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V. CONCLUSIONS 
In this paper, we presented algorithms for the implementation of 

data transfer requirements of a system through indirect paths. This 
algorithm yeilds considerable reduction in bus interfaces over and 
above the minimal interface solution obtained through direct path 
realization [4]. Even though this technique was in use for a long time, 
no formal procedure for identifying the possible candidates for 
indirect path realization was reported. With the rapid advances in 
integrated circuit technology, the trend in digital design is to 
implement the complete system on a single chip. As module 
interconnections take a lion’s share of the chip area, design efforts 
must be aimed at reducing these interconnections without sacrificing 
system speed specifications. Also, some researchers are recommend- 
ing redundancy in interconnections [ 11 for improving the chip yield 
and reliability. In view of these developments, optimization of 
interconnections takes new dimensions in the system design discipline 
and the algorithm developed will serve as an effective design tool in 
cost effective realization of digital systems. 
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Design of Parity Testable Combinational Circuits 

BHARGAB B. BHATTACHARYA AND SHARAD C. SETH 

Abstmct-The parity testability of a single output is related to its par- 
tition in terms of maximal supergates and then a scheme is proposed for 
making an untestable circuit parity testahle by augmenting its maximal 
supergates. Only a small amount of extra logic and a single external 
test-rnode pin is required to complete the design. The test procedure is 
simple and the hardware overhead is low. 

Index Terms- Design for testability, combinational logic, parity test- 
ing, stuck-at-faults. 
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Fig. 1. Illustration of Theorem 1. 

national logic circuit. Our analysis is based on the unique minimum 
cover of the circuit defined by its maximal supergates [l], [2]. In 
these earlier papers, the supergate cover was used as a vehicle for 
computing probabilistic testability measures. Here, we show that it 
has wider applicability: the parities and the subparities of a circuit 
output are derivable from those of its maximal supergates. Our in- 
vestigations lead us to suggest testable design schemes in which logic 
modifications are made at the (maximal) supergate level. 

11. PARITY TESTING 

Given an n-variable switching function F ( x l ,  X I , .  . . , x n ) ,  the 
(primary) purity of F denoted as p(F) is defined as follows: 

p ( F )  = (number of minterms of F)mod 2. 

It is well known that if the (primary) parity of the function is odd all 
multiple input faults can be detected by checking the primary parity 
alone [3]. Akers [4] extended the range of parity-testable circuits by 
examining additional parities associated with a function as follows. 

Definition. The parity-bit signature (PBS) of an n-variable 
switching function F ( x l ,  x2, . . . , x n )  is given by an (n + 1)-bit binary 
vector: 

PBS(F) = (PO,PI,PZ,...,Pn) 
where 

Po = P ( m  

PI = P @ l  . F )  

~2 = P ( %  . F )  

Pn = P @ n  ‘ F ) .  

In other words, pi represents the parity of the subfunction 
F ( x l ,  x 2 , .  . . ,xi = 0, .  . . , x n )  that is, the parity of F when its ith 
variable is set to 0. P B S Q  consists of po, which we call the primary 
parity of F and n secondary or subparities, p I ,  p2, . ‘ ’ ,pn . 

The parity-bit signature has been suggested for built-in self testing 
in [4]. 

A .  Network Decomposition a n d  Primary Purity 

Let F ( x l ,  x 2 , .  . . ,x , , )  be the function realized by a single-output 
combinational network N whose maximal supergate partitions are 
SG( l ) ,  SG(2), . . . , SG(k). Let F; denote the function realized by 
SG(i) alone, i.e., when SG(i) is isolated from the rest of the cir- 
cuit. 

Theorem 1: p ( f l  is odd if and only if the primary parities of all 
individual functions F ,, F2,.  . , Fk are odd, i.e., I.  INTRODUCTION 

In this paper, we analyze the parity and the subparities of a combi- 
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Proof:’ For simplicity, let us assume that circuit N has only two 
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inputs feed S G ( ~ ~ ) ,  and the rest x J + I , .  . . , x n  feed 
S G ( ~ ~ ) .  L~~ a,and b denote the number of 0 7 ~  and lis appearing at 
hl when all 2~ combinations are Now let and d denote 

x 2 , .  . . 

S. C. Seth is with the Department of Computer Science, University of 
Nebraska, Lincoln, NE 68588. 

IEEE Log Number 8930850. 
‘Another proof of the theorem follows from Tokmen’s disjunctive decom- 

position theorem 151. 

0018-9340/89/1100-1580$01.00 0 1989 IEEE 

doi: 10.1109/12.42129  



IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1 1 ,  NOVEMBER 1989 1581 

the number of times 1 appears at primary output h ~ ,  when hl is 
set to 0 and 1, respectively, and when all input combinations of 
{ x ~ + ~ ,  . . . ,x, } are exercised. Let Fl and F2 be the functions realized 
by the supergates SG(hl ) and SG(h2), respectively. 

Clearly, a + b  = 2j.U > 0) ,  hence both a and b must be either odd 
or even. Moreover, p ( F 1 )  = b mod2 and p(F2)  = (c + d)mod2. 

Since the set of primary input lines feeding SG(h1) and SG(h2) 
are disjoint, we have 

p ( F )  = (ac + bd)mod2. 

Assume p ( F l )  = 1 = p ( F 2 ) .  Then both a and b are 
odd, and either c or d (but not both) must also be odd. Therefore, 
p ( F )  = 1.  

Assume p ( F I )  = 0; then both a and b must 
be even implying p ( F )  = 0. On the other hand, if p(F2)  = 0, then 
c and d must be both even or both odd, which also implies that 
p ( F )  = 0. 

To prove the general case, this argument can be applied recursively 
to any network having an arbitrary number of maximal supergates. 

W 
The following known result [3] is a corollary of Theorem 1 .  
Corollary 1. Any fan-out-free circuit of basic gates (that is, not in- 

cluding XOR and XNOR gates) must realize an odd number of minterms. 
Proof: In a fan-out-free circuit, each basic gate AND, OR, NAND, 

NOR, NOT) is a maximal supergate by itself. The individual primary 
parity of a basic gate is always odd, and therefore, from Theorem 

W 

B .  Network Decomposition and Subparities 
The next theorem shows a relation of the subparities in a circuit 

with the parities of individual supergates. 
Theorem 2: Let N denote a single output combinational net- 

work realizing F ( x l ,  x 2 , .  . . ,x , ) ,  with maximal supergate partition- 
ing SG(1), SG(2), . . . , SG(k). Let x; be a primary input of N which 
is directly connected to supergate SG(j). Denote by Fh the function 
realized by the isolated supergate SG(h), for h = 1 , 2 ,  . . . , k .  Then 
the ith subparity of F is given by 

[If part]: 

[Only $part/: 

1 ,  the global parity also becomes odd. 

Proof: The subparity p;(F) is obtained by observing the parity 
at the primary output when input x; is set to 0. Since x; is directly 
connected to supergate SGO), it cannot be an input to any other 
supergate in a single output circuit. Therefore, setting x, = 0 affects 
the functionality of supergate SG(j) alone. The rest of the proof 

W follows immediately from Theorem 1. 

III. PARITY TESTABILITY OF STUCK-AT FAULTS 

Given a circuit N ,  a fault in N is said to be parity testable, if 
the faulty parity-bit signature differs in at least one bit position from 
that of the fault-free circuit. For a parity-testable fault, if the primary 
parity (Po) differs, the fault is primary-parity testable, otherwise it 
is secondary-parity testable. A fault is said to be parity untestable 
if it is not parity testable. 

It is well known that [6], [4] if a circuit N realizes a function 
whose primary parity (Po) is odd, all stuck-at faults involving any 
primary input lines of N will be primary-parity testable. Recently 
Akers [4] has shown that if p o  = 0, but if any subparity p i  = 1 ,  
then all input stuck-at faults except those where input i is involved 
can also be detected, and therefore, if p o  = 0 and at least two of the 
subparities are 1, then complete coverage of input stuck-at faults is 
again ensured. Clearly, the PBS consisting of all 0’s is totally useless 
as regards to input faults, and the percentile fault coverage will drop 
very nearly to zero. 

From Theorems 1 and 2 one can see that the all-zero signature 
can occur frequently for supergate-decomposable circuits, calling 
into question the effectiveness of the parity-bit signature unless the 
circuits are modified so that they are parity testable. 

Definition: A maximal supergate SG(x) in a single-output network 

N is called noninternal, if at least one input line of SG(x) is a 
primary input of N ,  otherwise SG(x) is said to be internal. 

Theorem 3: Let N be a single-output combinational network N .  
Then a stuck-at fault f (not necessarily an input fault) in N is parity 
testable at the primary output of N if and only if condition A or B 
is satisfied. 

i) fault f is parity testable in the supergate SG(0 which involves f 
and ii) primary parities of all other maximal supergates are odd. 

i) faultfis primary-parity testable in SG(0 and ii) there exists exactly 
one even-parity noninternal supergate SG(j), [other than SG(z)] with 
an input x such that x is a primary input of N and p x  (F;)  = 1. 

Proofi The proof follows easily from Theorems 1 and 2 and is 
omitted here for brevity.. 

Corollary 2: Even one even-parity internal (maximal) supergate 
[say SG(x)] causes the parity-bit signature of N to be all-zero and 
consequently all stuck-at faults (single or multiple) in N - SG(x) will 
be parity untestable. Only some faults in SG(x) might be testable at 
the primary output. If there are two even-parity noninternal maximal 
supergates, then the parity-bit signature will again be all-zero, and 
all stuck-at faults (single or multiple) involving at least one primary 
input of N will be parity untestable in N .  

Remark. One might wonder at this point whether circuits which 
have all-zero signatures are more likely to occur in practice than 
those which do not. This is not true if circuits are assumed to imple- 
ment randomly chosen functions. From statistical arguments it can 
be shown in such a case that the PBS will be uniformly distributed 

Condition A 

Condition B 

141. 

IV. PARITY-TESTABLE DESIGN 
The procedure for making a design parity testable involves three 

steps: 1) computation of the primary parity of the circuit, 2)  logic 
modification at the supergate level, and 3) parity testable design 
for the overall circuit. We will illustrate the procedure using the 
circuit shown in Fig. 2. The circuit is first decomposed into maximal 
supergates SG(a), SG(b), SG(c), SG(d), and SG(h) as shown. 

A .  Computation of Primary Parity 

The first step is to compute the primary parity realized by the cir- 
cuit. If the primary parity is odd, no circuit modification is necessary. 
From Theorem 1, we note that primary parities need to be computed 
only at the maximal supergate level and the global primary parity can 
be determined by Aiming the individual parities. Here we describe a 
method for parity computation based on the binary-decision-diagram 
representation of the function. Another procedure, based on the cir- 
cuit topology, is described in [7]. 

Boolean functions can be represented by a binary decision diagram 
(BDD) [8]-[lo] which can be traversed sequentially for functional 
evaluation. Several variations of the basic BDD scheme exist in the 
literature; here we conform to the scheme used in [9] and [lo]. We 
assume that the functionalities of maximal supergates are already 
available as BDD’s. Each nonleaf node xi in a BDD represents a 
literal xi of the function, and it has two outgoing edges for xi = 0 
and xi = 1.  There are two leaf nodes corresponding to the given 
function F and its complement F .  A conjunction of Boolean literals 
appearing in a directed path from the root node to the leaf node F 
represents an implicant of F. We also assume that all node variables 
are literals. 

Consider, for example, the function realized by supergate SG(h) 
(Fig. 2), with respect to its own inputs: 

( 2 )  Fh = cbd +cad + c u b  + cabd + 66Cd. 

The decision diagram for Fh is shown in Fig. 3. 
A directed path from the root node to a leaf in a BDD is said to 

be complete if it consists of all n literals in an n-variable function. 
If the path is not complete (has fewer than n literals) then the corre- 
sponding implicant covers an even number of minterms, whereas a 
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I - - .  
I .  
I . 

SG(h) ,- - - 
Fig. 2. An illustrative circuit for parity testing. 

W 
Fig. 3. A binary decision diagram of function Fh. 

complete path corresponds to a single minterm. From the definition 
of a decision diagram, the implicants defined by two distinct paths 
from the root to a leaf node are disjoint, therefore, the primary parity 
of the function will be given by 

p ( F )  = {number of complete paths from the root to leaf F}mod2.  

In our example, the diagram has only four complete paths leading 
to the node Fh . The primary parity of function Fh is therefore zero. 
Such computation can obviously be performed in time complexity 
at most O(e) ,  where e denotes the number of edges in the decision 
diagram, by adopting a standard graph traversal algorithm [ll]. The 
subparities can also be determined in a similar way. 

Using the above method, one can compute the primary parities 
for each supergate individually. In this example, SG(h) is an internal 
supergate (i.e., none of its inputs is a primary input) with an even 
primary parity. From Corollary 2 ,  the parity-bit signature for the 
entire network will be all-zero. 

B .  Logic Modification of a Supergate 

We will now describe a procedure to modify the functionality of 
each even-parity maximal supergate so as to make its primary parity 
odd in the test mode. Assume F Q l ,  yz;. . ,y, ,)  is an even-parity 
function denoting the output of such a supergate (in terms of its own 
inputs). The procedure consists of two steps: 

1) Find a maximal subcube2 of the binary n-cube which covers 
an odd number of minterms of F and let P be the corresponding 
product term. 

2)  Construct a new logic function F' = F + C . P where C is a 
new literal denoting a control input. 

For our example circuit (Fig. 2), only SG(a) and SG(h) have even 
parities. We illustrate the above procedure for SG(h) which realizes 
the function Fh given in ( 2 ) ;  its Karnaugh map is shown in Fig. 4. 
A maximal subcube for Fh could be 

P = b . c (see Fig. 4). 

The augmented function is therefore 

FI, = F h  + C . b , c  

which is realized by network NI as shown in Fig. 5. 
Lemma I :  Given a (nonconstant) Boolean function F ( x l ,  

x 2 , .  . . , x n )  of n variables, with even primary parity, such a maximal 
subcube P covering an odd number of minterms of F always exists. 
Moreover, P will contain at most (n - 1) literals. 

Proof: Consider the Karnaugh map of the n-variable rbnction 
F. Since F is not a constant function, it should have two adjacent 
cells c1 and c2 with opposite entries (that is, one and zero). Clearly 
c1, c2 will be a subcube whose product term contains (n - 1) literals. 
This subcube also contains an odd number of minterms of F. If it is 
not maximal then it must be covered by a bigger subcube with the 
same property; this subcube would have a fewer number of literals 

Theorem 4: The primary parity of the augmented function F' is 
in its product term. 

odd. 

2A maximal subcube is one which is not contained within a bigger subcube 
covering an odd number of minterms in F. 
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a 
Maximal subcube 
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Fig. 4. The Karnaugh map of Fh. 

C 

Fig. 5 .  The augmented circuit implementing FL 

Proof: Assume that @ denotes modulo-2-sum operation. Then 

= P O ( F )  @PO(F +PI 

=Po(F)  @po(F)  @po(FP) 

=po(FP)  = 1 .  

The last equality follows because whenever P (which contains at 
most n - 1 literals) includes an odd number of minterms of F it also 
includes an odd number of minterms of F .  

The hardware overhead for augmenting an even-parity supergate 
is thus a two-input OR gate, an AND gate with at most (n - 1) inputs, 
and one control line. The problem of finding a maximal subcube 
covering an odd number of minterms in an n-variable function F is 
however complex and may have the worst case complexity O(2”). 
This is simply because the number of minterms in F could also be 
on the order of O(2”). 

A network N is said to be irredundant if all stuck-at faults (single 
or multiple) are detectable, that is, there is some input for which the 
fault-free function is different from the faulty function. It can be 
verified that the above augmentation procedure does not introduce 
new redundancies in the circuit- if N is irredundant so will be N‘. 

Let us now consider the augmented network N‘ as shown in Fig. 
5 .  

Theorem 5: a) Any single stuck-at fault or any multiple stuck-at 
fault involving at least one primary input, or primary output of N’, 
is primary-parity testable at the primary output of NI; 

b) Any stuck-at fault (single/multiple) in the branch lines 
z ~ , z z , .  . . ,zk feeding the extra AND gate or in connecting lines I , f 2  
is also primary parity testable. 

Proof: a) easily follows from the fact that po(F’ )  = 1, and any 
such fault would make F’ vacuous in at least one literal and therefore 
the primary parity of the faulty function would become even. 

b) A fault in line 11 will also make F ’ vacuous in at least one literal 
since the size of the required maximal subcube P never exceeds 
( n  - 1). A fault in 12 makes F’ vacuous in C. As regards branch 
lines z1,z2, .  . . , Zk feeding the AND gate, all stuck-at 0 faults are 
equivalent to line C stuck-at 0, and hence parity testable. Any stuck- 
at-1 fault on these lines zl, z 2 ,  . . . , will also make the primary parity 
of F’ even, since the subcube P is maximal, and therefore any other 
bigger subcube covering P will include an even number of minterms 
of F. rn 

D .  Test Procedure and Fault Coverage in the Augmented 
Circuit 

While testing the augmented circuit N‘, we observe the parity 
at the primary output both for C = 0 and C = 1. The former 
corresponds to the subparity p c ,  and the combined effect for C = 0 
and C = 1 determines the primary parity of N’. 

Since the primary parity of the augmented circuit (N‘) is now odd, 
all single/multiple stuck-at faults involving at least one primary in- 
put will be parity testable. Moreover, it is easy to show that faults 
in the extra-logic part involving control line C and faults involving 
individual input/output lines of all supergates are also primary par- 
ity testable. Since we need only one control input, the overall test 
length is increased by a factor of 2 .  Note that all faults which were 
primary-parity testable in the original even-parity circuit N (before 
augmentation) are still testable in N’ when the subparity pc  is ob- 
served. 

As an example, consider the even-parity function A @ B whose 
testable realization with a control Cis shown in Fig. 7.  By Theorem 6 
all s-a-1 and s-a-0 faults on lines 1, 2, 3 , 4 ,  9, 12, and 13 are primary 
parity testable. The s-a-1 faults on lines 10 and 11 are equivalent to 
the s-a-1 fault on line 12. The s-a-0 faults on lines 10 and 11 as well 
as both s-a-1 and s-a-0 faults on the internal lines 5, 6, 7,  and 8 
change the primary parity in the original circuit from even to odd. 
In the augmented circuit, these will be tested when the subparity pc 
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c ‘  9 

- -  ~ 
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\ - . - - - - -  z 

N 

Fig. 7. A testable realization for A @ E .  

is observed. Hence, all single and multiple faults are parity testable 
in N’. 

The effectiveness of parity testing, i.e., which faults other than 
the input and output line faults are sensitive to it, cannot be com- 
pletely ascertained without knowing the circuit implementation [4], 
[6 ] .  The testability of faults on internal lines can be partially deduced 
from Theorem 4. Further evidence and arguments in support of the 
robustness of parity testing may be found in the two references just 
cited. Extending Carter’s argument [6], it is easy to prove that in a 
circuit having n primary inputs and k maximal supergates the fault 
coverage (FC) for multiple faults in the augmented circuit, on the 
basis of observing primary parity alone, is given by 

which asymptotically approaches 100 percent as (n + k )  becomes 
large. We must note, however, that since this result is based on 
purely combinatorial arguments, it does not guarantee equally high 
coverage of faults of low multiplicities. 
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A Note Extending the Analysis of Two-Head Disk 
Systems to More General Seek-Time Characteristics 

A. R. CALDERBANK, E. G. COFFMAN, JR., A N D  

LEOPOLDFLATTO 

Abstmct-We analyze a model of a movable-head disk system with 
two readhrite heads maintained a fixed distance d apart on each arm. 
Successive request-addresses are assumed to be independent random 
variables, uniformly distributed over the set of cylinders. The purpose 
of an earlier analysis was to find that value of d which minimizes the 
expected seek time per request, assuming that seek time varies linearly 
with the distance z. traveled by the heads. In this note, we extend this 
analysis to more general seek-time characteristics which take into account 
nonlinear acceleration effects. Detailed results, combining both analysis 
and simulation experiments, are presented for seek times linear in zuL, 
0 5 a 5 1. An unexpected result of the study was that the value of d 
which minimizes expected seek time is very nearly independent of a. 

Index Terms- Auxiliary storage systems, disk performance analysis, 
disk seek time measurement, secondary storage devices, two-head disk 
systems. 

I .  INTRODUCTION 

We consider a mathematical model of computer disk storage de- 
vices having two movable read/write heads. The model approximates 
the set of storage addresses by the continuous interval [0, 11. Arriv- 
ing requests for information at points on this interval are served in 
first-come-first-served order, and they are modeled by a sequence 
of independent random variables uniformly distributed over [0, 11. 
Serving a request consists first of selecting the head to perform the 
service, then positioning this head at the requested location, and 
finally, carrying out the read/write operation itself. 

A number of two-head disk systems have been studied within this 
model; in [2], the reader can find a brief survey and appropriate 
references. Here, as in [ l ]  and [4], we analyze the most economical 
system, in which the two heads over each disk surface are situated 
on the same arm, i.e., the two heads are in a fixed relative position 
a distance d apart. Thus, when serving a request, both heads must 
move. One is moved to the requested location, and the other is moved 
simultaneously an equal distance in the same direction. Both heads 
must always remain within [0, 11. Therefore, coverage of the entire 
interval by the two heads requires that 0 5 d 5 1/2. Moreover, it is 
clear that the left-head is restricted to the interval [0, 1 - d] while 
the right-head is restricted to [ d ,  11. 

The head selection policy most often studied is the simple nearer- 
server (NS) rule: for requests in [ d ,  1 -d]  the nearer of the two heads 
is selected to serve the request. Since the two heads must always be 
kept on the disk surface, requests in [0, d) and (1 - d ,  I] are always 
served by the left and right heads, respectively. The objective of the 
analysis is the steady-state expected time required by the head motion 
(i.e., the seek time) in serving a request, expressed as a function of 
the design parameter d.  

Seek time is normally taken to be some convex function C(z) of 
the distance moved. A discussion of seek-time characteristics can be 
found in the text by Matick [3]. In [l], a constant head speed was 
normalized to 1, and the seek time was chosen to be just the distance 
moved, C(z )  = z ;  however, the analysis is trivially extended to any 
linear function C(z) = az +b. Note that the constant b is a simplistic 
model of an initial transient created by acceleration effects. 
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