depicts the scenario for the high herbivory risk environment (S 

=  0.882 and 0.840).  The diamonds indicate flowering times for the relatively low 

survival head (S = 0.880 in the low risk environment, and S = 0.840 in the high risk 
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environment), and the squares indicate flowering times for the relatively high survival 

head (S = 0.924 in the low risk environment, and S = 0.882 in the high risk environment).  
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Figure 3.1. 
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Figure 3.2. 
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Figure 3.3. 
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        Figure 3.4. 
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Figure 3.5. 
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Figure 3.6. 
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Figure 3.7. 
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Appendix 3.1 

Flower head growth 

For our motivating example, Cirsium canescens, we estimated flower head growth as a 

function of size using field data (see Methods), and modeled the growth relationship as 

Mt+1 = 0.922Mt + 4.97       Eq. 1 

where M is the head diameter in millimeters (fig. A3.1:1A). The resulting growth 

increment decreased as flower head size increased (fig. A3.1:1B).   

Fitness by flower head size 

To model fitness, we chose parameter values that qualitatively fit the relationship 

between flower head diameter and number of seeds produced estimated from lab 

dissections of field collected flower heads (see Methods).  We used a fitness equation 

from Kokko (2007), and modeled the fitness relationship as 

ሻܯሺݍ ൌ 1 ൊ ሺ1 ൅	݁
ି௖∗ቀ

ಾ
ಾ೘ೌೣ

ି௩ቁ
ሻ     Eq. 2 

where M is head diameter in millimeters, Mmax is the maximum head size from our field 

collection, and c and v are constants that affect the shape of the curve (fig. A3.1:2).  In 

the model, c = 12 and v = 0.66.  The maximum number of seeds produced in one flower 

head in our growth estimate study was 450 (see Methods), and was used to predict the 

seed production that resulted from the optimized reproductive strategies (fig. 3.6). For the 

fitness estimation, we included data from an additional 488 lab dissected flower heads 

collected over three years to incorporate a greater range of sizes; the average maximum 
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fitness of field collected heads among years, under ambient herbivory levels,  was 

approximately 350 (fig. A3.1:2).  As this field maximum was more similar to what would 

be expected for plants under ambient herbivory (Chapter 1) and to earlier studies of seed 

production in this system (Louda and Potvin 1995, see below), we used this maximum to 

qualify the fitness curve (fig. A3.1:2). 

Figure Legends 

Figure A3.1:1.  Size change per time step by flower head size from field data.  A. Size 

change per time step.  The line represents the growth increment used in the model (Eq. 1, 

above) estimated from regression.  B.  Resulting flower head growth over time.  The line 

represents the resulting growth progression over time. 

Figure A3.1:2.  Seeds produced by flower head size from field data.  The curve 

represents the fitness relationship used in the model (Eq. 2, above). 
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Figure A3.1:1 
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Figure A3.1:2 
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Appendix 3.2  

We examined how the functions we used to model growth and fitness affected the overall 

model results.   

Variation in fitness function parameters 

We examined the effect of c and v on model results by using values 40% higher 

and lower than each model value in the SDP model and subsequent simulations, with a 

survival probability of 0.88.  Fitness was modeled as 

ሻܯሺݍ ൌ 1 ൊ ሺ1 ൅	݁
ି௖∗ቀ

ಾ
ಾ೘ೌೣ

ି௩ቁ
ሻ     Eq. 1 

where M was flower head diameter, and c and v were constants that affected the shape of the 

curve.  In the model, c = 12 and v = 0.66; 40% lower and higher values for c were 7.4 and 

16.8, (fig. A3.2:1A), and for v were 0.53 and 0.79, respectively (fig. A3.2:1B).  Changing 

c had little effect on resulting flowering diameter, but changing v resulted in slightly 

larger (0.79, high v) and lower (0.53, low v) flowering sizes (fig.A3.2:1C). 

Influence of diminishing returns on model results 

Both the growth and fitness functions used in the SDP model incorporated 

diminishing returns.  The growth increment decreased with increasing flower head size 

and the fitness benefit from growing one additional size increment also decreased with 

increasing flower head size.  We evaluate the effect of this diminishing return on the 

flowering and allocation decisions predicted.  We compared our model results (dotted 

line, GN:FN, fig. A3.2:2A and B) to models with a linear growth function (solid line in 



138 
 

 

inset of fig.A3.2:1A, GL), a linear fitness function (solid line in fig A1:1B, FL), and a 

combination of the two.  

LINEAR GROWTH FUNCTION.  To evaluate the effect of the diminishing return in 

growth on optimal flowering and allocation decisions, we compared our model results 

(dotted line, fig. A3.1:2A) to models with linear functions of growth (solid line,  

fig.A3.2:2A).  To eliminate the growth increment decline we used the intercept value 

from our growth equation (Appendix 3.1, Eq. 1: 4.97) as a constant growth increment, 

such that 

Mt+1 = Mt + 4.97       Eq. 2 

where M is the head diameter in millimeters.  

LINEAR FITNESS FUNCTION.  To eliminate the diminishing fitness return, we used 

the linear fitness estimates of seed production calculated from a regression equation in 

Louda and Potvin (1995) that estimated seed production under ambient herbivory 

Seeds produced = 3.52M – 42.7     Eq. 3 

where M is head diameter in millimeters.  At small sizes, using this equation, fitness 

estimates were negative, which is unrealistic, so in our model we truncated all negative 

fitness values to zero (fig. A3.2:2B).   

Overall, altering the fitness and growth functions, and changing the shape of the 

fitness function, did not qualitatively change the main results (figs. A3.2:3 and A3.2:4).  

Heads flowered slightly earlier with a linear growth function (fig. A3.2:3A and C), and 
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predicted flowering sizes were greater when using a linear fitness function (fig. A3.2:4).  

However, priority investment emerged from all models (fig. A3.2:3).
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Figure Legends 

Figure A3.2:1.  Effect of varying the c and v in the fitness equation (Eq. 1) on optimal 

resource allocation (A and B), and average flowering size in the forward simulation (C). 

A. and B.: The dotted lines indicate the optimal resource allocation using the parameters 

in the main text (c = 12; v = 0.66), and 40% higher (solid black line, c = 16.8; v = 0.79) 

and 40% lower values (solid grey line, c = 7.4; v = 0.53). Triangles show average 

flowering time of the A head, and the dots indicate the average flowering time of the B 

head using the same fill color as the associated line. Average flowering diameter resulting 

from the optimal resource allocation and flowering decision are presented in fig. C. 

Figure A3.2:2.  Flower head growth and fitness.  A. In our model the size increment 

from t to t+1 decreased with flower head size (the dashed line gets closer to the 1:1 lines 

with increasing flower head size). This results in a concave down flower head growth 

(dotted line, inset). The solid line depicts the change in size from time t to t+1 that is 

parallel to the 1:1 line (grey solid line); this produces a linear change in flower head size 

over time (solid line, inset). B. The dotted line indicates the sigmoid fitness function used 

in the main paper, the solid line indicated a linear fitness function (solid line).  

Figure A1:3.  Effect of linear growth and fitness functions on flower head allocation 

with S = 0.88 per time step.  A.  Linear growth function.  B. Linear fitness function taken 

from Louda and Potvin (1995).  C.  Linear fitness and growth function.  D. Nonlinear 

growth and fitness functions used in the main paper. 

Figure A1:4.  Effect of linear growth and fitness functions on flowering size with a 

survival probability per time step of 0.88.  GL:FL = both linear growth and fitness, GN:FL 
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= Nonlinear growth and linear fitness, GL:FN = linear growth and nonlinear fitness, GN:FN 

= both nonlinear growth and fitness, as presented in the main text. The model that 

included both linear growth and fitness predicted larger flowering sizes than the other 

intermediate models or the original model.
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Figure A3.2:2. 
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Figure A3.2:3. 
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Figure A3.2:4. 
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Appendix 3 

Population level allocation decisions 

Regardless of survival scenario, in the forward simulation, fewer than half of the 

plants had at least one flower head survive to flowering, and in less than 10% of 

individuals both heads survived. If one flower head was destroyed by herbivores, then all 

resources were allocated to the surviving flower head. As a consequence, in the forward 

simulation, the resource allocation to the A head averaged over the entire surviving 

population differs from the optimal strategy assuming both flower heads are alive. 

 

Figure Legend 

Figure A3.3:1.  Average resource allocation over time to the apical head by surviving 

individuals. A. Equal flower head survival: Diamonds and squares indicate the average 

flowering time of the apical and non-apical head, respectively. The black line depicts a 

low survival environment (S = 0.84), and the grey line a high survival environment (S = 

0.92). B. Unequal survival: The black line depicts a low survival environment (S = 0.84 

and 0.88), and the grey line a high survival environment (S = 0.88 and 0.92). The 

diamonds indicate the flowering time of the flower head with the relatively lower risk (S 

= 0.84 and 0.88), and the square is the flower head with the relatively higher risk (S = 

0.88 and 0.92). 
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Figure 3.3:1. 

 

 

 

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A.  Population: Equal Survival

Time Steps

A
ll

oc
at

io
n 

to
 A

-h
ea

d
Low Risk

High Risk

AA B B

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B. Population: Unequal Survival

Time Steps

P
ro

po
rt

io
n 

A
ll

oc
at

ed
 to

 H
ig

h 
S

ur
vi

va
l H

ea
d

Low Risk

High Risk

L H

LH


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2-1-2012

	Herbivory affects patterns of plant reproductive effort and seed production
	Natalie M. West


