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Diffuse ultrasonic backscatter measurements have been especially useful for ex-

tracting microstructural information and for improving flaw detection in materials.

In this dissertation, this approach is applied to inspection of railroad wheels. To im-

prove the wear resistance, the tread surfaces of railroad wheels are usually quenched

with water to increase the hardness. The pearlite phase of iron, characterized by

alternating ferrite and cementite phases, is created by the quenching and the lamel-

lar spacing within grains increases progressively from the quenched tread surface to

deeper locations due to the non-uniform cooling rate. The quench depth is an impor-

tant parameter governing the wheel performance.

In this dissertation, several aspects of ultrasonic methods are studied. A new

singly-scattered response (SSR) model that includes lamellar duplex microstructure

within grains is developed to investigate the dependence of ultrasonic backscatter

on such a microstructure in pearlitic wheel steel. An ultrasonic attenuation model

is developed to study the influence of pearlite phase on ultrasonic attenuation. The

experimental results show that both ultrasonic scattering amplitudes and longitudinal

attenuation drop dramatically near the tread surface of a quenched wheel due to the

presence of pearlite. The quench depth is measured by fitting the variance curve from

the tread surface with the SSR model that includes the graded lamellar spacing on the

propagation path. A mode-converted (longitudinal-to-transverse, or L-T) SSR model

that includes duplex microstructure within grains is also developed to examine the



preferred orientation of microstructure in a quenched sample. Finally, the dependence

of ultrasonic backscatter on stress is verified by observing the decrease of backscatter

amplitudes measured from a 1018 steel block under a uniaxial load. The experimental

results show a trend that is similar to the theoretical prediction. The residual stress

in a quenched steel sample is estimated by quantifying the change of backscatter

amplitudes with and without residual stress.

Diffuse ultrasonic backscatter techniques exhibit strong sensitivity to duplex mi-

crostructure, texture and stress, outcomes that can be applicable for quality con-

trol including microstructure evaluation, measurement of quench depth and residual

stress.
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Chapter 1

Introduction

Nondestructive testing (NDT) or evaluation (NDE) techniques are powerful meth-

ods for material inspection. Compared with the traditional destructive inspection

techniques such as hardness testing or micrographic analysis that damages the test

sample through cutting or polishing, the primary advantage is that the material is not

destroyed during inspection. There are several nondestructive techniques that have

been used for routine measurements in industry, such as ultrasound, X-ray diffraction,

electromagnetic waves, Eddy current, etc. All these NDT methods refer to the inter-

action between an incident wave with the material. Therefore, basic knowledge of the

wave interaction with the material is required for interpreting the experimental re-

sults. This main focus of this dissertation is the study of ultrasonic wave propagation

and scattering in pearlitic steel.

Typically, an ultrasonic experiment involves an ultrasonic wave generated by a

transducer that is transmitted through a coupling medium and then into the sample.

The ultrasonic waves reflected from foreign objects, including the voids, inclusions

and defects are received by the same or another transducer in the pulse-echo or pitch-

catch configuration, respectively. Three types of transducers are typically used in
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ultrasonic measurements including contact, air-coupled and immersion transducers.

Contact transducers usually use a layer of honey or glycerin between the transducer

face and the sample which acts as the coupling medium. Air-coupled transducers

use air as the coupling medium. In an ultrasonic test with an immersion transducer,

both the transducer and the test sample are immersed in a fluid. Water is the most

common coupling medium for this type of transducer due to the fact that it has low

viscosity, is easily obtained and is environmentally friendly.

Fig. 1.1 shows an experimental setup using an immersion transducer in the pulse-

echo configuration, along with a typical waveform. The immersion transducer trans-

mits the ultrasonic pulse through water into the sample and the ultrasonic wave

reflects from the top surface of the sample due to the acoustic impedance mismatch.

The portion of energy reflected back to the same transducer is called the frontwall re-

flection, while the ultrasonic echo reflected from the back surface is called the backwall

reflection. Any reflection appearing between the frontwall and the backwall indicates

the presence of foreign material. A gate is usually set between the frontwall and

backwall reflections so that the maximum amplitudes of reflected signals from foreign

Figure 1.1: An example ultrasonic signal reflected from a foreign object in a steel
sample.
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objects can be monitored. The amplitudes are displayed in an image that is called a

C-scan image, in which the locations of the foreign objects are mapped. Another type

of setup that is usually used in ultrasonic inspection is the pitch-catch configuration,

in which two transducers behave as the transmitter and receiver, separately.

As the ultrasonic wave propagates through polycrystalline media, energy is lost

due to scattering and absorption. The lost energy causes the input waves to decay, an

effect referred to as a attenuation. The pitch-catch method is often used for material

inspection where a large amount of energy is lost from the coherent ultrasonic wave,

so that it only needs to propagate a short distance before detection.

The defects in a structural material can act as stress concentrators that can con-

tribute to fatigue crack initiation, and ultimately cause the failure of a structure.

Many conventional ultrasonic techniques involve identification of the signals that re-

flect from the defects in the material. If the sizes of the defects are much larger than

the order of heterogeneities in a polycrystalline material, the detection is relatively

easy, the gate amplitude can be placed above the effective material ‘noise’ that comes

from the heterogeneous background. However, if the defect size is on the order of

the heterogeneities, the reflected signals are often masked by the incident energy that

scatters from the heterogeneous background. In such a case, one can increase the

inspection frequency with the hope of increasing the sensitivity to the defect, but this

method usually increases the background noise as well. The grain noise can hamper

the detection of minor defects, so that understanding the grain noise level reflected

from the background will be useful for quantifying the probability of identifying a

minor defect in the material.

Many approaches have been proposed to quantify the diffuse scattering noise from

the background, heterogeneous medium such that any deviations from this response

can be attributed to the presence of a defect. To obtain the ultrasonic scattering
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from heterogeneities, a high amplifier gain is used. Fig. 1.2 shows a single pulse-echo

backscatter signal collected from a heterogeneous material. The different colors in

the test material denote the orientations of the polycrystalline grains. The electronic

noise level is much lower in contrast to the ultrasonic backscatter from heterogeneities

such that the electronic noise can be neglected. The reflected signals from minor flaws

might emerge within the scattering from the background. Differentiating the scattered

signal from the signal reflected from minor defects is a very challenging problem.

Ultrasonic scattering (grain noise) reflected from the heterogeneities is related to the

physical properties of the scatterers, such as grain size, microstructure, texture and

so on, which can also be used to estimate the grain size if properly modeled. However,

the scattering between the frontwall and the backwall reflections shown in Fig. 1.2

is completely random due to the random orientations of the grains, so that it is

highly dependent on the test position. The scattered signal at one position might be

completely different from those measured from other positions. Therefore, statistical

methods are used to analyze the collected signals.

In this dissertation, ultrasonic propagation and scattering in pearlitic steel is stud-

ied. A statistical scattering model is proposed to quantify the duplex microstructure

in pearlitic steel from the ultrasonic signals collected on a sample. In chapter 2, the

Figure 1.2: A typical backscatter signal.
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background of material characterization with ultrasonic backscatter is discussed. In

chapter 3, the theoretical model for the scattered response (the spatial variance of the

ultrasonic backscattered signals) within a multiple scattering formalism is reviewed.

The singly scattered response (SSR) is obtained by assuming the wave scatters only

once before returning to the transducer.

In chapter 4, the developed SSR model is extended by including the effects of

lamellar duplex microstructure characterized by the alternating cementite and ferrite

phases in railroad wheel steel. The dependence of ultrasonic backscatter on duplex

microstructure within grains is observed by comparing cross section measurements

from an unquenched wheel with that from a quenched wheel. The modified model is

utilized to fit the experimental results measured from the cross section of a quenched

wheel sample.

In chapter 5, the SSR model including the effects of duplex microstructure is fur-

ther modified by considering the gradation of lamellar spacing on the propagation

path. The SSR model is compared with backscatter measurements from the wheel

tread surface. The effects of the graded lamellar duplex microstructure along the

propagation path on ultrasonic scattering can be observed by comparing backscatter

measurements from the tread surface with those from the cross section. The quench

depth can be estimated by fitting the variance curve of ultrasonic backscatter signals

measured from the tread surface with the graded SSR model. Chapter 6 discusses the

dependence of ultrasonic scattering attenuation on lamellar duplex microstructure.

An ultrasonic attenuation model that includes the lamellar duplex microstructure

within grains is developed for studying the influence of lamellar spacing on attenua-

tion.

In chapter 7, a mode-converted (longitudinal-to-transverse, or L-T) SSR that mod-

els the received shear wave scattered by an incident longitudinal wave is modified to
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include the effects of lamellar duplex microstructure. The experiments are performed

on the cross section of a quenched wheel sample using two focused transducers in

the pitch-catch configuration measured in two directions. The theoretical model is

compared with the experimental results. The lamellar spacing and the correlation

length are calculated with the L-T spatial variance amplitudes measured in two di-

rections. Chapter 8 investigates the effects of the applied stress and residual stress

on ultrasonic scattering generated by water quenching. The variation of the variance

amplitudes with and without residual stress is quantified, from which the residual

stress is estimated with the SSR model. Finally, chapter 9 gives the conclusions and

future work.
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Chapter 2

Background

Ultrasonic energy in the form of elastic waves is extensively used for measuring

the quality of structural components in the manufacturing process or during service.

Applications are comprised of detecting the size of discrete flaws that cause failure

(e.g., inclusion or cracks), characterizing the degradation of materials during the ser-

vice time (e.g., fatigue of aircraft components or embrittlement of pressure vessels in

nuclear power plants), monitoring the structural changes of materials that occur dur-

ing manufacturing processes (e.g., grain size, microstructure and porosity) to provide

information to modify the manufacturing process.

If an ultrasonic wave passes through a homogeneous material, equally spaced

echoes with equal amplitudes can be observed. When the ultrasound propagates

in polycrystalline medium, it loses energy due to scattering and absorption, which

leads to an exponential decay of the echo (attenuation) and the appearance of grain

noise between the echoes. Many structural materials are comprised of polycrystalline

grains. Because grains are anisotropic and their orientation varies from grain to grain,

the material has a continuous variation of elastic properties. The change of sonic

properties causes some of the incident wave energy to be reflected, this detectable
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energy is known as “grain noise” or scattering. The scattered signals carry very

important information about the sample microstructure and can be used to quantify

the grain size and microstructure if properly modeled [24], [27], [41], [42].

The importance of understanding the scattering is not limited to its effects on

flaw detection and characterization. Other functions in ultrasonic nondestructive

evaluation, such as characterizing material microstructure during manufacturing or

degradation during service, are also highly dependent on the understanding of the

interactions between ultrasound and microstructure. In the following sections of this

chapter, the microstructure in pearlitic steel and the formation of the pearlite phase

is discussed. Ultrasonic attenuation and statistical backscatter models developed

for cubic and hexagonal polycrystalline materials with various microstructures are

reviewed. The methods for the inspection of railroad wheels including flaw inspection,

microstructure evaluation and measurements of hardening layers are also summarized.

2.1 Pearlitic Steel

Pearlite is a two-phase, lamellar (or layered) structure composed of alternating

layers of α-ferrite (88 wt%) and cementite (Fe3C, 12 wt%) that occurs in some steels

and cast irons. Fig. 2.1 shows a phase diagram of carbon steel. When an iron-carbon

alloy containing eutectoid composition of 0.76 % carbon is heated up to 727 ◦C (1030

◦F, the eutectoid temperature), the structure contains only austenite (γ) phase. The

eutectoid reaction begins when the sample temperature cools to 727 ◦C. The iron-iron

carbide eutectoid reaction is given by [57]

γ0.77%C → α0.0218%C + Fe3C6.67%C . (2.1)
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Figure 2.1: Phase diagram of carbon steel.

The austenite has an intermediate carbon concentration that transforms to a ferrite

phase with a much lower carbon content, and also cementite with a much higher

carbon concentration. Atoms must diffuse during the reaction as shown in Fig. 2.2.

Most carbon atoms diffuse to the cementite (Fe3C) phase, while a great percentage

of iron atoms diffuse to the ferrite (α) phase. This redistribution of atoms is easiest if

the diffusion distances are short, which is the case when the α and Fe3C phases grow

as thin lamellae, or plates.

Temperature plays an important role in the rate of the austenite-to-pearlite trans-

formation. The thickness ratio of the ferrite and cementite layers in pearlite is ap-

proximately 8 to 1. However, the absolute layer thickness depends on the temperature

at which the isothermal transformation is allowed to occur. At temperatures just be-

low the eutectoid point, relatively thick layers of both the α-ferrite and Fe3C phases
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are produced; this microstructure is called coarse pearlite. At these temperatures,

diffusion rates are relatively high, such that carbon atoms can diffuse relatively long

distances during the transformation, which results in the formation of thick lamellae.

With decreasing temperature, the carbon diffusion rate decreases, and the layers be-

come progressively thinner. The thin-layered structure produced is called fine pearlite.

The mechanical properties are dependent on lamellar thickness.

Figure 2.2: Redistribution of carbon and iron atoms during eutectoid reaction.

Hypoeutectoid steels contain less than 0.76 % C, and ferrite is the primary or

proeutectoid microconstituent in hypoeutectoid alloys. When the hypoeutectoid al-

loy containing 0.60 % C is heated below 750 ◦C, ferrite precipitates and grows at the

austenite boundaries as shown in Fig. 2.1. Primary ferrite continues to grow until

the temperature falls to 727 ◦C. The remaining austenite at that temperature is now

surrounded by ferrite and has changed in composition from 0.60 % C to 0.77 % C.

Subsequent cooling to below 727 ◦C causes all of the remaining austenite to transform

to pearlite by the eutectoid reaction. The final structure contains two phases, primary

ferrite and cementite. The primary phase is Fe3C in the hypereutectoid alloy con-

taining more than 0.76 % C, which is formed at the austenite grain boundaries. After
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the austenite cools through the eutectoid reaction, the steel contains hard, brittle

cementite surrounding islands of pearlite.

2.2 Attenuation Model

When an ultrasonic wave propagates in polycrystalline materials, it scatters on

grain boundaries due to the relative misorientation of the crystallites. The lost energy

due to scattering is typically described in terms of the ultrasonic scattering attenua-

tion, a quantity that can be measured and can serve as a metric to characterize the

microstructure of polycrystalline materials [3]. Many previous studies of ultrasonic

scattering in polycrystals focused on scattering-induced attenuation as a function

of frequency and microstructure [2] - [7], [9], [10], [43], [45]. Lifshits and Parkho-

movski [2] developed a general scattering attenuation model which was suitable for

a wide frequency range. Merkulov [4] simplified the general theory and reduced the

results to an elegant equation for attenuation coefficients for both the Rayleigh and

Stochastic regimes for cubic polycrystalline materials. He also derived attenuations in

those regimes for hexagonal polycrystals. Hirsekorn [5] developed a scattering model

by using a Born series and by considering multiple scattering in a test material.

Stanke and Kino [6] developed a general theory for equiaxed untextured poly-

crystalline media with cubic symmetry in all frequency ranges. To obtain their final

results they used the the second-order Keller approximation [56]. The theory was

proposed to be valid for all frequency ranges and for an arbitrary crystal anisotropy

factor. The final solution of Stanke and Kino [6] can also be simplified with the Born

approximation. The Born approximation considers the scattered wave function by

a plane wave if the scatter potential is so weak that it will distort only slightly the

incident plane wave. Weaver [7] presented a general solution to determine the diffu-
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sivity of ultrasound for the untextured cubic-symmetry polycrystalline material using

the Dyson equation. The Born approximation was employed to simplify the general

solution. Compared with the Stanke and Kino’s theory using Keller approximation,

Weaver’s solutions matched with those of Stanke and Kino for strongly scattering

materials up to very high frequencies. However, the explicit equations for attenua-

tion were identical to those of the Born approximation of Stanke and Kino [6]. The

results were suitable for the frequency range below the geometrical limit.

Ahmed and Thompson [9] extended the Stanke and Kino model [6] to untextured

cubic materials with elongated grains. An integral solution was numerically evaluated

for the Green’s function and the attenuation was calculated as a function of different

microstructural parameters. Yang et al. [45] studied the shape effects of elongated

grains on ultrasonic attenuation in cubic polycrystalline materials. Turner [10] pre-

sented an attenuation model for textured materials with cubic symmetry grains using

Weaver’s method, and Yang et al. [11] also used Weaver’s approach to develop a

general solution for textured materials with grains of hexagonal symmetry. Yang et

al. [44], [51] developed integrated attenuation models for ultrasonic wave propagation

and scattering in a hexagonal polycrystalline medium with equiaxed and elongated

grains, respectively. Han and Thompsan [48] and Lobkis and Rokhlin [49], [50] stud-

ied the effects of duplex microstructure in titanium alloys on ultrasonic backscatter

and attenuation.

2.3 Statistical Backscatter Model

The main focus here is the analysis of the received signals collected in a typical C-

scan scan rather than on each waveform by itself to extract the microstructural infor-

mation of the test sample. Statistical methods are usually used to quantify the diffuse
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scattering from the heterogeneities to infer microstructural information. Höller [12],

Rose [20], Margetan [13], Thompson [27], [41] and their workers pioneered the work

of investigating ultrasonic scattering models for polycrystalline media. Rose [20], [47]

developed the first backscatter model for polycrystals with equiaxed grains. Marge-

tan et al. [13] derived a backscatter model within a single scattering assumption such

that it includes all the necessary experimental parameters. Their theoretical model

is mainly based on a normal incidence experimental setup, such that it is not able to

be used with different experimental setups such as oblique incidence or a pitch-catch

type setup. Margetan et al. [22] demonstrated experimental results using a pitch-catch

technique by propagating only shear waves in a steel sample. They also discussed the

necessity of considering multiple scattering in the model while inspecting samples

with larger grain sizes with respect to the wavelength of the incident wave. Thomp-

son et al. [23] showed that a theoretical model with a multiple scattering formalism is

required to be developed to interpret experimental results by comparing experimental

results with singly-scattered models. Han and Thompson [48] expanded the backscat-

ter model for titanium alloys with duplex microstructure. They mainly focused on

an arrangement of a second phase (called a colony) in the large macrograins (prime

β grains of cubic symmetry). Lobkis et al. [49], [50] and Yang et al. [52] presented

an ultrasonic backscatter model and experimental measurements in polycrystals with

elongated single phase and duplex microstructures. They considered microtextural

regions (MTRs) as the largest size phase which is formed by a secondary set of primary

crystallites. The contribution of those crystallites to ultrasonic backscatter had been

neglected in [48]. Recently, Ghoshal et al. [24] developed a mathematical formalism

that includes a transducer model within a multiple scattering framework. The more

general model was reduced to the limit of the singly scattered response (SSR). The

SSR simplified to a convolution between the Wigner transform of the source and re-
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ceiver displacement response with a scattering operator that quantifies the scattering

within the medium. Those simplified results matched the overall behavior observed

in the original work of Margetan et al. [13]. The details on how the SSR model is

derived is given in chapter 3.

Another important component in modeling ultrasonic backscatter experiments is

the transducer beam model. Cook [25] presented the solution to the linear wave

equation for planar and plane-plate piston transducers in a polar coordinate system.

Gubernatis et al. [26] used the Green’s function to derive the expression for the

scattering amplitude to inspect flaws in an isotropic homogeneous elastic mediam in

a three-dimensional domain. Thompson and Gray [27] calculated the acoustic field

at the transducer face by assuming a single medium for the liquid-solid interfaces.

Schmerr and Song [70] explained the Gaussian beam at oblique incidence through

interfaces in great detail. A transducer beam model that can be used for both planar

and curved interfaces was developed. It can be applied for inspecting curved surfaces

such as railroad wheels, roller bearings and so on.

2.4 Backscatter Applications

The developed statistical models are utilized for analyzing the backscatter sig-

nals measured by experiments, through which the microstructure, or grain size can

be evaluated. A significant number of experimental backscatter studies have been

performed by Thompson and coworkers. Thompson et al. [87] gave a brief review of

the classical understanding of how elastic waves are scattered by grain boundaries in

randomly oriented polycrystalline materials. The backscatter experiments were con-

ducted in different directions of titanium alloys taken from cylindrical components

of aircraft engines with duplex microstructure. The grain elongation was demon-
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strated by comparing the backscatter measured from different directions. Margetan

et al. [13] presented a study of the backscatter measured in a jet-engine nickel alloy

in the pulse-echo configuration. The contribution from the microstructure known as

the Figure-of-Merit (FOM), which is equal to the square root of the backscatter co-

efficient, was measured as a function of position, and its value was demonstrated to

correlate well with the variation in the average grain sizes. Lobkis et al. [50] developed

a backscatter model (known as the M-factor model) for titanium alloys with elongated

single phase and duplex microstructures by considering microtextural regions (MTR)

as the largest size phase that is formed by a secondary (small size phase) of prime α.

The ultrasonic backscatter measurements were performed along several directions in

engine-grade near-alpha titanium alloy samples. The experimental results matched

well with the theoretical predictions.

In addition to microstructural information in materials, diffuse ultrasonic mea-

surements have been shown to be sensitive to changes in applied stress and residual

stress. Acoustoelasticity refers to the study of the relationship between applied stress

and wave speed within solids. This relationship considers the influence of finite strain

or wave displacement on higher-order material behavior. Often, linear-elastic approx-

imations are not sufficient for describing material response under large strains. Acous-

toelastic behavior is typically examined in two forms: the nonlinear response of single

crystals under large accelerations or applied stress. The acoustoelastic response of

the complex solid is described at the macroscale level. For polycrystals, single-crystal

nonlinear behavior has been used to predict the nonlinear behavior of an ensemble of

randomly oriented crystals. Researchers have applied the first-order grain statistics

through wave speed for measuring ultrasonic propagation modes to extract stress in-

formation from complex solids [30] - [33]. In the last several decades, higher-order

spatial statistics of polycrystals have been of interest. When high-frequency waves
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pass through polycrystals, ultrasonic scattering results from heterogenous boundaries.

The second-order grain statistics, through the covariance of the elastic moduli fluc-

tuations, have been used to connect single crystal properties to ultrasonic scattering

behavior. Recently, Turner and Ghoshal [39] presented a theoretical basis to extract

stress information from polycrystalline microstructures by considering second-order

grain statistics through the covariance of elastic moduli fluctuations, an eighth-rank

tensor. Kube et al. [40] confirmed the stress-dependence of the covariance tensor by

measuring ultrasonic scattering under uniaxial loads.

Recently scientists have started to use diffuse ultrasonic backscatter methods for

biomaterials to quantify the size of scatters and to locate the scatterer sites. Because

scattered signals are sensitive to microstructural changes such that they might be

able to be used for distinguishing diseased tissues from healthy tissues. Oleze and

Zachary [29] suggested that a higher-order scattering model might be necessary to

obtain accurate microstructure information from biological samples. Most singly-

scattered models may lead to an under or over estimate of scatterer size. Thus, it

may be necessary to develop higher-order scattering models to interpret better the

experimental results.

2.5 Wheel Inspections

Flaws in railroad wheels can act as stress concentrators during service, which can

result in the initiation of fatigue cracks, and ultimately cause the rim to split from a

wheel. Ultrasound inspection techniques are widely used for detecting flaws in railroad

wheels. Previous standards for the manufacturing inspection of railroad wheels using

ultrasound have been replaced by new standards, for example EN 13262 [34] and

RD32.144-2000 [35], both requiring ultrasonic testing by means of the immersion
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technique. The current requirement for the minimum detectable flaw size is DSR 1

mm (disc shape reflector, DSR, 1 mm diameter) for high-speed train wheels rims and

DSR 2 mm for all other wheel rims. The minimum detectable flaw size for all other

wheel areas (hub and disk areas) is DSR 3 mm. To meet all these criteria, a new Rail

Wheel Inspection (RWI) system was developed by IZFP and its partners [59].

The mechanical behavior, such as hardness, of wheel steel is governed significantly

by microstructure. Optical micrographs, X-ray diffraction (XRD) [60], scanning elec-

tron microscopy (SEM) [60], [62], transmission electron microscopy (TEM) [60], [61]

have been used to observe the microstructure of the hardened layer on the quenched

surface of pearlitic wheel/rail steel. The hardened layer was confirmed to be com-

posed of severely deformed fine pearlite lamellae as well as nanocrystalline martensite,

austenite and cementite. The lamellar spacing in fine pearlite phase was measured

directly from the SEM images. All these methods are time consuming and require

extensive sample preparation, including the cutting of the sample, mounting, grind-

ing, polishing and etching. So far a non-destructive method using ultrasound has not

been found to quantify the lamellar spacing in pearlitic steel.

To improve the wear resistance, the tread surfaces of wheels are usually quenched

with cold water to improve the hardness. The quench depth that is defined as the

thickness of the hardening layer plays an important role in determining the wheel per-

formance. The quench depth is usually estimated from the measured hardness profile

of the cross section from the quenched surface [63]. Hirao et al. [64] described a non-

destructive test method to measure the hardening layer of steels with surface treat-

ments (including induction hardening, carburizing, and then quenching and nitriding)

by means of ultrasonic surface waves. Velocity measurements with the pulse-overlap

technique demonstrated the frequency dependence of the surface-wave velocity, which

implies that these treatments form a well-defined surface layer of uniform thickness,
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having different elastic properties than the matrix. The measured thicknesses were

relatively consistent with the destructive observation of micro-Vickers hardness varia-

tion with depth. Fujisawa and Nakanishi [65] introduced a non-destructive method of

measuring the hardening depth by using ultrasonic backscatter. They measured sev-

eral bearing steels with various hardening depths. Backscattering amplitude patterns

were obtained by averaging rectified signals of ultrasonic shear wave with changing

incident positions. The first increasing point corresponded to the shore depth where

bainite structure initiates.

The above discussion gives a brief survey of the available literature on wave scat-

tering. There exists an enormous amount of information about scattering in het-

erogeneous media due to the important application for characterization of materials

nondestructively. Technological advancements lead to the creation of the new mate-

rials with complex microstructure. Studying the wave interaction with such complex

materials is very important for monitoring the structural health of components using

nondestructive methods. Therefore, more theoretical models are required so that the

experiments may be interpreted quantitatively.
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Chapter 3

Ultrasound Propagation in a

Polycrystalline Media

In this chapter, ultrasonic scattering within heterogeneous media is reviewed [24].

The mean and mean square signals from a model source and receiver in a random

medium are investigated. The mean signal or the mean square signal is related to a

convolution between the mean Green’s function or Green’s function covariance and

the model transducer functions, respectively. The Dyson equation [7] is achieved to

describe the mean Green’s function and the Bethe-Salpeter equation results from con-

sideration of the covariance. The latter equation is expanded in a multiple scattering

series and the results inserted into the previously derived convolution expression for

the mean square signal. The distribution function of the displacement profile is de-

rived to model the beam pattern of an ultrasonic transducer through a liquid-solid

interface. A singly-scattered response (SSR) model based on the assumption that

ultrasonic wave scatters only once before returning back to the transducer is devel-

oped to investigate the dependence of microstructure on ultrasonic scattering. In later

chapters, this SSR model is expanded for application to pearlitic steel with duplex mi-
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crostructure within grains and to study the effects of lamellar duplex microstructure

on ultrasonic scattering.

3.1 Dyson Equation and the Mean Green’s

Function

The analysis begins with the governing partial differential equation (PDE) for the

Green’s function Giα(x,y, t) of an elastic medium with constant material density (set

to unity) and modulus that varies randomly in space

[−δli
∂2

∂t2
+

∂

∂xk
µklij(x)

∂

∂xj
]Giα(x,y, t) = δ3(x− y)δ(t)δlα, (3.1)

where µklij(x) is the position dependent elastic modulus tensor with a mean value of

C0
klij, and fluctuations from the mean given by γijkl(x) = µijkl(x)− C0

ijkl. This form

for the PDE corresponds to the case of a random polycrystal, in which case C0 is

defined as the volume average or the Voigt, effective modulus. As their mean 〈〉 is

zero, the leading order non-trivial quantity is the moduli-covariance Λ, defined by

〈γijkl(x)γαβγδ(y)〉 = Λ(x− y)αβγδijkl , (3.2)

where the angular brackets 〈〉 define ensemble average quantities. The moduli co-

variance is considered to depend on the difference between vector x and y based

on the assumption of statistical homogeneity. If the temporal Fourier transform of

G defined by Giα(x,y, ω)=
∫∞
−∞Giα(x,y, t) exp(iωt)dt, is applied to Eq. (3.1), then



21

Eq. (3.1) becomes

[(ω + iε)2δli + C0
klij +

∂

∂xk
γklij(x)

∂

∂xj
]Giα(x,y) = δ3(x− y)δlα. (3.3)

The mean solution 〈G〉 to Eq. (3.3) is expressed in the form of an integral equation

〈Giα(x,y)〉 = G0
iα(x,y) +

∫ ∫
G0
iβ(x, z)mβj(z, z

′)〈Gjα(z′, y)〉d3zd3z′, (3.4)

where G0 is the solution to Eq. (3.3) when γ = 0, the tensor mβj is defined as the

self energy operator. The spatial Fourier transform of the self-energy is defined as

−σβj(p)δ3(p− s) =
2

(2π)3

∫ ∫
d3xd3y exp{−ip · x+ is · y}mβj(x, y). (3.5)

Eq. (3.4) is called the Dyson equation [7].

The Dyson equation is easily solved in the spatial Fourier transform domain,

〈G̃(p)〉 =

[[
G̃

0
(p)
]−1

+ σ(p)

]−1

=
[
I(ω + iε)2 − p ·C0 · p + σ(p)

]−1
, (3.6)

where G̃(p) and σ(p) are the spatial Fourier transforms of the Green function G and

the self energy m. The effective wave number p is the wave number of the mean

Green’s function, the value of p at which 〈G〉 is singular. The solutions p can be

determined from algebraic equation

det
[
I(ω + iε)2 − p ·C0 · p + σ(p)

]
= 0. (3.7)

The problem of determining the mean response reduces to that of determining the
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self-energy. The real part of p is inversely proportional to the wave speed and the

imaginary part is proportional to the attenuation coefficient α.

3.2 Bethe-Salpeter Equation and Green’s

Function Covariance

It is not sufficient to calculate the mean response 〈G〉 for diffuse field measure-

ments in which signals are squared before averaging. The Green’s function covariance

is defined as 〈Gαβ(x,x′, ω)G∗ij(y,y
′, ω + Ω)〉, in which the asterisk implies ω + Ω as

well as the complex conjugate. Note that that covariance is a measure of how much

two variables change together (the variance is a special case of the covariance when

two variables are identical.) The spatial Fourier transform of the Green’s function

covariance 〈GG∗〉 is defined by

p
p′

α
i H

β
j

s
s′ δ

3(p + s′ − s− p′) =
1

(2π)6

∫
d3xd3x′d3yd3y′〈Gαβ(x,x′)G∗ij(y,y

′)〉

× exp(−ip · x + is · x′ + ip′ · y− is′ · y′), (3.8)

where the delta function is a consequence of the assumed statistical homogeneity of

the medium. It is conventional to employ the delta-function and a change of variables

p′=p+∆, and consider only the three wavevector dependent quantity.

The covariance is governed by the solution of the Bethe-Salpeter equation

p
p+∆

α
i H

β
j

s
s+∆ = α

i Γβj
s
s+∆δ

3(p− s)

+

∫
d3s αi Γγk

p
p+∆

p
p+∆

γ
kK

δ
l

s
s+∆

s
s+∆

δ
lH

β
j

s
s+∆, (3.9)

where the double mean field Green’s function Γ is α
i Γγk

s
s+∆ = 〈Gαγ(s)〉〈G∗ik(s + ∆)〉.



23

It describes the propagation of the square of the mean field. The operator K, known

as the intensity operator, is approximated by (often called the ladder approximation

because of the shapes of the corresponding Feynman diagrams)

p
p+∆

γ
kK

δ
l

s
s+∆ = pβsα(pi + ∆i)(sj + ∆j)Λ̃(p− s)γβαδkijl . (3.10)

The Bethe-Salpeter equation can be expanded in a multiple scattering series,

p
p+∆

α
i H

β
j

s
s+∆ ≈ α

i Γβj
s
s+∆δ

3(p− s)

+ α
i Γγk

p
p+∆

p
p+∆

γ
kK

δ
l

s
s+∆

s
s+∆

δ
lΓ

β
j

s
s+∆ + o(k2), (3.11)

where the expansion has been truncated to include only single scattering events.

The first term of the right side of Eq. (3.11) indicates the coherent propagation of

covariance from source to receiver. The second term describes a coherent propagation

at wavevector s followed by a scattering to wavevector p.

3.3 Sources, Receivers, Mean and Mean Square

Signals

The field produced by a source transducer is written as a convolution in space and

time between the Green’s function of the medium and the source

ΨS
β(x, t) =

∫
Gβα(x′,x, t)Bα(x′)⊗ S(t)d3x′, (3.12)

where Bα(x)S(t) represents a body force which is distributed in space, time and

direction. The operator⊗ indicates a temporal convolution. The spatial and temporal
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Fourier transform of the ensemble average of this response is

〈ΨS
α(p, ω)〉 =

∫
d3r〈Gαβ(r, t)〉 exp{−ip · r} d3x′

(2π)3/2
Bβ(x′)

× exp{−ip · x} ⊗ S(t) exp{iωt}dt

= 〈G̃αβ(p, ω)〉B̃β(p)S(ω). (3.13)

The Fourier transformed average field is given by a simple product of the Fourier

transform of the source function and the average Green’s function.

The response of the receiver at time t to a point source in direction β at time zero

and position x is given by the convolution with the Green’s function of the medium

as

ΨR
β (x, t) =

∫
R(t)⊗ Aα(x′)Gαβ(x′,x, t)d3x′, (3.14)

where Aα(x)R(t) is defined as the receiver sensitivity distribution function. The

averaged response of the receiver after taking the Fourier transform can be written

as

〈ΨR
β (p, ω)〉 =

∫
d3r〈Gαβ(r, t)〉 exp{ip · r} d3x′

(2π)3/2
Bβ(x′)

× exp{ip · x} ⊗ S(t) exp{iωt}dt

= 〈G̃βα(p, ω)〉Ãα(p)R(ω). (3.15)

If the field produced by the source is detected by the receiver, the resulting signal

φ(t) is given by the following convolution

φ(t) =

∫ ∫
R(t)⊗ Aβ(x)Gβα(x,x′, t)Bα(x′)⊗ S(t)d3xd3x′. (3.16)
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The position of the receiver or source is implicit in the factors Aβ(x) and Bα(x′),

which have their chief support in the vicinity of those respective transducers. This

expression defines the “signal” from which the mean and mean square are taken.

As the source and receiver characteristics are nonstochastic, the mean signal is ob-

tained from Eq. (3.16) simply by replacing G with 〈G〉. Diffuse fields are typically

analyzed by considering the square of the signal. The square of the signal given in

Eq. (3.16)(〈φ2(t)〉=Φ(t)) is transformed temporally and re-expressed in terms of the

receiver and source characteristics and Green’s function covariance as

Φ(Ω) =

∫
d3xd3x′d3yd3y′

dω

2π
R(ω)S(ω)R∗(ω + Ω)S∗(ω + Ω)

× Aα(x)Ai(y)Bβ(x′)Bj(y
′)〈Gαβ(x,x′)G∗ij(y,y

′)〉, (3.17)

where the covariance of the Green’s function can be expressed in terms of its (12-fold)

spatial inverse Fourier transform

〈Gαβ(x,x′)G∗ij(y,y
′)〉 =

1

(2π)6

∫
d3pd3p′d3sd3s′ pp+∆

α
i H

α
j

s
s+∆δ

3(p + s′ − s− p)

× exp(ip · x− is · x′ − ip′ · y + is′ · y′). (3.18)

Substituting Eq. (3.18) into Eq. (3.17), and performing the integration over space,

Eq. (3.17) can be reexpressed as

Φ(Ω) =

∫
dω

2π
d3pd3sd3∆Ãα(p)Ã∗i (p + ∆)B̃β(s)B̃∗j (s + ∆)

× p
p+∆

α
i H

α
j

s
s+∆ R(ω)S(ω)R∗(ω + Ω)S∗(ω + Ω). (3.19)

This expression characterizes the mean square signal (in the frequency domain) in

terms of the transducer properties and the scattering characteristics of the medium.
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3.4 Singly Scattered Response (SSR)

Substituting the multiple scattering series of Eq. (3.11) into Eq. (3.19) for Φ gives

a multiple scattering expression for the mean square signal. The zeroeth order term

of the mean of the square, Φ0(Ω), which is the first term of Eq. (3.19) vanishes, while

the first order term in powers of K can be written as

Φ1(Ω) =

∫
dω

2π
dpdsd∆[Ãα(p)〈G̃αβ(p)〉R(ω)][Ãi(p + ∆)〈G̃ij(p + ∆)〉R(ω + Ω)]∗

× p
p+∆

β
jK

γ
k

s
s+∆[B̃τ (s)〈G̃γτ (s)〉S(ω)][B̃l(s + ∆)〈G̃kl(s + ∆)〉S(ω + Ω)]∗.

(3.20)

The quantities in square brackets [ ] can be written as the Fourier transform of the

fields ΨR and ΨS

Φ1(Ω) =

∫
dω

2π
d3pd3sd3∆ p

p+∆
β
jK

γ
k

s
s+∆

×

[∫
〈ΨR

β (x, t)〉dtd
3x

(2π)
3
2

exp{ip · x + iωt}

]

×

[∫
〈ΨR

j (y, u)〉dud
3y

(2π)
3
2

exp{−i(p + ∆) · y + i(ω + Ω)u}

]

×

[∫
〈ΨS

γ (x′, t′)〉dt
′d3x′

(2π)
3
2

exp{is · x′ + iωt′}

]

×

[∫
〈ΨS

k (y′, u′)〉du
′d3y′

(2π)
3
2

exp{−i(s + ∆) · y′ + i(ω + Ω)u′}

]
. (3.21)

After making the variable changes

x = X + ξ/2,y = X− ξ/2, t = T + τ/2, t = T − τ/2,

x = X + ξ/2,y = X− ξ/2, t = T + τ/2, t = T − τ/2, (3.22)
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Φ1(Ω) is given by

Φ1(Ω) =

∫
dω

(2π)7
d3pd3sd3∆ p

p+∆
β
jK

γ
k

s
s+∆

×
∫
d3XdTd3ξdτ〈ΨR

β (X + ξ/2, T + τ/2)〉 〈ΨR
j (X− ξ/2, T − τ/2)〉

× exp{iτ(ω + Ω/2) + iξ · (p + ∆/2)− iΩT − i∆ ·X}

×
∫
d3X ′dT ′d3ξ′dτ ′〈ΨS

γ (X′ + ξ′/2, T ′ + τ ′/2)〉 〈ΨS
k (X′ − ξ′/2, T ′ − τ ′/2)〉

× exp{iτ ′(ω + Ω/2) + iξ′ · (s + ∆/2)− iΩT ′ − i∆ ·X′}. (3.23)

The integrations over ξ, τ , ξ′ and τ ′ can be done by defining two 4-fold Wigner

transforms as

W S
γk(X, T,k, ω) =

∫
〈ΨS

γ (X + ξ/2, T + τ/2)〉 〈ΨS
k (X− ξ/2, T − τ/2)〉

× exp{−ik · ξ + iωτ}d3ξdτ,

WR
βj(X, T,k, ω) =

∫
〈ΨR

β (X + ξ/2, T + τ/2)〉 〈ΨR
j (X− ξ/2, T − τ/2)〉

× exp{+ik · ξ + iωτ}d3ξdτ. (3.24)

Eqs. (3.24) represent spatial and temporal generalizations of the more well known

temporal Wigner transform widely utilized in signal processing, and other applications

such as imaging, optics, and so on. W indicates a distribution in space and time X,

T of spectral energy density as a function of wavevector k and frequency ω.

Using the definitions in Eqs. (3.24), the singly-scattered response in Eq. (3.23) is
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given by

Φ1(Ω) =

∫
dω

(2π)7
d3pd3sd3∆ p

p+∆
β
jK

γ
k

s
s+∆

×
∫
d3XdTWR

βj(X, T,p + ∆/2, ω + Ω/2) exp{−iΩT − i∆ ·X}

×
∫
d3X ′dT ′W S

γk(X
′, T ′, s + ∆/2, ω + Ω/2) exp{−iΩT ′ + i∆ ·X′}.

(3.25)

At this point it is necessary to assume that the dependence of K on the ∆ and Ω is

negligible. This allows the ∆ integration, and the integation over Ω entailed in the

inverse Fourier transform to be done immediately. After changing the variables by

shifting ω by Ω/2 and p, q by ∆/2, Eq. (3.25) is given by

Φ1(T ) =

∫
dω

(2π)4
d3pd3sd3XdT ′

×WR
βj(X, T − T ′,p, ω) p

p
β
jK

γ
k

s
s W

S
γk(X, T

′, s, ω). (3.26)

It can be seen that the singly scattered contribution is a convolution in time and

space of the product of the Wigner distributions of the beam pattern of the source

and receiver, mediated by the scattering strength K from wave vector p to wave

vector s. The Wigner distributions that enter into this description are the Wigner

transforms of the coherent fields associated with source and receiver, the fields that

would be present if the source and receiver were placed in a medium described by the

average Green’s function.
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3.5 Wigner Transform of a Piston Transducer

The square of the variance of the signal obtained from a typical ultrasonic C-scan

is a typical diffuse ultrasonic result. In such experiments, the signals are collected at

various positions of the transducer and the scattering from the local depth is analyzed

to extract the microstructural information by examining the statistics of the signals.

Eq. (3.26) can be utilized to model the variance of the signal at the focal region [24].

An expression of the singly-scattered response (SSR) for polycrystalline materials was

previously derived by Thompson and Gray [27]. In analogy with the model developed

by Thompson and Gray, Eq. (3.26) represents an expression for single scattering.

Eq. (3.26) applies for a specific case of measurement, in which the same transducer

acts as both source and receiver. Because the focus here is on the longitudinal-to-

longitudinal SSR, the Wigner transform of the receiver and the source is simplified.

The longitudinal component of the mean Green’s function in space and time is given

by [7]

〈G(x,x′, t)〉 = −exp[−αL|x− x′|]
4πc2

l (|x− x′|)
δ(t− |x− x′|

cL
)p̂p̂, (3.27)

where αL is the longitudinal attenuation coefficient. The body force is assumed to be

a Gaussian pulse in space and is given by

Bα(x) = B0δ(z) exp

[
−x

2 + y2

w2
0

]
n̂α, (3.28)

where w0 is the effective transducer radius, B0 is the force per unit area and n̂α is

the unit normal to the transducer face. The source is also assumed to be a Gaussian

pulse in time such that

S(t) =
1

σ
√
π

exp

[
iω0t−

t2

σ2

]
, (3.29)
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where ω0 is the center excitation frequency and σ is the width of the pulse.

Then the temporal convolution becomes

〈Gβα(x,x′, t)〉 ⊗ S(t) = −
exp

(
iω0t− ( t

σ
)2
)

σ
√
π4πc2

L

exp
[
(−ik0 + 2t

σ2cL
)|x− x′| − |x−x′|2

σ2c2L

]
|x− x′|

× exp[−αL|x− x′|]p̂β p̂α. (3.30)

Within the context of the paraxial approximation, the quantity |x−x′| is expanded to

first order in the phase term as ((z − z′) + {(x− x′)2 + (y − y′)2}/2z) and to zeroeth

order in the amplitude term as (z − z′). Thus, using the convolution in space, the

mean source field is simplified as

〈Ψβ(x, t)〉 = −
B0 exp(iω0t− ( t

σ
)2)

σ
√
π4πc2

L

exp

[
−αLz +

z(2cLt− z)

σ2c2
L

]
λ0ω0

w(z)

× exp

[
−ik0z −

r2

w2(z)
− i π

λ0

r2

R(z)
+ i

π

2
+ iΨ0(z)

]
p̂β(p̂ · n̂), (3.31)

where wz = w0

[
1 + ( λ0z

πw2
0
)2
]1/2

is the Gaussian beam width, Rz = z + (
πw2

0

λ0
)2 1
z

is the

radius of curvature of the wavefront and Ψ0(z) = tan−1( λ0z
πw2

0
) is the excess phase. The

mean source field given in Eq. (3.31) can also be written in the form

〈ΨS
β(r, z, t)〉 = A(r, z, t) exp{iΘ(r, z, t)}p̂β(p̂ · n̂), (3.32)

where r2=x2 +y2. The amplitude A(r, z, t) and the phase Θ(r, z, t) of the source field

are given as

A(r, z, t) = −
B0 exp (−−t2

σ2 )

σ
√
π4πc2

L

λ0w0

w(z)
exp

[
− r2

w2(z)
− αLz +

z(2cLt− z)

σ2c2
L

]
,

Θ(r, z, t) = ω0t− k0z −
π

λ0

r2

R(z)
+
π

2
+ Ψ0(z). (3.33)
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The Wigner transform of 〈ΨS
β〉 can be approximated by [37]

W (x, t,k, ω) = (2π)4|A(x, t)|2δ3(k−5xΘ(x, t))δ

(
ω − ∂

∂t
Θ(x, t)

)
. (3.34)

Thus the space-time Wigner transform of the mean transducer field becomes

Wγk(x,k, t, ω) = (2π)4

(
B0

σ
√
π4πc2

L

λ0ω0

w(z)

)2

exp

[
−2αLz + 2z

(2cLt− z)

σ2c2
L

− 2
r2

w2(z)

]
× exp

[
−2

(
t

σ

)2
]
δ(ω − ω0)δ2

(
kr +

2π

λ0

r

R(z)

)

× δ

(
kz + k0 −

λ0

π

1

w2(z)
− π

λ0

r2 1

R2(z)

(
1−

(
πw2

0

λ0z

)2
))

(k̂ · n̂)2k̂γ k̂k.

(3.35)

The terms 2π
λ0

r
R(z)

and −λ0
π

1
w2(z)

− π
λ0
r2 1

R2(z)

(
1−

(
πw2

0

λ0z

)2
)

in the delta function are

assumed negligible in comparison with k0. This assumption implies that all energy

is primarily in the kz = k0 direction, which is along the transducer axis (|k|2 =

k2
r + k2

z
∼= k2

z). Finally the longitudinal component of the Wigner transform of a

piston transducer becomes

W S
γk(x,k, t, ω) = (2π)4

(
B0

σ
√
π4πc2

L

λ0w0

w(z)

)2

exp

[
−2αLz + 2z

(2cLt− z)

σ2c2
L

− 2
r2

w2(z)

]
× exp [−2

(
t

σ

)2

]δ(ω − ω0)δ3(k + k0)(k̂ · n̂)2k̂γ k̂k. (3.36)

Eq. (3.26) describes the distribution of longitudinal energy in space, time, frequency

and wave vector resulting from a piston transducer.
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3.6 Singly Scattered Response (SSR) from a

Piston Transducer

By assuming that the spatial and the tensorial components of the covariance of

moduli are independent, Λ̃(p)αβγδlmjk = Ξαβγδ
lmjk η̃(p), where η̃(p) is the spatial Fourier

transform of the two-point spatial correlation function. In this case, the intensity

operator given in Eq. (3.10) is written as

p
p
β
jK

γ
k

s
s ≈ η(p− s)pαsδplsmΞαδβγ

lmjk

= p2s2η̃(pp̂− sŝ)p̂αŝδp̂lŝmΞαδβγ
lmjk . (3.37)

The singly-scattered response (SSR) then becomes

Φ1(t) = (2π)8(
B0λ0

σ
√
π4πc2

L

)4

∫
dω

(2π)6

[(
ω0

cL

)4

η̃(
ω0

cL
p̂− ω0

cL
ŝ)p̂αŝδp̂lŝmΞαδβγ

lmjk

]

×
(

ω0

w(z)

)4

exp

[
−4αLz + 2z

2cL(t− t′)− z
σ2c2

L

+ 2z
2cLt

′ − z
σ2c2

L

− 4
r2

w2(z)

]
× exp

[
−2

(t− t′)2

σ2
− 2

t′2

σ2

]
δ2(p̂ + p̂0)p̂β p̂j(p̂ · n̂)2δ(ω − ω0)δ2(ŝ + ŝ0)

× ŝγ ŝk(ŝ · n̂)2δ(ω − ω0)d2p̂d2ŝd3Xdt′. (3.38)

In diffuse backscatter measurements the angle between the propagation and scattered

direction is π for a normal incidence pulse echo setup. Therefore, p̂0 · n̂=1, ŝ0 · n̂ =
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1, p̂0 · ŝ0 = -1. Thus the SSR is

Φ1(t) = (2π)2(
B0λ0

σ
√
π4πc2

L

)4

∫ (
ω0

cL

)4

η̃(θp0s0 = π)
[
p̂0β p̂0j p̂0αp̂0δp̂0lp̂0mp̂0γ p̂0kΞ

αδβγ
lmjk

]
×
(

w0

w(z)

)4

exp

[
−4αLz + 4z

cLt− z
σ2c2

L

− 4
r2

w2(z)
− 2

(t− t′)2

σ2
− 2

t′2

σ2

]
d3Xdt′,

(3.39)

where η̃(θp0s0)=η̃( ω
cL

p̂0 − ω
cL

ŝ0) and θp0s0 is the angle between the vector p̂0 and ŝ0.

The inner product is denoted in direct form as Ξαδβγ
lmjk p̂αp̂lŝδŝmp̂β p̂j ŝγ ŝk =Ξ···p̂p̂ŝŝ

···p̂p̂ŝŝ(θps).

Then the singly scattered response is written as

Φ1(t) = (2π)2(
B0λ0

σ
√
π4πc2

L

)4

[(
ω0

cL

)4

η̃(π)Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ

]

×
∫ (

w0

w(z)

)4

exp

[
−4αLz + 4z

cLt− z
σ2c2

L

− 4
r2

w2(z)
− 2

(t− t′)2

σ2
− 2

t′2

σ2

]
d3Xdt′.

(3.40)

The integration in the lateral dimensions, x and y, indicates the effect of scattering

from a plane at depth z in the material. It is given by

∫ ∞
−∞

∫ ∞
−∞

exp

[
−4

x2 + y2

w2(z)

]
dxdy =

πw2(z)

4
. (3.41)

The temporal integration becomes

∫ ∞
−∞

exp

(
−2

(t− t′)2 + (t′)2

σ2

)
dt′ =

σ
√
π

2
exp

[
− t

2

σ2

]
. (3.42)
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Substituting Eq. (3.41) and Eq. (3.42) into Eq. (3.38), the SSR reduces to

Φ1(t) =
B4

0

4
√
πσ3ω4

0

[
π

2

ω4
0

c8
L

η̃(π)Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ

]
exp

(
− t

2

σ2

)
×
∫ ∞

0

(
π

4

w4
0

w2(z)

)
exp

(
−4αLz + 4z

cLt− z
σ2c2

L

)
dz. (3.43)

In Eq. (3.43) σ, w0 and B0 can be obtained by calibrating and characterizing trans-

ducers through typical ultrasonic pulse-echo experiments (B0 can be calculated from

the amplitude of the reflected signal from the surface of the test sample).

The integrand in the Eq. (3.43) is related to the transducer beam model which

is solved using a numerical integration method. The term in the square brackets

[π
2

ω4
0

c8L
η̃(π)Ξ···p̂p̂ŝŝ

···p̂p̂ŝŝ(π)] is known as the diffuse backscatter coefficient, which depends on

the microstructural properties of the material. Eq. (3.43) was the primary result

of Ghoshal, et al. [24], a quantity that can be compared with the covariance of the

backscattered signals obtained from diffuse backscatter experiment. The parameters

given in Eq. (3.43) will be discussed later. In the following chapters, the SSR model

given by Eq. (3.43) is modified to include the effects of lamellar duplex microstructure

in pearlitic steel.
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Chapter 4

Ultrasonic Backscatter from

Lamellar Duplex Microstructure in

Pearlitic Steel

In this chapter, a new singly-scattered model is proposed based on the previous

SSR model given by Eq. (3.43) in chapter 3 for application to pearlitic wheel steel.

In this case, the material is assumed to have a lamellar duplex microstructure within

grains (pearlite phase) so that the dependence of ultrasonic backscatter on the duplex

microstructure can be examined. This microstructure is characterized by alternating

phases of cementite and ferrite as shown in Figure 4.1. The effects of the lamellar

spacing d on ultrasonic backscatter are observed by comparing the spatial variance

curves of the collected backscatter signals measured from the cross section of an

unquenched wheel with that of a quenched wheel. The lamellar spacing within grains

increases from the tread surface to deeper locations due to the non-uniform cooling

rate. The model developed is used to estimate the lamellar spacing as a function of

depth and the results agree well with spacing estimates from optical microscopy.
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4.1 Theoretical Model

One of the primary results in chapter 3 was a time-dependent spatial variance

model for a collection of ultrasonic backscatter signals captured at various positions

on a sample. The spatial variance defines the statistical expectation regarding the

variability of ultrasonic measurements made from different positions on the sample

and it is directly related to the microstructure. That work analyzed results from a typ-

ical diffuse ultrasonic backscatter experiment for which the signals that are collected

at each position are not in phase with one another such that they may be considered

diffuse (or incoherent). However, the lack of coherency does not restrict the results

to a particular limit of the full multiple scattering expansion. To obtain a tractable

solution for comparison with experiments, the initial multiple scattering model de-

scribed in chapter 3 was further limited under an assumption of single scattering from

the microstructure resulting in the singly-scattered response (SSR). In this case, the

measurements are restricted to early times (or focused transducer beams) in contrast

to measurements that occur at the opposite end of the scattering regime that lie in

the diffusion limit. Major aspects of the SSR model are next described here briefly

for completeness. The Wigner distribution of the transducer displacement profile is

used to model the beam pattern of an ultrasonic transducer through a liquid-solid

interface. Then the beam is assumed as a simple Gaussian to simplify the derivation.

The final expression of the SSR given by the Eq. (3.43) is written as [46]

ΦLL(t) = V 2
max

π

8
√

2

(
w(zF )

w0

)2
(
ρLc

2
L

ρfc2
f

TfLTLf
RffD(ω0)

)2

× exp(4αfzF − 4αfzf )

[
π

2

ω4
0

c8
L

η̃LL(θps, kL)Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps)

]
× exp

(
− t

2

σ2

)∫ ∞
0

w2
0

w2(z)
exp

[
−4αLz −

4z(z − tcL)

σ2c2
L

]
dz. (4.1)
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Eq. (4.1) connects the recent scattering theory with experimental results involving

the fluid-solid interface. This SSR model can be divided into three major portions:

The first line of Eq. (4.1) shows the experimental parameters associated with the

transducer, the fluid and the bulk properties of the sample. Here, ρL and cL are the

density and the longitudinal wave speed in the sample, respectively and ρf and cf are

the density and the wave speed of sound in the fluid, respectively. The transmission

coefficients from the fluid to the longitudinal mode and from the solid to the fluid

are given by TfL = 2ρfcf/(ρfcf + ρLcL) and TLf = TfL(2ρfcf )/(ρLcL), while Rff =

(ρLcL − ρfcf )/(ρfcf + ρLcL) defines the reflection coefficient. In addition, D(ω0) is

the diffraction correction [72] with ω0 as the center frequency of the input wave. w0 is

the radius of the transducer aperture. wzF is the Gaussian beam width, and zF is the

water path between the transducer face and a planar reflector from which the reflected

amplitude Vmax is the measured during calibration. Finally, αf is the attenuation

coefficient of the fluid and zf is the chosen water path between the transducer surface

and the sample in the backscatter experiment.

The quantity η̃LL(θps, kL)Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps) shown in the second line of the Eq. (4.1)

defines the diffuse backscatter coefficient which is used to quantify the microstructural

properties. η̃LL(θps, kL) is the spatial Fourier transform of the correlation function

ηLL(x− y), which describes the probability that two randomly chosen points, x and

y, lie in a region of the material that has uniform properties. θps defines the angle

between the incident wave vector p and the scattered longitudinal wave vector s.

For the backscatter experiment examined here, θps = π (kL = ω0/cL is the wave

number in the solid). The spatial Fourier transform of the correlation function for

the longitudinal-to-longitudinal backscatter mode (with θps = π) in a test material
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with a single phase is expressed as [24], [46]

η̃LL(θps = π, kL) =
L3

π2(1 + 4k2
LL

2)2
. (4.2)

In Eq. (4.2), L is defined as the spatial correlation length, which is on the order of the

length scale of the grains. The quantity Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps) = Ξαβγδ

ijkl p̂αp̂iŝβ ŝj p̂γ p̂kŝδŝl [7], [24],

[46] is the inner product on the eighth-rank covariance tensor Ξαβγδ
ijkl = 〈CijklCαβγδ〉 −

〈Cijkl〉 〈Cαβγδ〉, where Cijkl is the second-order modulus tensor (the angular brackets 〈〉

indicate ensemble average quantities). The vectors p̂ and ŝ indicate the incident and

scattering propagation directions, respectively. For a crystal with cubic symmetry [7],

Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps) =

ν2

ρ2

(
9

525
+

6

525
cos2 θps +

1

525
cos4 θps

)
, (4.3)

where ν = c11 − c12 − 2c44 is the single crystal anisotropy factor.

The remaining terms given in Eq. (4.1) define the average beam behavior as it

penetrates the sample. Thus, αL is the attenuation coefficient of the solid and σ is the

temporal width of the input wave. The Gaussian beam width can be written as [70]

w2(z) = −2k−1
f

[
Im

(
q(0) + zf +

cL
cf

)−1
]−1

, (4.4)

where kf = ω0/cf is the wave number in the liquid, and q(0) = (−F−1 +2ik−1
f w−2

0 )−1,

with F as the focal length in water of the transducer used. For the measurements

discussed here, the focal properties of the transducer are quantified in advance and

used in the model for determining microstructural information.

The backscatter coefficient η̃LL(θps, kL)Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps) considered in Eq. (4.1) is ap-

plicable only for texture-free materials with single-phase polycrystalline grains. The
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Figure 4.1: Lamellar duplex microstructure (pearlite phase) in the railroad wheel
steel.

duplex microstructure within grains exhibited in some structural metals is expected

to influence the backscatter coefficient significantly. Figure 4.1 shows the lamellar

duplex microstructure in the pearlite-phase of railroad wheel steel. The light lines

are the cementite phases, while the dark are the ferrite phases. To describe ultra-

sonic scattering in two-phase materials (duplex microstructures within grains), Han

and Thompson [48] and Rose [47] proposed a general form of the backscatter coeffi-

cient. The total backscatter coefficient can be written using the two-point correlation

functions for the two phases as

Λ(x− y)αβγδijkl = (Ξαβγδ
ijkl )rηr(x− y) + (Ξαβγδ

ijkl )wηr(x− y)ηw(x− y). (4.5)
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The second term ηr(x− y)ηw(x− y) given in Eq. (4.5) indicates the probability that

two randomly chosen points fall in the same grain r and the same crystallite w within

the grain. Thus, it is the product of the two independent probabilities ηr and ηw.

For the samples of interest here, each lamella is assumed to lie exclusively within one

grain. This restriction allows an assumption to be made such that ηr ≈ 1 in the

second term of Eq. 4.5 [50]. In other words, the lamellar spacing is small compared

with the length scale of the grain such that two points within a lamella have 100 %

probability of lying within the same grain.

Lobkis et al. [49], [50] developed a related and simplified backscatter model, which

they called the M -factor backscatter model, for duplex microstructure within grains

with application to forged near-α Ti alloys. In their model, the duplex spherical

crystallites within grains were considered as the second phase and were of major sig-

nificance to the scattering. Using a similar approach the total backscatter coefficient

accounting for the misorientation of duplex microstructure with grains is defined as

Λ(x− y)αβγδijkl = (1−M)(Ξαβγδ
ijkl )rηr(x− y) +M(Ξαβγδ

ijkl )wηw(x− y). (4.6)

In Eq. (4.6), the parameter M is an average normalized characteristic value that de-

pends on the width of the orientation distribution function. If crystallites within elon-

gated grains are orientated identically, M=0, and elongated grains behave like a single

crystal. For the random, arbitrary orientation of crystallites with elongated grains,

M=1.0, and the elongated grains are absent. The final expression of the backscatter

coefficient KLL
total for duplex microstructure, after taking the Fourier transform of the

correlation functions and inner products on the eighth-rank covariance tensors, then
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becomes [49], [50]

KLL
total = (1−M)[Ξ···p̂p̂ŝŝ

···p̂p̂ŝŝ(θps = π)]rη̃
LL
r (θps = π, kL)

+M [Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps = π)]wη̃

LL
w (θps = π, kL). (4.7)

Here, the duplex microstructure (pearlite phase) is assumed to be lamellar within

an individual grain such that it can be modeled as shown schematically in Fig. 4.2.

In contrast to the duplex crystallites within ellipsoidal microtextural regions (MTRs)

considered previously [49], here the grain shape is assumed spherical. The duplex

crystallites within grains are represented by a lamellar microstructure characterized

by alternating cementite and ferrite phases. The parameter d represents the lamellar

spacing, while L is the correlation length which is on the order of the length scale

of an individual grain. The geometry of a duplex crystallite can be considered as

a lamellar circular plate, with a diameter dimension equal to the correlation length,

while the thickness is equal to the lamellar spacing.

In Fig. 4.2, kx and ky represent the wave numbers in the lamellar plane and normal

to the plane, respectively, and are given by

kx = sin(θ)kL,

ky = cos(θ)kL,

kz = 0,

kL =
√
k2
x + k2

y + k2
z . (4.8)

For this microstructure, the correlation function for the ellipsoidal grains [49], [50]

η̃(k) = axayaz
π2(1+4k2xa

2
x+4k2ya

2
y+4k2za

2
z)

, must be adapted for the lamellar crystallites. In this

case, the spatial scales ax, az and ay must be redefined as ax = az = L and ay = d.
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Figure 4.2: Schematic of lamellar duplex microstructure within an individual grain
(pearlite phase).

Following the approach in [49], the spatial correlation function η̃LLw (θps = π, kL) for

microstructure shown in Fig. 4.2 is written as

η̃LLw (θps = π, kL) =
axayaz

π2(1 + 4k2
xa

2
x + 4k2

ya
2
y + 4k2

za
2
z)

2
,

=
L2d

π2(1 + 4k2
L〈l2〉)2

, (4.9)

where kL =
√
k2
x + k2

y + k2
z and the quantity l =

√
n2
xa

2
x + n2

ya
2
y + n2

ya
2
y defines the

interaction length, which is the effective scale length in the direction of wave prop-

agation, n̂. Here, the duplex crystallites within grains are assumed to be oriented
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randomly such that the angle θ shown in Fig. 4.2 varies with equal probability be-

tween 0 and π. The square of the effective interaction length is then averaged [49]

giving

〈l2〉 =
1

π

∫ π

0

(sin2 θL2 + cos2 θd2)dθ = (L2 + d2)/2. (4.10)

Substituting the Eq. (4.10) into Eq. (4.9) the correlation function for lamellar duplex

microstructure is given by

η̃LLw (θps = π) =
L2d

π2(1 + 2k2
Ll

2)2
=

L2d

π2 [1 + 2k2
L(L2 + d2)]

2 . (4.11)

After substituting Eqs. (4.2) and (4.11) into the Eq. (4.7), the total backscatter

coefficient becomes

KLL
total =

(1−M)L3[Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps = π)]r

π2(1 + 4k2
LL

2)2
+
ML2d[Ξ···p̂p̂ŝŝ

···p̂p̂ŝŝ(θps = π)]w

π2 [1 + 2k2
L(L2 + d2)]

2 . (4.12)

Then by replacing the backscatter coefficient given in Eq. (4.1) with Eq. (4.12), the

modified SSR, which includes the dependence of ultrasonic scattering on lamellar

duplex microstructure, can be expressed as

ΦLL(t) = V 2
max

π

8
√

2

(
w(zF )

w0

)2
(
ρLc

2
L

ρfc2
f

TfLTLf
RffD(ω0)

)2

exp(4αfzF − 4αfzf )

×

[
π

2

ω4
0

c8
L

(1−M)L3[Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps = π)]r

π2(1 + 4k2
LL

2)2
+
ML2d[Ξ···p̂p̂ŝŝ

···p̂p̂ŝŝ(θps = π)]w

π2 [1 + 2k2
L(L2 + d2)]

2

]

× exp

(
− t

2

σ2

)∫ ∞
0

w2
0

w2(z)
exp

[
−4αLz −

4z(z − tcL)

σ2c2
L

]
dz. (4.13)

When the lamellar spacing d approaches L, (i.e, the lamellar duplex microstructure

is absent), Eq. 4.13 reduces to the theoretical SSR model for a single phase given

previously [24], [46]. Note that the inner product on the eighth-rank covariance tensor
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for lamellar duplex microstructure within a grain [Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps = π)]w is assumed equal

to the same quantity when the lamellae are absent, [Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps = π)]r. Several trends

in the behavior of this model are observed in the next section.

4.2 Model Results

In this section, trends predicted by the model with respect to the microstructural

parameters are examined. Several parameters given in Eq. (4.13) required for the

model must first be specified (including the pulse width σ, the single-crystal elastic

constants of steel, the sound speeds in water and steel). Table 4.1 shows some of the

values used in the model for the results that follow. Theoretical values were selected

for wavespeed and values for attenuation as a function of frequency come from [21] for

water and from [7] for steel assuming a single phase material with a single correlation

length. In addition, for the results shown in this section, transducer parameters were

selected in the range of typical experiments (transducer element diameter of 0.375

inch; focal length in water of 2 inches; material path of 9.0 mm; central transducer

frequency of 10 MHz for Fig. 4.3 and varying frequency for Fig. 4.4).

Fig. 4.3 shows the predicted spatial backscatter variance curves normalized by the

maximum of the variance for the case without the lamellar microstructure. The solid

Table 4.1: Constants used in the theoretical model to examine the influence of lamellar
spacing. The wave speeds and attenuation values are determined from scattering
models from the grains without the lamellar structure as derived in [7].

Pulse Width Vmax(V ). cij(GPa)

σ 10MHz 15MHz c11 c12 c13

1.0 550 250 229.3 134.1 116.7
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Figure 4.3: Spatial variance curves from the model given by Eq. (4.13) with and with-
out the inclusion of duplex microstructure within grains (M = 0.9) with a transducer
center frequency of 10 MHz.

red line shows the variance curve for the sample with no lamellar duplex microstruc-

ture within grains. The dashed blue and dotted green lines represent the calculated

variance curves which include the effects of lamellar duplex microstructure, with d

= 1.0 and 5.0 µm, respectively (the range is based on optical micrographs such as

that shown in Fig. 4.1). It can be observed that the ultrasonic scattering amplitude

decreases greatly when the pearlite phase is present within grains and is lowest for

the smallest value of d. However, it is important to note that the lamellar spacing

does not change the shape of the variance curves.

The backscatter coefficient given in Eq. (4.13) contains three unknown variables

related to the microstructure M , d and L. First the dependence of backscatter ampli-
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Figure 4.4: Normalized spatial variance amplitudes versus frequency, (a) by fixing
d/L=1/24, L=24 µm, (b) by fixing M =0.75 and L=24 µm.
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tude on the parameter M is investigated by fixing d=1 µm, L=24 µm. Fig. 4.4a shows

the maximum of the spatial variance amplitudes normalized by V 2
max exp[4αf (zF−zf )]

versus frequency with varying M (all transducer parameters are the same as in Fig. 4.3

except for the central frequency of the transducer). The parameter M=0 indicates

that duplex microstructures within grains are absent, while M=1.0 represents that

the scattering from the grain boundaries is neglected. It can be seen that the am-

plitudes of the variance curves decrease with increasing M . The maximum spatial

variance amplitude occurs around 15 MHz, which implies the frequency range for ma-

terials with these types of microstructures would lie in the range of 10 to 20 MHz for

greatest sensitivity to the length scales of the material. The backscatter amplitude is

relatively low either due to weak scattering below 10 MHz or high attenuation above

20 MHz. Fig. 4.4b demonstrates the dependence of spatial variance on lamellar spac-

ing d with fixed M=0.75 and L = 24 µm. The normalized SSR amplitude increases

with increasing lamellar spacing. This spacing has only a minor effect on the associ-

ated maximum backscatter amplitude with respect to frequency. The trends shown

here suggest that frequencies between 10 and 15 MHz may be useful for determining

M , d, and L based on the range of values expected for railroad wheel steel.

4.3 Experiments

4.3.1 Backscatter Measurements

The tread surface of railroad wheels is typically quenched to improve the hardness

and wear resistance. In order to examine the microstructure difference between an

unquenched wheel (20 mm thickness) and a quenched wheel (25 mm thickness), eight

rectangular regions (15 mm× 5 mm) were scanned (approximate scan areas are shown
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(a)

(b)

Figure 4.5: Cross section images of polished railroad wheel samples, (a) an un-
quenched wheel, (b) a quenched wheel.



49

in Figs. 4.5. These regions represent locations expected to have varying pearlite due

to quenching. Both samples were scanned using a 15 MHz focused transducer (Pana-

metrics V309, 3-inch focal length) and a 10 MHz focused transducer (Panametrics

V327, 2-inch focal length, Olympus Panametrics, Inc., Waltham, MA) with a focal

depth in the material of 10 mm (scan step size = 0.25 mm; scan speed = 3.0 mm/s).

Note that the focusing properties of the transducer were measured in advance and

were included in the model. To obtain strong backscatter signals, a high gain (65 dB)

was used (A/D sampling rate = 2 GHz). The number of scan locations for each area

was about 1200. Fig. 4.6 shows a typical waveform from an individual measurement.

The range of time of interest for the spatial variance calculation lies between the

saturated front wall reflection and the back wall reflection. The experimental spatial

variance of the acquired backscatter signals collected from various positions for each

area is calculated by

Φ(t) =
1

N

N∑
i=1

(Vi(t)− b(t))2 = 〈V 2〉 − 〈V 〉2, (4.14)

where N is the number of spatial positions, b(t) = 〈V 〉 is the ensemble average of the

backscatter signals, 〈V 2〉 is the ensemble average of the squared backscatter signals,

〈V 〉2 is the square of the mean backscatter signals.

Figs. 4.7a and 4.7b show the calculated spatial variance (10 MHz) from the tread

surface to the deeper positions for both unquenched and quenched wheels, respec-

tively. The first ∼ 2 µs of each curve is saturated due to the large front wall reflection

resulting from the high amplifier gain. At later times, the influence of the hetero-

geneous composition of the sample can be observed. In particular, in Fig. 4.7a for

the unquenched wheel, the spatial variance is relatively constant over the 8 scan re-

gions, a result that shows the uniformity of the material over the range examined.
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Figure 4.6: Example of a typical waveform included in the spatial variance calculations
of Eq. (4.14). The part of the signal of primary interest lies between the front and
back wall echoes and is due to scattering from the grains.

However, on the quenched wheel (Fig. 4.7b), the spatial variance amplitude drops

dramatically near the quenched tread surface. A similar effect is observed for the 15

MHz measurements.

Fig. 4.8 illustrates the distribution of peak values of the spatial variance with

depth from the tread surface for both the unquenched and quenched wheels from

the 10 and 15 MHz measurements. The solid green and red lines represent the mea-

sured results for the unquenched wheel at 10 and 15 MHz transducers, respectively.

while the dashed lines of the same colors indicate the results for the quenched wheel.

For the unquenched wheel, It can be seen that the spatial variance amplitudes are

relatively constant from the tread surface to deeper locations, which implies that
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Figure 4.7: Spatial variance curves with a 10 MHz focused transducer, (a) for an
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the grains and microstructure are relatively uniform along the entire cross section

of this sample. After quenching, the spatial variance peak increases progressively

with depth from the tread surface, a result that is attributed to the variation of the

pearlite microstructure within grains as a result of the quenching. The amplitude

difference between the unquenched wheel and quenched wheel is relatively small at

deeper positions. This result indicates that the effect of the pearlite on ultrasonic

scattering at deeper locations is negligible. Clearly, the ultrasonic scattering response

is not only related to the lamellar duplex microstructure, but also highly dependent

on the transducer frequency. However, it should be noted that the values shown in

Fig. 4.8 are raw variance results and should not be used to make conclusions regarding

the relative amount of scattering occurring at these two frequencies. The transducer

properties and scattering model must be used for an accurate interpretation of the

experiments. The theoretical SSR model given in Eq. (4.13) is now used to fit the

experimental variance curves in order for the microstructural parameters of the model

to be determined.

The spatial variance amplitudes shown in Fig. 4.8 can be used to quantify the

microstructural parameters of correlation length (L) and lamellar space (d) using the

model derived above. The constants shown in Table 4.1 are used and the wave velocity

and attenuation were measured for both water (cf = 1486 m/s; αf (10 MHz) = .025

Np/cm; αf (15 MHz) = .056 Np/cm) and the steel samples (cL = 5973 m/s; αL(10

MHz) = .055 Np/cm; αL(15 MHz) = .06 Np/cm). The transducer was first calibrated

to determine some important parameters such as Vmax before testing [24], [46]. It was

assumed that the grain size in both wheel samples was uniform and that only the

pearlite phase was created during the quenching. The mean correlation length is found

to be L = 24 µm as determined from measurements on the unquenched wheel with

the existing SSR model given in Eq. (4.1). Then, the maximum of the experimental
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spatial variance, [ΦLL
Exp(t)]max , is used with Eq. (4.13) and Eq. (4.1) to estimate the

lamellar spacing d. The quantity d appears in Eq. (4.13) in only one term, such

that the experimental variance can be equated to the model and rearranged into an

equation governing d. Following this procedure, it can be shown that d satisfies the

quartic equation

A1d
4 + A2d

2 − A3d+ A4 = 0, (4.15)
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where

A1 = 4k4
L

[
16Rπ2k4

LL
4 + 8Rπ2k2

LL
2 − (1−M)L3 +Rπ2

]
;

A2 =
[
16Rπ2k4

LL
4 + 8Rπ2k2

LL
2 − (1−M)L3 +Rπ2

]
(8k4

LL
2 + 4k2

L);

A3 = ML2(1 + 4k2
LL

2)2;

A4 =
[
16Rπ2k4

LL
4 + 8Rπ2k2

LL
2 − (1−M)L3 +Rπ2

]
(1 + 4k4

LL
4 + 4k2

LL
2), (4.16)

withR =
[ΦLL

Exp(t)]max

[ΦLL(t)]max/η̃LL
total

, where η̃LLtotal =
[
(1−M)η̃LLr (θps = π, kL) +Mη̃LLw (θps = π, kL)

]
.

By fixing M and L, Eq. (4.15) will have constant variables A1-A4 and four solutions.

Experience with the solution of Eq. (4.15) when applied to experimental data shows

that only one root is physically meaningful. Thus, this root is chosen as the estimated

lamellar spacing.

Fig. 4.9 shows the distribution of the estimated lamellar spacing, d, with depth

from the tread surface for different values of M . The solid lines indicate the estimated

results using a 15 MHz transducer, while the dashed lines are for a 10 MHz transducer.

It can be observed that the estimated value of d increases from 0.5 µm to around 5.5

µm from the tread surface to deeper locations. The lamellar spacing decreases with

decrease of the parameter M . Differences in the estimated value of d from the 10

and 15 MHz measurements become larger with depth. The reason for this result is

not clear, but the higher frequency is expected to be more sensitive to the lamellar

spacing such that the 15 MHz results may be more representative. In addition, the

quench depth for these samples is in the range of 12 mm, a value that matches the

transition depth observed for 15 MHz.

Optical analysis has also been done to observe the variation of lamellar duplex

microstructure within grains. Two samples from the quenched wheel were polished

and mounted for optical microscopy. One was taken near the tread surface and the
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Figure 4.9: Distribution of calculated lamellar space d from tread surface to the
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other was removed from a depth of 30 mm from the tread surface. The sample surface

was etched with 2.0 % nital solution for 30 seconds, followed by rinsing with ethanol

and running water. Fig. 4.10a shows the micrograph of the fine pearlite phase near

the tread surface and Fig. 4.10b shows a micrograph of the coarse pearlite phase. It

can be observed that the fine pearlite phase has compact lamellar spacing due to the

fastest cooling rate, while at the 30 mm-depth location, the pearlite phase exhibits

much more coarse lamellar spacing due to the slower cooling rate. The average coarse

lamellar spacing is measured around 3.5-4.5 µm which is much larger than that near

the tread surface. The measured lamellar spacing agrees well with the values found

from the ultrasonic backscatter approach.
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(a)

(b)

Figure 4.10: Micrographs of pearlite phase in a railroad wheel steel, (a) near the tread
surface, (b) at a depth of 30 mm from the tread.
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Figure 4.11: A cross section image of a quenched wheel sample.

4.3.2 Cross Section Mapping

To examine the variation of microstructure, both cross sections of the unquenched

and quenched wheel samples were scanned using a 10 MHz focused transducer (Pana-

metrics V327, 2-inch focal length, Olympus Panametrics, Inc., Waltham, MA) focused

at a depth of 10 mm. Fig. 4.11 shows the scan region on the polished cross section of

a quenched wheel sample (scan step size = 0.25 mm; scan speed = 3.0 mm/s). The

spatial variance curves were obtained from the waveforms by observing the energy

between the front surface reflection and back surface reflection. A gate approximating

the width of pulse was set to cover the focal depth to extract the maximum ampli-

tudes of the reflective signals at each locations. The amplitudes are displayed with

different colors.
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Fig. 4.12a shows a C-scan image of an unquenched wheel sample. The color

bar indicates the percentage of maximum amplitude of scattering with respect to the

saturated front wall reflection. It can be observed that the higher scattering amplitude

indicators are distributed uniformly and randomly in the whole cross section of the

unquenched wheel sample. Fig. 4.12b demonstrates a C-scan image of the quenched

wheel sample. A progressive increase of amplitudes from the quenched surfaces to

central locations can be observed, an outcome which is attributed to the creation of

the pearlite phase. The high amplitude indicators in the central location might result

from the appearance of the larger grains formed via the heat treatment.

To quantify the distribution of grain size and/or microstructure from the surface

to deeper locations, a 5 mm × 5 mm box shown in Fig. 4.11 including approximately
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Figure 4.12: C-scan images of cross section of wheel slice samples, (a) before quench-
ing, (b) after quenching.
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600 positions was used for calculating the spatial variance curve. The spatial variance

curves were fit using the theoretical model given in Eq. (4.13) to extract the variance

amplitudes. The spatial variance amplitudes for the unquenched and quenched wheels

are distributed in Figs. 4.13a and 4.13b, respectively, for which the color scale ranges

from 0.002 to 0.032. By comparing these two variance images, it can be seen that the

backscatter amplitude drops dramatically in the region near the quenched surface, an

indication of the fine pearlite microstructure. The fine lamellar structure within the

grains scatters the input energy less than the untransformed grains, an outcome that

results in the lower backscatter amplitudes. The ultrasonic backscatter technique

has sufficient sensitivity to distinguish the microstructural differences, an aspect that
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Figure 4.13: Variance amplitude distribution for cross section mapping of wheel sam-
ples, (a) before quenching, (b) after quenching.
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Figure 4.14: Comparison between the measured hardness and spatial variance ampli-
tude from the tread surface to deeper positions.

could lead to improved quality control methods.

4.3.3 Ultrasonic Backscatter and Hardness

The lamellar duplex microstructure shown in Fig. 4.1 results in an improvement of

the mechanical properties, such as the tensile strength and hardness. The connection

between the ultrasonic backscatter and the hardness is investigated in the quenched

wheel sample through experiments. The Knoop hardness test, a microhardness test

for the brittle materials, is used to measure the hardness on the polished cross section

of the quenched wheel steel sample. An elongated diamond pyramidal indenter was

used to press into the polished surface of the test wheel material with a known 500

g load for a specified dwell time, and the resulting indentation was measured using a
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microscope. The geometry of this indenter is an extended pyramid with the length to

width ratio being 7:1 and respective face angles are 172 degrees for the long edge and

130 degrees for the short edge. The depth of the indentation can be approximated

as 1/30 of the long dimension. Multiple locations at the same depth from the tread

surface were chosen to test the hardness. The length of the Knoop elongated pyramid

indentation was measured. The distance between two random indentations is about

two times bigger than the diagonal length of the previous indentation. The Knoop

hardness HK measured at different depths is calculated by

HK =
P

CPH
, (4.17)

where P is the applied load, H is the length of indentation along the long axis, Cp is

a correction factor related to the shape of the indenter (ideally 0.070279). Fig. 4.14

shows the measured hardness and the spatial variance peaks with depth from the

tread surface to deeper locations. The error bar represents the standard deviation

of the hardness measured at different locations at the same distance from the tread

surface. It can be seen that the hardness near the tread surface is much larger and

relative constant within about 15 mm depth which is attributed to the fine pearlite.

The hardness value decreases progressively from 15 mm depth to deeper locations

due to the coarse pearlite. By comparing the measured hardness with the variance

amplitudes, a strong connection between the measured hardness and spatial variance

peaks can be observed. Several additional observations can be also made. First,

the fine lamellar duplex microstructure that scatters less energy can improve the

hardness near the region of the quenched tread surface. Second, the higher spatial

variance amplitude corresponds to the smaller hardness at deeper locations due to the

coarse pearlite. Lastly, the ultrasonic backscatter measurement is more sensitive to
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the microstructural change. The connection between the hardness and the ultrasonic

scatteing is so strong that diffuse ultrasonic backscatter can be applied not only for

distinguishing the variation of microstructure, but also may be used to estimate the

hardness of steel.

4.4 Summary

In this chapter, a new singly-scattered response (SSR) model that includes pearlite

microstructure within grains has been developed based on the previous SSR model.

Diffuse ultrasonic backscatter experiments were conducted in a water tank using 10

and 15 MHz transducers focused 10 mm deep in both unquenched and quenched

railroad wheel sections. The spatial variance amplitude drops dramatically near the

tread surface which is attributed to the fine lamellar spacing of the pearlite cre-

ated by quenching. At deeper locations, the ultrasonic scattering variance amplitude

changes little after quenching. The diffuse ultrasonic backscatter response from the

fine pearlite at 15 MHz is much higher than that at 10 MHz, while the scattered re-

sponse to the coarse pearlite at 15 MHz is much weaker than that from 10 MHz. The

distribution of lamellar spacing with depth from the tread surface was also quantified

with the newly developed SSR model. The calculated lamellar spacing within grains

ranged from 0.5-5.5 µm. Optical analysis was also made to observe the microstructure

and the results agree well with the ultrasonic approach.

The whole cross section (140 mm × 40 mm) of the wheel sample was scanned

with a 10 MHz focused transducer focused at a depth of 10 mm. The spatial variance

amplitudes on the whole cross section of both the unquenched and quenched wheel

samples were mapped by calculating the spatial variance curve of each (5 mm × 5

mm) subarea and extracting the amplitudes after fitting with the Eq. (4.13). A pro-
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gressive increase of the variance amplitudes was observed from the quenched surfaces

(including the tread surface and the rim surface) to central locations due to the in-

creasing lamellar spacing. It is also known that the lamellar duplex microstructure

influences the mechanical properties of steel. A strong connection between ultrasonic

backscatter and the hardness was obtained. The smaller variance peaks correspond

to higher hardness. Diffuse ultrasonic backscatter provides a non-destructive method

to evaluate the pearlite microstructure within grains, which can be implemented for

quality control in conjunction with other manufacturing processes.
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Chapter 5

Measurement of Quench Depth in

Quenched Railroad Wheels

The increase of lamellar spacing with depth from the tread surface was observed

in chapter 4. The developed SSR model that includes the effects of the lamellar

spacing given by Eq. (4.13) is not applicable for the measurement from the tread

surface due to the increase of lamellar spacing on the propagation path. In this

chapter, the developed SSR model is expanded to include the gradation of lamellar

duplex microstructure on the propagation path for application to railroad wheels. The

effects of the graded duplex microstructure on ultrasonic scattering are investigated

by comparing the spatial variance curve measured from the tread surface with that

measured from the cross section. Measurement of the quench depth (well known as the

thickness of the hardened layer) can be realized by fitting the spatial variance curve

using the new modified SSR model. Because the quench depth plays an important

role in the service performance of railroad wheels, nondestructive measurements of

this depth are needed.
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5.1 Theory

In chapter 4 the final expression of the SSR model for railroad wheel steel with

uniform lamellar duplex microstructure within grains (pearlite phase) was given by

Eq. (4.13). It shows that the lamellar spacing d exhibits a large spatial dependence

with depth from the quenched surface to deeper locations due to the non-uniform

cooling rate. When an ultrasonic wave is normally incidence on the tread surface of

the sample, the lamellar spacing increases on the ultrasound propagation path. The

depth-dependent lamellar space d results in the dependence of correlation function η̃LLw

on depth z as shown in Fig. 5.1a. The average spatial correlation function η̃LLw (θps =

π, kL, z) shown in Eq. (4.11) is modified to include the dependence of lamellar duplex

microstructure with depth on the acoustic propagation path

η̃LLw (θps = π, kL, z) =
L2d(z)

π2[1 + 2k2
L(L2 + d2(z))]2

. (5.1)

By substituting Eq. (5.1) into Eq. (4.13), the SSR model that considers the gradation

of lamellar spacing on the propagation path is given by

ΦLL(t) = V 2
max

π

8
√

2

(
w(zF )

w0

)2
(
ρLc

2
L

ρfc2
f

TfLTLf
RffD(ω0)

)2

exp

(
4αfzF − 4αfzf

t2

σ2

)

×
∫ ∞

0

w2
0

w2(z)

[
π

2

ω4
0

c8
L

(1−M)L3[Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps = π)]r

π2(1 + 4k2
LL

2)2
+
ML2d(z)[Ξ···p̂p̂ŝŝ

···p̂p̂ŝŝ(θps = π)]w

π2[1 + 2k2
L(L2 + d2(z))]2

]

× exp

[
−4αLz −

4z(z − tcL)

σ2c2
L

]
dz. (5.2)

Other parameters in Eq. (5.2) have been detailed in chapter 4. When the lamellar

spacing d is depth-independent and approaches L, which means that the lamellar du-

plex microstructure is absent, Eq. (5.2) reduces to Eq. (4.1). Note that the inner prod-

uct on the eighth-rank covariance tensor for lamellar duplex microstructure within
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grain [Ξ···p̂p̂ŝŝ
···p̂p̂ŝŝ(θps = π)]w is assumed to be approximately equal to [Ξ···p̂p̂ŝŝ

···p̂p̂ŝŝ(θps = π)]r.

Several trends in the behavior of this model can be observed.

5.2 Model Results

In this section, trends predicted by the model with respect to the microstructural

parameters are examined. Several parameters given in Eq. (5.2) required for the

model must first be specified (including the pulse width in time σ and the single-

crystal elastic constants of steel). Table 4.1 shows some of the values used in the

results that follow. Theoretical values were selected for wavespeed and values for

attenuation come from [21] or water and from [7] for steel assuming a single phase

material with a single correlation length.

Fig. 5.1a shows a schematic of the ultrasonic test of a railroad wheel steel sam-

ple with the graded lamellar spacing within grains. The wheel steel sample can be

simplified by assuming it has a two-layered organization. The top layer is a fine

duplex-microstructure layer characterized by the small lamellar spacing d. The depth

of the top layer z1 is defined as the quench depth. The bottom layer exhibits the

coarse duplex microstructure. The transducer is focused within the top layer shown

in Fig. 5.1a. The material path Mp, also known as the geometrical focus, is defined as

the focal depth in the test material shown in Fig. 5.1a. Wp indicates the water path,

a distance between the transducer surface and the sample surface. Here, the quantity

Wp is equal to the parameter zf in the Eq. (5.2). The relation between Mp and Wp

is determined by Mp = cf (F −Wp)/cL, where F is the focal length of the transducer

in water. Fig. 5.1b shows three different cases for the dependence of lamellar spacing

d on depth z from the tread surface to deeper locations. For the example calcula-

tions, the quench depth z1 is set to 12.5 mm and z2 is equal to 40 mm. The lamellar
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(a)

(b)

Figure 5.1: (a) Schematic of the ultrasonic testing of a railroad wheel sample using
the normal incident ultrasound, (b) The dependence of lamellar spacing d on depth
z.
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Figure 5.2: Normalized spatial variance curves with respect to different profiles shown
in Fig. 5.1b of lamellar spacing distribution.

spacing d increases very slowly from 0.5 µm to 1.0 µm within the quench depth for

cases (1) and (2), while the lamellar spacing d grows quickly with a linear function in

the bottom layer for case (2). The duplex microstructure is absent when the lamellar

spacing d equals L. For case (1), the lamellar duplex microstructure is absent (d = L)

below the quench depth. In case (3), the lamellar spacing d increases linearly from

0.5 µm to 24 µm.

Fig. 5.2 shows the calculated scattering responses normalized by peak values with

respect to these three cases, respectively. It can be seen that the width of the variance

curve is largest with respect to case (1), in which the lamellar space d is assumed equal

to the correlation length L (no duplex microstructure) in the bottom layer. The

scattered response is also examined for different material paths Mp to investigate the



69

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5

Depth(mm)

N
o

rm
a
li

z
e
d

 v
a
ri

a
n

c
e
  

 Φ
/Φ

p
e
a
k

 

 

M
p
=2.51 mm

M
p
=4.38 mm

M
p
=6.50 mm

M
p
=8.15 mm

Figure 5.3: Normalized variance curves corresponding to different water paths (cal-
culated using M=0.9 in Eq. (5.2)).

dependence of the variance amplitudes on varying lamellar spacing with respect to

case (2).

Fig. 5.3 demonstrates the spatial variance curves normalized by the variance peak

with respect to material path Mp=2.51 mm. The dependence of lamellar spacing d

on depth z shown in the Fig. 5.1b is utilized in the model. Here the parameter M is

chosen to be 0.9 as described in chapter 4. It can be seen that the spatial variance

amplitude increases as the material path Mp increases, a result that is attributed to

the stronger ultrasonic scattering due to the larger lamellar spacing at deeper loca-

tions. In addition, the width of the variance curve increases because of the influence

of the coarser microstructure. The spatial variance peak also shifts to later times as

the transducer focuses more deeply. In the next section, results from experiments are
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presented from both the tread surface and the cross section of a wheel sample. Then

the SSR model for the graded microstructure is used to estimate the quench depth

from the experiments.

5.3 Experiments

Experiments were conducted in a water immersion tank using a 10 MHz focused

transducer (Olympus NDT, Newton, MA, V327-SU; 9.53 mm diameter; 50.4 mm focal

length) focused 9.5 mm in a quenched railroad wheel steel sample. Figs. 5.4a and 5.4b

show images of polished cross section and tread surface of a quenched railroad wheel

sample, respectively. The experiments were performed by time-gating the acquired

scattered signals so that the signal between the front and back surface reflections can

be used. The scan step size was 0.25 mm and 1.0 mm for the tread surface and the

cross section scan, respectively. The scan speed was set to 3.0 mm/s. Note that the

focusing properties of the transducer were measured in advance and are included in

the model. To obtain strong backscatter signals, a high gain (65 dB) was used (A/D

sampling rate = 2 GHz). The number of scan locations was about 2400 and 1500 for

the scan areas on the tread surface and cross section, respectively. The scan area on

the cross section shown in Fig. 5.4a was similar to the focal depth of measurements

from the tread surface illustrated in Fig. 5.4b. The spatial backscatter variance curves

were calculated for each scan area according to Eq. (4.14).

Fig. 5.5 shows the spatial variance curves along with the curve fits using Eqs. (4.13)

and (5.2), respectively. The travel time in steel is converted to values for material

depth by simply multiplying by the measured wave velocity in steel (note that two

travel depths are traversed in the backscatter experiments). The depth of the variance

peak is not exactly equal to the pre-defined material path, a minor difference that
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(a)

(b)

Figure 5.4: Images of a quenched railroad wheel sample produced by Griffin Wheel,
Inc., (a) cross section, (b) tread surface.
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Figure 5.5: The spatial variance curves for tread surface and cross section scanning
along with the fitting curves.

is attributed to the uncertainty of the wave speed and attenuation in the material.

The solid blue and green lines represent the spatial variance curves of backscattered

signals for the cross section and tread surface scans, respectively. It was observed

in chapter 4 that the duplex microstructure increases progressively from the tread

surface to deeper locations in the radial direction due to the decreasing cooling rate,

while in the hoop direction, the duplex microstructure was essentially constant. By

comparing the two spatial variance curves, the effects of the graded microstructure

on ultrasonic scattering can be observed. Although the spatial variance maxima are

very similar due to the nearly identical focal volumes, the difference between the two

curves grows larger and larger for times after the peak. The width of the variance

curve measured from the tread surface is larger than that measured from the cross
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Figure 5.6: The spatial variance curves with respect to varying material paths.
Ai, (i = 1, 2, 3) represents the variance peak.

section, a result that is attributed to the stronger scattering from the larger lamellar

spacing at deeper locations. The dashed black and red lines demonstrate the curve fits

based on Eqs. (4.13) and (5.2), respectively. For these results, the wave velocity and

attenuation were measured for both water (cf = 1486 m/s; αf = 0.025 Np/cm) and

the steel sample (cL = 5973 m/s; αL = 0.045 Np/cm). The dependence of lamellar

spacing d on z shown in Fig. 5.1b is utilized for the fits. The curve fits given by

Eqs. (4.13) and (5.2) are adjusted to make the maxima approach the experimental

variance peaks, respectively, assuming z2 = 40 mm. The quench depth z1 is varied

to minimize the mean square error between the model given in Eq. (5.2) and the

experimental curve. For the results shown in Fig. 5.5, the best fit values for z1 is 12.5

mm. It can be seen that the theoretical SSR curve given by Eq. (5.2) matches well
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Table 5.1: Measured variance peaks corresponding with different water paths.

Water Path Wp(mm) 12.6 18.6 23.1

Peak Locations (mm) 9.62 8.05 7.06

Peak Value 0.00894 0.00802 0.00703

with the spatial variance curve from the tread surface. A small mismatch between

the experimental curves and the curve fits is observed around the curve tails (below

20 mm), which might be the result of multiple scattering. The result demonstrates

the dependence of ultrasonic scattering on the lamellar microstructure with grains.

The tread surface was rescanned with increasing material paths to further verify

the gradation of lamellar spacing in the radial direction and to estimate the quench

depth z1. Fig. 5.6 shows the spatial variance curves measured from the tread surface

with respect to different material paths. It can be seen that the spatial variance

amplitude increases when the material path increases (corresponding to a deeper

focus). The variance peaks marked with A1-A3 shift to deeper locations (later times).

The experimental results show a good agreement with the theoretical ones shown in

Fig. 5.3. Table 5.1 shows the measured variance amplitudes and peak positions with

respect to different material paths.

The mean square error between the experimental and the theoretical variance

curves given in Eq. (5.2) is used to evaluate the curve fit while changing the quench

depth z1. Fig. 5.7 demonstrates the the distribution of the mean square error versus

the quench depth z1 with respect to different material paths. It can be seen that

the estimated quench depth which corresponds to the minimum error shifts to a

larger value as the material path increases. Fig. 5.8 shows the spatial variance curves

normalized by the variance peaks with respect to different material paths along with

the curve fits, respectively. The solid lines represent the experimental variance curves
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Figure 5.7: The mean error square between experimental variance curve and theoret-
ical curve versus the quench depth z1.

from the tread surface. The dashed lines indicate the curve fits based on Eq. (5.2).

The dependence of lamellar spacing d on depth z shown in Fig. 5.1b is used for the

fits. The quench depths z1 for each fit are chosen to minimize the mean square error

between the experimental curves and the model given by Eq. (5.2), respectively. The

values of z1 are equal to 12.0 mm, 12.2 mm and 13.4 mm with respect to the material

paths Mp=7.01 mm, 8.14 mm and 9.65 mm, respectively. The sample thickness z2 is

equal to 40 mm. It can be seen that all the spatial variance curves with respect to

different material paths match well with the curve fits given by Eq. (5.2), especially

when the material path Mp is equal to 7.06 mm. This result shows a best fit for the

experimental variance curve, and the error between the experimental curve and the

curve fit is smallest. Deeper focal depths result in additional factors not included in
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Figure 5.8: The normalized spatial variance curves and corresponding curve fits.

the present model.

By comparing three values of the quench depth z1 obtained from the fitting pro-

cedure, it can also be observed that the chosen material depth can have a strong

impact on the estimated quench depth. For these results, when the material depth

is in the range of 7-8 mm, the estimated quench depth changes by less than 2 %

and is very close to that measured using other methods [67]. However, at the larger

material depth of 9.65 mm, the estimated quench depth has an error in z1 of nearly

12 %. Thus, the most appropriate material path should lie in the range of 7-8 mm,

suggesting an optimal material inspection depth of 58-64 % of the expected quench

depth. If the material depth is too large, a significant error is observed in the quench

depth estimate. The reasons for this error are still under investigation.
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5.4 Summary

A modified singly-scattered response (SSR) model that accounts for the gradation

of the duplex microstructure within grains in the propagation direction has been

expanded based on the previous SSR model. An important parameter, the quench

depth was introduced in the new SSR model. The fine lamellar duplex microstructure

characterized by lamellar spacing d (d << L) appears within the quench depth,

while the lamellar spacing d of the coarse duplex microstructure increases beneath

the quench depth. Experiments were conducted in a water tank using a 10 MHz

transducer incident normal to tread surface and cross section of a quenched railroad

wheel slice sample, respectively. The effect of graded lamellar duplex microstructure

on ultrasonic scattering has been observed by comparing the spatial variance curve

from tread surface with that from the cross section. The spatial variance amplitudes

were very similar due to the approximate match of the focal zones. The difference

between the two spatial variance curves was larger after the variance peak, which

is attributed to the stronger scattering from the increased lamellar spacing on the

propagation path (in the radial direction).

The newly modified SSR model given in Eq. (5.2) fit the spatial variance curve

from the tread surface much better than the SSR model without the microstructural

gradation. As the water paths decrease (deeper focus), the spatial variance ampli-

tudes increase and the variance peaks shift to deeper locations. The experimental

results showed a good agreement with the theoretical model. Minimizing the mean

square error between the experiments and the model allows the quench depth to be

determined. The results demonstrate that the material path is an important param-

eter which can influence the accuracy of the quench depth measurement.

The results presented in this chapter show that the quench depth in railroad wheels
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can be accurately estimated using the diffuse ultrasonic backscatter technique. The

quench depth is an important predictor of wheel performance during service and

knowledge of the depth is very important. Thus, quality control applications may be

possible during manufacturing to ensure the uniformity of the quench depth across a

set of production parts.
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Chapter 6

Ultrasonic Attenuation in Pearlitic

Steel

The dependence of ultrasonic attenuation on the microstructure of materials has

been investigated for many years. Attenuation in materials can be caused by both

dissipation and scattering [54]. The attenuation by dissipation is attributed to the

transformation of energy into heat due to the damping, viscosity, etc. The attenuation

induced by scattering is caused by the grain boundaries due to the relative misorien-

tation of the grains. In polycrystalline metals, scattering from grain boundaries is a

major source of attenuation [55]. The scattering attenuation highly depends on the

grain size, shape, texture and orientation distribution in polycrystalline materials, so

that the grain size and the microstructure of polycrystalline materials can often be

evaluated by measuring the ultrasonic attenuation [3].

Stanke and Kino [6] and Weaver [7] have developed general methods to model

attenuation for equiaxed untextured polycrystalline media of cubic symmetry in all

frequency ranges based on the second-order Keller approximation [56]. Ahmed and

Thompson [9] extended the Stanke and Kino model [6] to cubic materials with elon-
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gated grains and the attenuations were numerically evaluated using an integral so-

lution for the Green’s function. Turner [10] and Yang et al. [11] used Weaver’s

approach [7] to develop attenuation models for textured materials with cubic and

hexagonal symmetry grains, respectively. Han and Thompson [48] and Panetta and

Thompson [58] studied backscatter and attenuation in titanium alloys with duplex

microstructure. They focused on examining the contribution of a second phase called

a colony in the large macrograins (prime β grains of cubic symmetry) to backscatter

and attenuation. Lobkis and Rokhlin [49] and Yang et al. [66] considered microtex-

tured regions (MTRs) (colonies in the Han and Thompson [48] as the largest size phase

that is comprised of a secondary (small size phase) of prime crystallites. The contri-

bution of those crystallites to ultrasonic backscatter and attenuation was neglected

in [48]. In chapter 4, the effects of lamellar duplex microstructure in pearlitic steel

on ultrasonic backscatter were investigated by comparing cross section measurements

for both unquenched and quenched wheels. Chapter 5 discussed the dependence of

ultrasonic scattering on the graded lamellar spacing with depth on the propagation

path.

In this chapter, expressions for ultrasonic longitudinal and transverse wave atten-

uations are developed for pearlitic steel with lamellar duplex microstructure based

on Weaver’s scattering model [7]. The dependence of attenuation on lamellar spacing

is studied theoretically and the longitudinal attenuation is measured from the tread

surface to deeper locations in a quenched wheel sample. Then the longitudinal atten-

uation on the whole cross section of the quenched wheel sample is mapped, and the

experimental results show a good agreement with the theoretical predictions.
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6.1 Theoretical Model

One of the primary results of Weaver [7] was the derivation of attenuation for

polycrystalline materials [6]. The general solution for longitudinal αL and transverse

αT wave attenuations can be expressed as

αL = αLL + αLT ,

αT = αTL + αTT , (6.1)

where

αLL =
π2ω4

2c8
L

∫ +1

−1

η̃LL(θps)N1(θps)d cos θps,

αLT =
π2ω4

2c3
Lc

5
T

∫ +1

−1

η̃LT (θps)(N2(θps)−N1(θps))d cos θps,

αTL =
1

2
(
cT
cL

)2αLT ,

αTT =
π2ω4

4c8
T

∫ +1

−1

η̃TT (θps)(N3(θps)− 2N2(θps) +N1(θps))d cos θps. (6.2)

In Eqs. (6.1) and (6.2), the integrals account for the energy lost in all directions

due to scattering. It should be understood that the attenuation described above

is not due to a dissipative process. The loss is due entirely to the accumulating

phase differences between the disturbances in different heterogeneities that results

in destructive interference when averaging over the ensemble. The expressions of

attenuation described above can be regarded as due to the scattering of energy out of

the incident beam. η̃PQ, (PQ = LL, TT, LT ) are the spatial Fourier transforms of the

spatial correlation function w(r) = exp(− r
L

). This function describes the probability

that two randomly chosen points at distance r fall within the same grain, where

L is the spatial correlation length (usually associated with the grain size). These
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transforms are given by

η̃LL(θps) ≡ η̃(p̂ω/cL − ŝω/cL) =
L3

π2[1 + 2k2
LL

2(1− cos θps)]2
,

η̃TT (θps) ≡ η̃(p̂ω/cT − ŝω/cT ) =
L3

π2[1 + 2k2
TL

2(1− cos θps)]2
,

η̃TL(θps) ≡ η̃LT (θps) ≡ η̃(p̂ω/cL − ŝω/cT ) =
L3

π2(1 + k2
TL

2 + k2
LL

2 − 2kLkTL2 cos θps)2
.

(6.3)

where kL = ω/cL and kT = ω/cT are the wavenumbers of longitudinal and transverse

waves, respectively. The terms N1(θps), N2(θps) and N3(θps) are the inner products [7]

on the eighth-rank covariance tensor Ξαβγδ
ijkl = 〈CαβγδCijkl〉 − 〈Cαβγδ〉〈Cijkl〉. For a

crystal with cubic symmetry the inner products are written as [7]

N1(θps) ≡ Ξαβγδ
ijkl p̂αp̂iŝβ ŝj p̂γ p̂kŝδŝl

=
ν2

ρ2

(
9

525
+

6

525
cos2 θps +

1

525
cos4 θps

)
.

N2(θps) ≡ Ξαβγδ
ijkl p̂αp̂iŝβ ŝj p̂γ p̂kδδl

=
ν2

ρ2

(
24

525
+

12

525
cos2 θps

)
,

N3(θps) ≡ Ξαβγδ
ijkl δαip̂β p̂j ŝγ ŝkδδl

=
ν2

ρ2

(
63

525
+

21

525
cos2 θps

)
, (6.4)

where ν = c11− c12− 2c44 is the single crystal anisotropy factor and ρ is the material

density.

The correlation functions η̃PQ(θps), (PQ = LL, TT, LT ) and the inner products

Ni(θps), (i = 1, 2, 3) are applicable only for materials with single-phase polycrystalline

grains. The duplex microstructure within grains exhibited in some structural metals
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is expected to influence the scattering attenuation significantly.

As shown in chapters 4 and 5, a significant dependence of ultrasonic backscatter

on lamellar duplex microstructure within grains in railroad wheel steel has been ob-

served. In those chapters, the M -factor model developed by Lobkis et al. [49], [50] for

application to the titanium alloy with the duplex microstructure within grains was

also used to modify the backscatter coefficient for pearlitic steel, in which the contri-

bution to ultrasonic backscatter from the lamellar duplex crystallites was considered.

That approach is used here as well. A schematic of lamellar duplex microstructure

(pearlite phase) within grains is shown in Fig. 4.2. kx and ky represent the wave num-

bers in the lamellar plane and normal to the plane, respectively. The final expressions

of longitudinal and transverse attenuation coefficients for materials which include the

duplex microstructure then are modified as [49], [50], [66]

αLL =
π2ω4

2c8
L

∫ +1

−1

[
(1−M)η̃LLr (θps)N

(r)
1 (θps) +Mη̃LLw (θps)N

(w)
1 (θps)

]
d cos θps,

αLT =
π2ω4

2c3
Lc

5
T

∫ +1

−1

[
(1−M)η̃LTr (θps)(N

(r)
2 (θps)−N (r)

1 (θps))

+Mη̃LTw (θps)(N
(w)
2 (θps)−N (w)

1 (θps))

]
d cos θps,

αTT =
π2ω4

2c8
T

∫ +1

−1

[
(1−M)η̃TTr (θps)

(
N

(r)
3 (θps)− 2N

(r)
2 (θps) +N

(r)
1 (θps)

)
+Mη̃TTw (θps)

(
N

(w)
3 (θps)− 2N

(w)
2 (θps) +N

(w)
1 (θps)

) ]
d cos θps, (6.5)

where η̃PQw (θps), (PQ = LL, TT, LT ) represent the Fourier transforms of the correla-

tion functions for lamellar duplex microstructure within grains. The subscripts r and

w indicate the terms for grain boundaries and duplex microstructure within grains,

respectively. The general correlation function for the ellipsoidal grain [50] is used for

lamellar duplex microstructure within an individual grain shown in Fig. 4.2. In this
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case,

η̃LL(k) =
axayaz

π2

{
1 + 2

3∑
x,y,z

(kLi )2(1− cos θps)a
2
i

}

=
axayaz

π2 [1 + (1− cos θps)k2
L〈l2〉]

2 ,

η̃TT (k) =
axayaz

π2

{
1 + 2

3∑
x,y,z

(kTi )2(1− cos θps)a
2
i

}

=
axayaz

π2 [1 + (1− cos θps)k2
T 〈l2〉]

2 ,

η̃LT (k) =
axayaz

π2

{
1 +

3∑
x,y,z

[(kLi )2 + (kTi )2](1− cos θps)a
2
i

}

=
axayaz

π2 [1 + (k2
L + k2

T − 2kLkT cos θps)〈l2〉]2
, (6.6)

where ax, ay and az are the correlation lengths of the duplex crystallite within mi-

crotextural regions (MTRs) in the x, y and z directions, respectively [50]. The

denominator in Eq. (6.6) may be given by [1 + (1 − cos θps)k
2〈l2〉]2 where 〈l〉 =√

n2
xa

2
x + n2

ya
2
y + n2

za
2
z is defined as the interaction length. It is the effective interac-

tive length in the direction of wave propagation and n̂ is the wave vector normal. As

described in chapter 4, ax and az are assumed independent of the positions within

an individual grain. In that case, it can be assumed ax = az = L and ay = d for

the duplex crystallites in the x, z and y directions, respectively. Here, the duplex

crystallites within grains are also assumed to be oriented randomly such that the

angle θ shown in Fig. 4.2 varies with equal probability between 0 to π. The square
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average of the interaction length is given by

〈l2〉 =
1

π

∫ π

0

(sin2 θL2 + cos2 θd2)dθ = (L2 + d2)/2. (6.7)

Substituting Eq. (6.7) into Eq. (6.6) the average spatial correlation functions for

lamellar duplex microstructure can be expressed as [67]

η̃LLw (θps) =
L2d

π2[1 + (1− cos θps)k2
L(L2 + d2)]2

,

η̃TTw (θps) =
L2d

π2[1 + (1− cos θps)k2
T (L2 + d2)]2

,

η̃LTw (θps) =
L2d

π2[1 + (k2
L + k2

T − 2kLkT cos θps)(L2 + d2)/2]2
. (6.8)

By substituting Eqs. (6.3) and (6.8) into the Eq. (6.5), the final attenuation co-

efficients for materials with lamellar duplex microstructure within grains can be ex-

pressed as

αLL =
ω4

2c8
L

∫ +1

−1

[
(1−M)L3N

(r)
1 (θps)

[1 + 2k2
LL

2(1− cos θps)]2

+
ML2dN

(w)
1 (θps)

[1 + (1− cos θps)k2
L(L

2 + d2)]2

]
d cos θps,

αLT =
ω4

2c3
Lc

5
T

∫ +1

−1

[
(1−M)L3(N

(r)
2 (θps)−N (r)

1 (θps))

[1 + k2
TL

2 + k2
LL

2 − 2kLkTL2 cos θps]2

+
ML2d(N

(w)
2 (θps)−N (w)

1 (θps))

[1 + (k2
L + k2

T − 2kLkT cos θps)(L2 + d2)/2]2

]
d cos θps,

αTT =
ω4

2c8
T

∫ +1

−1

[ (1−M)L3
(
N

(r)
3 (θps)− 2N

(r)
2 (θps) +N

(r)
1 (θps)

)
[1 + 2k2

TL
2(1− cos θps)]2

+
ML2d

(
N

(w)
3 (θps)− 2N

(w)
2 (θps) +N

(w)
1 (θps)

)
[1 + (1− cos θps)k2

T (L
2 + d2)]2

]
d cos θps,

αTL =
c2
T

2c2
L

αLT . (6.9)
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When the lamellar spacing d approaches L (the lamellar duplex microstructure is

absent), Eqs. (6.9) reduce to the previous theoretical attenuation expressions for a

single phase material [7]. In the next section, the dependence of ultrasonic attenuation

on the parameter M and the lamellar spacing d is discussed based on the developed

model given by Eqs. (6.9).

6.2 Model Results

In order to show example results, several parameters given in Eqs. (6.1) and (6.9)

required for the model must be first be determined (including the sound speeds

in water and in steel as well as the single crystal elastic constants of pure iron).

The numerical values used in the model are listed in Table 6.1. The inner products

N
(w)
1 (θps), N

(w)
2 (θps) and N

(w)
3 (θps) on the eighth-rank covariance tensor for lamellar

duplex microstructure within grains are assumed to be equal to N
(r)
1 (θps), N

(r)
2 (θps)

and N
(r)
3 (θps). Fig. 6.1 shows the calculated attenuation quantities αLL, αLT and αTT

Table 6.1: Single crystal elastic constants of iron used in the formulation of attenua-
tion given in Eqs. (6.9).

Elastic Constants cij Velocity

(GPa) (m/s)

c11 c12 c13 cf cL cT

229.3 134.1 116.7 1486 5973 3250

as a function of frequency by fixing L=24 µm, d=2.0 µm and M=0.9. It can be

seen that all the quantities increase with frequency following a similar trend. The

attenuation αLT is much higher than αLL, while αTT is much larger than αTL, results

that indicate that the longitudinal-to-transverse attenuation αLT and the transverse-
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Figure 6.1: The attenuation components αLL, αLT , αTL and αTT versus frequency.
(L=24 µm, d=2.0 µm and M=0.9)

.

to-transverse attenuation αTT are the primary contributors to the longitudinal and

transverse attenuations, respectively.

The attenuation coefficients given by Eq. (6.9) contain three unknown variables

M , d and L. The dependence of attenuation coefficients on the parameter M and the

lamellar spacing d are investigated by fixing L = 24 µm. Figs. 6.2a and 6.2b show

the calculated longitudinal and transverse attenuation coefficients versus frequency

by varying the parameter M and the lamellar spacing d, respectively. The param-

eter M = 0 indicates that duplex microstructure within grains is absent, M = 1.0

indicates that the scattering from grain boundaries is neglected. It can be seen that

both longitudinal and transverse attenuation coefficients follow a similar trend with

increasing either the parameter M or the lamellar spacing d.
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Figure 6.2: The effects of the parameters M and d on (a) longitudinal attenuation,
(b) transversal attenuation (L=24 µm).



89

6.3 Experiments

The longitudinal attenuation was measured from the tread surface to deeper loca-

tions to examine the influence of pearlite on the longitudinal attenuation. Attenuation

measurements were conducted by the pulse-echo immersion technique at normal inci-

dence to the cross section of a quenched railroad wheel sample shown in Fig. 6.3. The

thickness of the wheel sample was measured as 12.51 mm with a digital micrometer.

The sample was prepared by grinding using the SiC papers through 600 grit. The

polishing was performed using a SiC paper through 1500 grit. Ultrasonic pulses gen-

erated by a DPR 300 pulser/receiver (Imaginant and JSR Ultrasonics, Pittsford, NY)

were transmitted and received by the same transducer operating in pulse-echo mode.

A low gain (25 dB) was used (A/D sampling rate = 2 GHz). An unfocused plane

wave transducer (model: Panametrics A327S, 0.375 inch element diameter, Olympus

Figure 6.3: An image of cross section of an unquenched railroad wheel sample (man-
ufactured by Griffin Wheel. Inc.).
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Panametrics, Inc., Waltham, MA) with 10 MHz central frequency was used in the

experiment. The transducer was set 50 mm away from the top surface of the wheel

sample and aligned carefully to normal incidence. Fig. 6.4 demonstrates a front wall

reflected from the top surface and four successive backwalls reflected from the back

surface. Four gates marked with different colors indicate the times for the Fourier

transform calculation. Fig. 6.5 shows the frequency spectra of the reflected successive

60 62 64 66 68 70 72 74 76 78
−1
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0.2

0.4
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1
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1st back−wall

3rd back−wall
4th back−wall

Figure 6.4: Signal used for attenuation calculation (An unfocused transducer with 10
MHz central frequency).

backwall reflections. Longitudinal attenuation αL is obtained by calculating the ratio

of the spectral component of the first backwall reflection wave to that of the second

one. The attenuation, αL is determined by [53],

αL =
1

2h

[
ln
|E1(ω)|
|E2(ω)|

− ln

(
DR1(ω)

DR2(ω)R2
12

)]
, (6.10)
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Figure 6.5: FFT of the back wall reflections shown in Fig. 6.4.

where E1(ω) and E2(ω) are the frequency spectra of the first and second reflections

from the back surface shown in Fig. 6.5, and h is the thickness of the wheel sample.

The second term in Eq. 6.10 indicates the energy lost due to diffraction at the back

surface. DR1 and DR2 are the Lommel diffraction corrections at the first and second

backwall reflections, respectively [72]. R12 = (ρLcL − ρfcf )/(ρLcL + ρfcf ) defines the

reflection coefficient. The subscripts 1 and 2 designate water and sample, respectively.

The red circles shown in Figure 6.3 which are about two inches away from the rim

surface represent the locations where the longitudinal attenuation was measured.

Fig. 6.6 shows the measured longitudinal attenuation αL versus frequency for different

depths z from the tread surface. It can be seen that the measured longitudinal

attenuation is smallest near the tread surface and increases at deeper locations. This

result is attributed to the stronger scattering from the increasing lamellar spacing
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Figure 6.6: Experimental attenuation versus frequency with respect to different po-
sitions (shown in Fig 6.3).

within grains. By comparing Fig. 6.2a with Fig. 6.6, it can be observed that not only

the profiles of the theoretical longitudinal attenuation based on Eqs. (6.9) agree with

the experimental ones, but also the values of the calculated longitudinal attenuation

are close to those from experiments.

Fig. 6.7 shows the distribution from the tread surface to deeper locations of the

longitudinal attenuation at 10 MHz. The solid green line represents the measured

longitudinal attenuation. It can be seen clearly that the longitudinal attenuation

increases from the tread surface to deeper locations. The value of longitudinal at-

tenuation is relatively constant within around 13 mm depth, which implies that the

pearlite microstructure is relatively uniform. This depth is consistent with the quench

depth in a railroad wheel which was obtained from the spatial variance curve from
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Figure 6.7: Distribution of attenuation coefficients from quenched surface to deeper
locations with respect to f=10 MHz.

the tread surface given in chapter 5. Beneath the quench depth, the longitudinal

scattering attenuation increases linearly due to the coarse lamellar spacing. The red

line demonstrates the longitudinal attenuation calculated by Eqs. (6.9). The correla-

tion length L was chosen as 24 µm based on the ultrasonic backscatter measurements

from an unquenched wheel while fixing M=0.9. The lamellar spacing d ranges from

0.5 µm to 1.0 µm within the quench depth, then it increases linearly from 1.0 µm 24

µm along the z direction as described in chapters 4 and 5. At deeper locations, it is

considered that the lamellar spacing d approaches L, which implies that the lamellar

duplex microstructure is absent. By comparing these two curves, it can be seen that

the theoretical predictions show a good agreement with the experimental results for

depths less than 32 mm. The difference between the two curves increases after this
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depth, a result which might be attributed to larger grains at deeper locations or much

lower scattering from pearlite within grains compared to the scattering from grain

boundaries due to the large lamellar spacing (d ≈ L). More work is needed to identify

the source of this difference.

To map the distribution of the longitudinal attenuation, the cross section of the

quenched wheel sample was scanned using an unfocused transducer with a 10 MHz

central frequency (Panametrics A327s, Olympus Panametrics, Inc.). The scan area

(130 mm × 38 mm) is shown in Fig. 6.3, with the scan resolution and speed set

to 4.0 mm/step and 1.0 mm/s, respectively. Fig. 6.8 demonstrates the distribution

of the measured longitudinal attenuation (10 MHz) with respect to positions on the

whole cross section of the quenched wheel sample. The color bar ranges from 2.75

to 12.5 Np/m. The results show that the longitudinal attenuation increases from

the quenched surfaces (including both the tread surface and rim surface) to deeper

locations. The dashed red line shown in Fig. 6.8 corresponds with the longitudinal

attenuation illustrated in Fig. 6.8. The experimental results demonstrate a large de-

pendence of the ultrasonic longitudinal attenuation on lamellar duplex microstructure

(pearlite phase) within grains.

Figure 6.8: Attenuation map of the cross section of a quenched railroad wheel sample.
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6.4 Summary

In this chapter, expressions for ultrasonic longitudinal and transverse attenuations

were developed based on the Weaver’s scattering attenuation model [7] for pearlitic

railroad wheel steel. The dependence of the lamellar spacing on ultrasonic longitu-

dinal and transverse attenuation was investigated. The attenuation measurements

were conducted in a water tank using an unfocused transducer with a central fre-

quency 10 MHz on the cross section of a quenched railroad wheel sample. The results

show that the measured longitudinal attenuation drops dramatically near the tread

surface, an outcome that is attributed to the fine lamellar duplex microstructure

(pearlite phase) created via the quenching process. The longitudinal attenuation

value remains relatively constant within the quench depth (about 13 mm), which is

consistent with diffuse ultrasonic backscatter measurements from the tread surface

presented in chapter 5. Then it increases approximately linearly due to the change

in lamellar spacing. The experimental results demonstrate a good agreement with

the theoretical prediction. The whole cross section of the quenched wheel sample

was scanned to display the distribution of the longitudinal attenuation as a function

of positions. Ultrasonic attenuation gives an important non-destructive method to

evaluate duplex microstructure within grains which can be implemented for quality

control in conjunction with other manufacturing processes.
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Chapter 7

Mode-converted Diffuse

Backscatter in Pearlitic Steel

In chapters 4, 5 and 6, the effects of lamellar duplex microstructure within grains

on ultrasonic scattering were studied using the L-L mode in a pulse-echo configura-

tion. In this chapter, a new mode-converted (longitudinal-to-transverse, L-T) singly-

scattered response (SSR) model is expanded based on the previous L-T SSR model

developed by Hu et al. [69] for application to pearlitic steel. The effects of lamel-

lar spacing on ultrasonic scattering are investigated using both the L-L ultrasonic

backscatter and the L-T ultrasonic backscatter measured in two different directions,

respectively. The experimental results show that the L-T variance amplitudes mea-

sured on the cross section of a quenched wheel sample exhibit a large dependence

on the measurement direction, a result which is attributed to an angular variation of

the effective interaction lengths in different directions. The lamellar spacing d and

the correlation length L can be estimated simultaneously with the developed L-T

scattering model and the L-T variance amplitudes measured in two directions.
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7.1 Theoretical Model

Chapters 4 and 5 described a new SSR model that included the lamellar du-

plex microstructure within grains using the (longitudinal-to-longitudinal, L-L) mode

based on the previous SSR model described in chapter 3 for applications to quenched

pearlitic steel. Recently, Hu et al. [69] developed a mode-converted (longitudinal-to-

transverse, L-T) SSR model to examine how the normal incidence longitudinal wave

converts to the scattered shear waves at grain boundaries. Fig. 7.1 shows a schematic

of the mode-converted (L-T) SSR model using a pitch-catch transducer configura-

tion. The normal incidence transducer behaves as a source transducer, while the

oblique incidence one functions as the receiving transducer. The quantities zfξ and

zξ, (ξ = S,R) represent the water and material paths for the source and receiving

transducers, respectively. Fig. 7.2 demonstrates the coordinate systems defined in the

model. x and X represent the longitudinal and transverse wave paths, respectively.

Figure 7.1: A schematic of the mode-converted (L-T) ultrasonic backscatter using a
pitch-catch transducer configuration (adapted from [69]).
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The relationship between the two coordinates is given by


X = x cos Θ + z sin Θ− zs sin Θ,

Y = y,

z = −x sin Θ + z cos Θ + zs sin2 Θ/ cos Θ,

(7.1)

where Θ is defined as the angle between the normal incident longitudinal wave unit

vector p̂0 and the scattered shear wave unit vector ŝ0. The mode-converted L-T model

reduces to the L-L model described in chapter 3 when Θ = 0. The unit vector ŝ⊥

represents the polarization direction of the scattered shear wave. θi and θr indicate

the incident and refraction angles for the receiving transducer, respectively. The

coordinates x and X represent the longitudinal and transverse propagation paths for

the source and receiving transducers. The final expression of the mode-converted L-T

Figure 7.2: The geometrical relationship for coordinate transformation.
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SSR model is given by [69]

ΦLT (t) = ΦLT
0 KLT

∫ ∞
0

dz

∫ ∞
−∞

dx exp(− t
2

σ2
S

)
w2

0R

w(z)w1(Z)
√
w2(z) + w2

2(Z)

× exp

[
− 2x2

w2(z)
− 2X2

w2
1(z)

− 2z2

σ2
Sc

2
L

− 2Z2

σ2
Sc

2
T

+
4Zt

σ2
ScT

]
× exp

[
1

σ2
S

(
Z

cT
− z

cL

)2

− 2t

σ2
S

(
Z

cT
− z

cL
)− 2αLz − 2αTZ

]
, (7.2)

with

ΦLT
0 = V S

maxV
R
max

π
√
πω4

0σS
8σRc4

Lc
4
T

w(zFS)w(zFR)

w2
0R

(
ρcLcT
ρfc2

f

)2

×
cos2(Θ− θi)T 2

fLT
2
Tf

R2
ffDS(ω0)DR(ω0)

× exp(2αfzFS + 2αfzFR − 2αfzfS − 2αfzfR). (7.3)

The integration is over both x and z coordinates in contrast with the single integral

in the normal incidence L-L SSR model due to the symmetry. Here, ρf and cf are the

density and wave speed in the fluid, respectively, and ρ, cL and cT are the density,

longitudinal and shear wave speeds in solid, respectively. σξ, (ξ = S,R) represents the

temporal pulse width for the source or receiving transducers. Dξ(ω0), (ξ = S,R) are

the diffraction corrections for the source and receiving transducers [8], respectively.

TTf = 4ρ2
fc

2
f/(ρ

2c2
T + ρρfcfcT ) is the transmission coefficient from the shear mode in

the solid to the fluid for the receiving transducer. w0ξ, (ξ = S,R) are the effective

initial beam widths of the source and receiver transducers, respectively. w(z) and

wi(z)(i = 1, 2) represent the widths of the Gaussian profile for the source and receiving

transducers in x, y directions in terms of the propagation depth z, respectively. For

the normal incidence L-L mode at a planar surface utilized in chapters 4 and 5,
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the Gaussian beam widths are equal, w(z) = wi(z). w(zFξ), (ξ = S,R) are the

Gaussian beam widths at the focal length for the source and receiver transducers,

respectively, and zFξ, (ξ = S,R) are the water paths between the transducer faces

and a planar reflector for the source and receiving transducers, respectively, from

which the reflected amplitudes V ξ
max, (ξ = S,R) are measured during calibration. All

other terms have already been described in chapter 4.

The L-T backscatter coefficient is written as

KLT = η̃LT (π −Θ)Ξ
···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π −Θ). (7.4)

It contains two terms. The spatial Fourier transform of the correlation function

η(x− y) which describes the probability that two randomly chosen points, x and y,

lie in a region of the material that has uniform properties, and is given by

η̃LT (π −Θ) =
L3

π2[1 + k2
TL

2 + k2
LL

2 − 2kLkTL2 cos(π −Θ)]2
, (7.5)

where L is is defined as the spatial correlation length (usually associated with the

grain size). The covariance function can be written as

Ξ
···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π −Θ) =
ν2

ρ2

[
10

525
+

cos2(π −Θ)

525
− cos4(π −Θ)

525

]
. (7.6)

In chapters 4, 5 and 6, it was observed that the duplex microstructure within grains

in pearlitic steel influenced the ultrasonic scattering significantly. The backscatter

coefficient KLT given in Eq. (7.4) is only applicable for texture free materials with

single-phase polycrystalline grains. Thus it must be modified here to include the

contribution from the duplex microstructure within grains. Fig. 7.3a demonstrates

a schematic of the lamellar duplex microstructure in an individual spherical grain.



101

Figs. 7.3b and 7.3c show the cross sectional features of the spherical grain with lamel-

lar duplex microstructure in the 1-3 and 1-2 planes, respectively. It can be observed

that the cross section features are not only related to the orientation angle θ, but

also are dependent on the inspection direction. By applying the M -factor backscat-

ter model stated in chapters 4, 5 and 6 for the pearlitic steel, the total backscatter

coefficient accounting for the misorientation of duplex microstructure within grains

is modified as

KLT
i = (1−M)η̃LTr (π −Θ)[Ξ

···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π −Θ)]r

+Mη̃LTwi
(π −Θ)[Ξ

···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π −Θ)]wi
,

(7.7)

where η̃LTwi
(π −Θ) is the spatial Fourier transform of the correlation function for the

duplex microstructure shown in Figs. 7.3b and 7.3c. As described in chapter 4, the

correlation function for ellipsoidal grains [49], [50] η̃(k) = axayaz
π2(1+4k2xa

2
x+4k2ya

2
y+4k2za

2
z)

is

adapted for the lamellar crystallites. In this case, the spatial scales ax, az and ay are

redefined as ax = az = L and ay = d.

Following the approach stated in Eq. (4.9) in chapter 4, the spatial correlation

function η̃LTwi
(π −Θ) for the microstructure shown in Fig. 7.3a is written as

η̃LTwi
(π −Θ) =

axayaz
π2(1 + 4k2

xa
2
x + 4k2

ya
2
y + 4k2

za
2
z)

=
L2d

π2 [1 + (k2
L + k2

T − 2kLkT cos(π −Θ))〈l2i 〉]
2 , (7.8)

where the quantities 〈li〉, (i = 1, 2) define the average ‘interaction lengths’, which are

the effective scale lengths in the direction of wave propagation as shown in Figs 7.3b

and 7.3c, respectively. Here, the duplex crystallites within grains are assumed to
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(a)

(b)

(c)

Figure 7.3: Schematics of lamellar duplex microstructure within an individual grain
(pearlite phase), (a) a 3D model, (b) the cross section feature sliced in the 1-3 plane,
(c) the cross section feature sliced in the 1-2 plane.
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be oriented randomly such that the angle θ shown in Fig. 7.3b varies with equal

probability between 0 and π. The squares of the effective interaction lengths are then

averaged [50] giving

〈l21〉 =
1

π

∫ π

0

(sin2 θL2 + cos2 θd2)dθ

= (L2 + d2)/2,

〈l22〉 =
1

π

∫ π

0

d2

cos2 θ
dθ

=
1

π
(

∫ θ0

0

d2

cos2 θ
dθ +

∫ π−θ0

θ0

d2

cos2 θ
dθ +

∫ π

π−θ0

d2

cos2 θ
dθ)

=
1

π

[
L2(π − 2θ0) + 2d2 sin θ0

cos θ0

]
=

1

π

[
L2(π − 2 arccos(d/L)) + 2d

√
L2 − d2

]
, (7.9)

where θ0 = arccos d/L, when the angle θ ranges from θ0 to π − θ0, d/ cos θ ≈ L.

Substituting Eq. (7.9) into Eq. (7.8) the average spatial correlation function η̃LTwi

for lamellar microstructure features shown in Figs. 7.3b and 7.3c can be written as

η̃LTw1
(π −Θ) =

L2d

π2 [1 + (k2
L + k2

T − 2kLkT cos(π −Θ))(L2 + d2)/2]
2 ,

η̃LTw2
(π −Θ)

=
L2d

π2
{

1 + (k2
L + k2

T − 2kLkT cos(π −Θ))
[
L2(π − 2 arccos(d/L)) + 2d

√
L2 − d2

]
/π
}2 .

(7.10)

By substituting Eqs. (7.6) and (7.10) into the Eq. (7.7), the total backscatter coeffi-
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cients for the two L-T cases shown in Figs. 7.3b and 7.3c can be written as

KLT
1 =

(1−M)L3[Ξ
···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π −Θ)]r

π2[1 + k2
TL

2 + k2
LL

2 − 2kLkTL2 cos(π −Θ)]2

+
ML2d[Ξ

···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π −Θ)]w1

π2 [1 + (k2
L + k2

T − 2kLkT cos(π −Θ))(L2 + d2)/2]
2 ,

KLT
2 =

(1−M)L3[Ξ
···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π −Θ)]r

π2[1 + k2
TL

2 + k2
LL

2 − 2kLkTL2 cos(π −Θ)]2

+
ML2d[Ξ

···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π −Θ)]w2

π2
{

1 + (k2
L + k2

T − 2kLkT cos(π −Θ))
[
L2(π − 2 arccos(d/L)) + 2d

√
L2 − d2

]
/π
}2 .

(7.11)

Substituting the backscatter coefficient given in Eq. (7.2) to Eqs. (7.11), the mode-

converted SSR model that includes the dependence of ultrasonic scattering on the

pearlite, can be expressed as

ΦLT
i (t) = ΦLT

0 KLT
i

∫ ∞
0

dz

∫ ∞
−∞

dx exp(− t
2

σ2
S

)
w2

0R

w(z)w1(Z)
√
w2(z) + w2

2(Z)

× exp

[
− 2x2

w2(z)
− 2X2

w2
1(z)

− 2z2

σ2
Sc

2
L

− 2Z2

σ2
Sc

2
T

+
4Zt

σ2
ScT

]
× exp

[
1

σ2
S

(
Z

cT
− z

cL

)2

− 2t

σ2
S

(
Z

cT
− z

cL
)− 2αLz − 2αTZ

]
. (7.12)

When the lamellar spacing d approaches L, (i.e, the lamellar duplex microstructure

is absent), Eq. (7.12) reduces to the theoretical SSR model for a single phase given

in Eq. (7.2). Note that the inner product on the eighth-rank covariance tensor for

lamellar duplex microstructure within a grain [Ξ
···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π−Θ)]wi
is assumed equal

to the same quantity when the lamellae are absent, [Ξ
···p̂0p̂0ŝ0ŝ⊥
···p̂0p̂0ŝ0ŝ⊥

(π − Θ)]r. Several

trends in the behavior of this model can be observed.



105

7.2 Model Results

In this section, trends predicted by the model with respect to the microstructural

parameters are examined. Several parameters given in Eq. (7.12) required for the

model must first be specified (including the pulse duration and the single-crystal

elastic constants of steel). Table 4.1 shows some of the values used in the results

that follow. Theoretical values of wave speed and attenuation in water were selected

from [70] and the attenuation in the pearlitic steel is estimated as discussed in chapter

6 .

Fig. 7.4 shows the dependence of the spatial variance amplitudes on lamellar

spacing d for both the mode-converted L-T scattering mode given by Eq. (7.12) and

the L-L mode discussed in chapter 4. It can be seen that the variance amplitudes
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Figure 7.4: The variance amplitudes versus the lamellar spacing d, the angle θ0 =
arccos d/L shown in Eq. (7.9) varies with increasing d, while L=24 µm, M=0.9.
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estimated using the L-T modes are higher than that calculated using the L-L mode

with respect to the small lamellar spacing, while the variance amplitudes using the

L-L mode are much higher than that using the L-T modes when the lamellar spacing

is large.

Fig. 7.5 demonstrates the dependence of the attenuation coefficients on lamellar

spacing which was detailed in chapter 6. It can be seen that the difference between

the αL and αT is significant with respect to large lamellar spacing compared with the

small lamellar spacing. The much higher transverse attenuation decreases the L-T

variance amplitudes more significantly compared with the L-L variance amplitudes

when the lamellar spacing is large.
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Figure 7.5: The attenuation coefficients versus the lamellar spacing d (L=24 µm,
M=0.9).
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By comparing the variance amplitudes calculated using the L-T model for the

duplex features shown in Figs. 7.4b and 7.4c, it can be observed that the variance

amplitudes calculated in the 1-2 and 1-3 planes are very similar for small lamellar

spacing, but the two curves split gradually as the lamellar spacing increases. Fig. 7.6

shows the backscatter coefficients calculated given by Eq. (7.11) while increasing the

lamellar spacing d. The separation between the two curves is observed as the lamellar

spacing increases, an outcome that could explain the splitting of the variance ampli-

tudes shown in Fig. 7.4. The slopes of the L-T variance curves shown in Fig. 7.4

decrease with increasing the lamellar spacing, a result that is attributed to the in-

creasing shear attenuation demonstrated in Fig. 7.5. In the next section, results from
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Figure 7.6: The backscatter coefficient including lamellar microstructure within grains
given in Eq. (7.11) versus the lamellar spacing d (L=24 µm, M=0.9).
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experiments are presented from the cross section of a quenched wheel sample using

both the L-L SSR mode and L-T SSR modes measured in two directions. Then the

mode-converted (L-T) SSR model given in Eq. (7.12) is used to fit the experimental

variance curves, from which the lamellar spacing d and the correlation length L can

be found.

7.3 Experiments

A pitch-catch configuration was used for the diffuse mode-converted (L-T) ul-

trasonic backscatter experiment. Ultrasonic longitudinal pulse waves, generated by

a DPR 300 pulser/receiver (Imaginant and JSR Ultrasonics, Pittsford, NY), were

transmitted from a normally incident source transducer into a test sample and scat-

tered shear waves were received by a receiver transducer. The experimental spatial

variance for a collection of ultrasonic backscattered signals captured from various po-

sitions was defined in Eq. (4.14). Experiments were performed in a water immersion

tank using two 10 MHz focused transducers (V327 9.53 mm diameter; 50.4 mm focal

length; Olympus NDT, Newton, MA ) focused 7.5 mm in a quenched railroad wheel

steel sample (annealed to remove the residual stress) [72]. The scan speed was 3.0

mm/s and scan step sizes were 0.25 mm (in the radial direction), 0.50 mm (in the

axial direction). A high gain (65 dB) was used to obtain strong backscatter signals

(A/D sampling rate = 2 GHz). Fig. 7.7 shows the experimental setup for the mode-

converted diffuse ultrasonic backscatter measurement in a pitch-catch configuration.

The normally incident transducer is the source transducer, and the oblique one acts as

a receiver. Both transducers focus at the same depth. The cross section of the wheel

sample shown in Fig. 7.8 was scanned using both the L-L SSR mode and the L-T

SSR modes measured in two planes (parallel and perpendicular to the tread surface),
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Figure 7.7: The experimental setup for the mode-converted diffuse ultrasonic
backscatter in a pitch-catch configuration.
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respectively.

Figure 7.8: The cross section image of a wheel sample annealed to remove the residual
stress.

The scan region shown in Fig. 7.8 was divided into 14 subregions (20 mm × 3 mm)

from the tread surface to deeper locations to calculate the spatial variance curves

according to Eq. (4.14), respectively. Each area contained about 480 waveforms.

Figs. 7.9a and 7.9b demonstrate the spatial variance curves of the collected backscatter

signals for the subregions close to the tread surface and at deeper locations (around 30

mm deep from the tread), respectively. It can be observed that the L-T variance peaks

measured in two directions are very similar and much higher than the L-L variance

peak at the subregion near the tread surface, while the L-L variance peak is higher

than the L-T variance peaks at the deeper location, a result which may be attributed

to the higher transverse attenuation αT compared with the longitudinal attenuation

αL. The L-T variance peak measured in the hoop-radial plane (perpendicular to the

tread surface) is higher than that measured in the hoop-axial plane (parallel to the
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tread surface), a result attributed to the difference of the effective interaction lengths

given by Eq. (7.9).

The experimental spatial variance curves shown in Figs. 7.9a and 7.9b are fit with

the L-T model given by Eq. (7.12) and the L-L model described in chapter 4 to

determine the variance amplitudes for each subregion. Fig. 7.10 demonstrates this

distribution from the tread surface to deeper locations. It can be seen that the vari-

ance amplitudes measured in both the L-T and L-L modes show an increasing trend

with depth from the tread surface. The mode-converted L-T ultrasonic backscatter

is much higher than the L-L ultrasonic backscatter with respect to the small lamellar

spacing close to the tread surface, and the difference between the L-T and L-L ul-

trasonic scattering decreases with depth from the tread surface. The L-L ultrasonic

scattering exceeds the L-T ultrasonic scattering and the difference becomes larger and

larger when it is over 25 mm from the tread surface. By comparing the L-T variance

amplitudes measured in two planes, it can be seen that the two curves split up from

the locations close to the tread surface. The difference between two L-T variance am-

plitudes measured in the hoop-radial and hoop-axial planes increases progressively

with depth, a result that is attributed to the increasing difference of the effective

interaction lengths. The experimental results show the same trend as the theoretical

prediction shown in Fig 7.4. By comparing Fig 7.4 and 7.10, it can be seen that the

difference between the two measured L-T variance amplitudes at deeper location is

much larger than the theoretical prediction. Clearly the orientations of lamellae differ

from the model. More studies are required to verify the reason.

The mode-converted (L-T) variance amplitudes measured in the two directions

shown in Fig. 7.10 can be used to quantify the microstructural parameters of correla-

tion length L and lamellar spacing d with the L-T model given in Eq. (7.12). When

the L-T experiment measured in the hoop-axial plane was switched to the hoop-radial
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Figure 7.9: Experimental spatial variance curves of ultrasonic backscattered signals,
(a) near the tread surface, (b) 30 mm from the tread.
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Figure 7.10: Distribution of variance amplitudes from the tread surface to deeper
locations.

plane, only the backscatter coefficient KLT
i in terms of the lamellar spacing d and the

correlation length L given by Eqs. (7.11) is changed. The other constants used in the

calculation are shown in Table 4.1, and the wave velocity and attenuation for water

were measured as cf=1486 m/s; αf=.025 Np/cm. The wave speed for the steel sam-

ple was measured cL=5973 m/s. As discussed in chapter 6, the attenuation exhibits

a strong dependence on lamellar spacing d. The longitudinal attenuation αL in the

wheel sample was measured with depth from the tread surface as shown in Fig. 6.7.

The transverse attenuation αT was estimated based on the developed attenuation

model which was discussed in chapter 6. The transducers were first calibrated to de-

termine some important parameters such as V ξ
max, (ξ = S,R) before testing as stated
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in chapter 4.

The maximum of the experimental spatial variance [ΦLT
i (t)]Expmax was used with

Eq. (7.12) and Eqs. (7.13) to estimate the lamellar spacing d and the correlation

length L simultaneously. The quantities d and L appear in Eqs. (7.13) in two terms,

such that the experimental variance measured with L-T mode in two directions can

be equated to the model and rearranged into a set of equations governing d and L.

Following this procedure, it can be shown that d and L satisfy the equations

(1−M)L3

π2[1 + k2
TL

2 + k2
LL

2 − 2kLkTL2 cos(π −Θ)]2

+
ML2d

π2 [1 + (k2
L + k2

T − 2kLkT cos(π −Θ))(L2 + d2)/2]
2 = R1,

(1−M)L3

π2[1 + k2
TL

2 + k2
LL

2 − 2kLkTL2 cos(π −Θ)]2

+
ML2d

π2
{

1 + (k2
L + k2

T − 2kLkT cos(π −Θ))
[
L2(π − 2 arccos(d/L)) + 2d

√
L2 − d2

]
/π
}2 = R2

(7.13)

where Ri =
[ΦLT

i (t)]Exp
max

[ΦLT
i (t)]max/η̃totali

, and [ΦLT
i (t)]Expmax represents the two obtained variance

peaks measured by the L-T experiments shown in Fig. 7.10. i = 1 represents the

L-T experiment measured in the hoop-axial plane, while i = 2 indicates the L-T

measurement in the hoop-radial plane. η̃totali = (1−M)η̃LTr (π −Θ) +Mη̃LTwi
(π −Θ).

The lamellar spacing d and the correlation length L can be obtained by solving

an equation set given by Eqs. (7.13) while fixing M = 0.9. Experience with the

solution of Eqs. (7.13) when applied to experimental data shows that only one root

is physically meaningful. Fig. 7.11 shows two curves of lamellar spacing d versus the

correlation length L based on Eqs. (7.13) using the variance amplitudes at a scan

subregion measured in two directions. The intersection point of the two d−L curves
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Figure 7.11: The calculated lamellar spacing d versus the correlation length L using
the variance amplitudes measured in two directions.

shown in Fig. 7.11 corresponds with the final solution of the lamellar spacing d and

the correlation length L. Thus, the lamellar spacing d and the correlation length L

can be obtained simultaneously with the L-T model given by Eq. (7.12) and the L-T

variance peaks measured in two directions.

Fig. 7.12 shows the distribution of the calculated lamellar spacing d and the cor-

relation length L, with depth from the tread surface. The red line represents the

estimated lamellar spacing, while the green line indicates the calculated correlation

length. It can be seen that the calculated lamellar spacing d increases from 0.3 µm

to around 7.0 µm with depth from the tread surface, a result that matches well with

the optical observations shown in Figs. 4.10a and 4.10b. The estimated correlation

length L varies from around 20 µm to 30 µm. The average correlation length in the

whole wheel sample is about 23.2 mm.
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Figure 7.12: Distribution of the calculated lamellar spacing d and the correlation
length L with depth from the tread surface to deeper locations (M=0.9).

7.4 Summary

A mode-converted (longitudinal-to-transverse, L-T) SSR model that accounts for

pearlite microstructure within grains has been developed based on the previous L-

T SSR model. Diffuse ultrasonic backscatter experiments were conducted in a water

tank using two 10 MHz transducers focused 7.5 mm deep in a quenched railroad wheel

sample with both the L-L and L-T modes. The experimental results show that the

variance amplitudes measured with the L-L mode are smaller than those measured

with the L-T mode near the tread surface and two L-T variance amplitude measured

in the hoop-radial and hoop-axial planes are very similar. At deeper locations, the

L-L variance amplitudes are much larger than the L-T variance amplitudes, a result



117

which may be attributed to the much higher transverse attenuation in comparison

with the longitudinal attenuation. The variance amplitudes measured in the hoop-

radial plane are larger than those measured in the hoop-axial plane, which might

result from different interaction lengths within these two planes due to the large

lamellar spacing as well as the specific orientation due to the non-uniform cooling

rate.

In addition, the difference of variance amplitude increases progressively from the

tread surface to deeper locations due to the increasing lamellar spacing. The ex-

perimental results demonstrate the same trend as the theoretical predictions. The

distributions of lamellar spacing and the correlation length with depth from the tread

surface were also quantified with the newly developed L-T SSR model. The calcu-

lated lamellar spacing within grains ranged from 0.3-7.0 µm. The correlation length

varies from 20-30 µm, the average value is around 23.2 µm. The mode-converted

ultrasonic backscatter exhibits very strong sensitivity such that minor microstruc-

tural differences can be distinguished in different directions. Thus, it seems that this

approach can be applicable for examining the grain elongation, orientation of duplex

microstructure and texture that result from manufacturing.
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Chapter 8

Dependence of Ultrasonic

Backscatter on Stress

The theory of acoustoelasticity refers to the relationship between wave propagation

speed in a deformable medium and the state of stress present. This relationship

considers the influence of finite strains or wave displacements superimposed on a

deformed medium. Usually, linear-elastic approximations are not adequate to describe

material responses in applications experiencing sufficiently large strains. In such

cases, the acoustoelastic formalism considers nonlinear strain energy terms up to the

third-order to describe the effect properly [75], [76]. The higher-order strain energy

terms introduce the use of third-order elastic constants into the constitutive equations.

These theoretical developments led to the application of acoustoelasticity as a method

of extracting higher-order material constants in a variety of materials [77], [78].

Other continuing developments have been made using the acoustoelastic effect for

stress measurement [79], [80], [81]. Many researchers have applied wavespeed mea-

surements of ultrasonic propagation modes to extract residual stress information in

welded joints using multiple elastic waves, such as the longitudinal critically refracted
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(Lcr) elastic wave [82], [83], [84], and the leaky Lamb wave [85], [86]. Recently, Turner

and Ghoshal [39] presented a theoretical basis to extract stress information from poly-

crystalline microstructures by considering second-order grain statistics through the

covariance of elastic moduli fluctuations, an eighth-rank tensor. The covariance ten-

sor had been included in previously developed ultrasonic grain scattering models and

is proportional to the attenuation and backscatter coefficient [24], [30] - [33], [46].

However, these models did not consider any stress dependency. Kube et al. [40] con-

firmed the stress dependence of the covariance tensor by investigating the change of

the spatial variance amplitude using an applied uniaxial load on a 1018 steel block.

In this chapter, the influence of stress on ultrasonic scattering in a steel sample is

investigated by comparing the spatial variance amplitudes of the collected ultrasonic

backscatter signals under uniaxial load with and without stress. Normally incident

ultrasound is utilized to examine the dependence of ultrasonic scattering on stress.

Based on the experimental observations, the ultrasonic backscatter technique is ap-

plied for measuring residual stress introduced by water quenching in steel samples.

The change of the spatial variance amplitudes after removing the residual stress via

annealing is calculated, a quantity that can be transferred to the residual stress value

according to the developed stress-dependent backscatter model. The diffuse backscat-

ter technique exhibits strong sensitivity to the stress (including applied stress and

residual stress), an outcome that may be applicable for stress measurement in the

future.
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8.1 Stress-dependent Ultrasonic Backscatter

Coefficient

Ultrasonic scattering is used to describe the multitude of reflections from grain

boundaries comprising a polycrystalline material. Scattering models are used to

quantify the strength of the scattering emanating from the assumed randomly ori-

ented grains. The strength of the scattering is dependent on the degree of crystalline

anisotropy inherent within the grains. In chapter 3, Eq. (3.43) gave a time-dependent

spatial variance model of ultrasonic backscatter measurement with respect to an as-

sumption of a singly-scattered response (SSR) to microstructural properties. It may

be written as

ΦSSR = R(V)η̃(L)Ξ(T) exp

(
− t

2

σ2

)
I0(t), (8.1)

where R(V) is the amplitude coefficient which is dependent on the excitation trans-

ducer voltage and can be determined through a calibration process. η̃(L) is the spatial

Fourier transform of two-point correlation function with a correlation length L. Ξ(T)

is called the covariance tensor which is a function of elastic constants of material and

stress tensor, T. The time-dependent term exp
(
− t2

σ2

)
describes the input Gaussian

beam, and σ denotes the pulse width. The term I0(t) is an integral that accounts

for changes in the focal profile as a function of material depth. In contrast to the

change of covariance tensor Ξ, the change in the attenuation and wavespeed due to the

stress is neglected. The covariance of the effective (stress-dependent) elastic moduli

is defined as [39].

Ξαβγδ
ijkl = 〈GijklGαβγδ〉 − 〈Gijkl〉〈Gαβγδ〉, (8.2)

where Gijkl is the load-dependent effective elastic moduli within the medium. For a

single crystal, it can be written in terms of the second-order elastic moduli Cijkl and
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the third-order elastic moduli Cijklmn, as Gijkl = Cijkl + (δjlδkP δiQ + 2CijkrSlrPQ +

CijklmnSmnPQ)TPQ, where Sijkl = C−1
ijkl is the second-order compliance tensor, and

TPQ is the stress tensor. The second-order elastic moduli can be written as [39]

Cijkl = CI
ijkl + νδijkl = CI

ijkl + ν

3∑
n=1

ainajnaknaln, (8.3)

where ν = c11 − c12 − 2c44 is the anisotropy coefficient for a material with cubic

crystal symmetry, CI
ijkl is the isotropic fourth-rank tensor, and aij is the rotation

matrix between crystal and laboratory axes. The third-order elastic moduli can be

expressed as [36]

Cijklmn = CI
ijklmn + d1E

1
ijklmn + d2E

2
ijklmn + d3E

3
ijklmn, (8.4)

where d1, d2 and d3 are three anisotropy constants defined by the independent third-

order elastic constants. The base tensors Ei, (i = 1, 2, 3) are written in terms of the

components of the rotation matrix. Equation (8.2) can be expanded and written in

condensed form in terms of the magnitude of an applied uniaxial stress as

Ξ(T ) = K0 +K1T +K2T
2, (8.5)

where K0, K1 and K2 are load independent constants related to directionality of

the applied stress as well as the components ijkl and αβγδ. The covariance tensor

in Eq. (8.5) determines the magnitude of the backscatter coefficient and makes a

connection between the stress T and the strength of ultrasonic scattering.

To illustrate the stress influence on ultrasonic scattering, only the simplest case

is considered of a stress-free polycrystalline sample (with cubic crystal symmetry)

subject to an applied uniaxial load in the 1-direction. The longitudinal-to-longitudinal
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(L-L) mode using normal incidence ultrasound is used to examine the impact of stress

on the scattering. The covariance tensors Ξ1111
1111, and Ξ3333

3333 correspond with the L-L

experiments for which the propagation vector p̂ is parallel and perpendicular to the

loading axis, respectively. Table 8.1 shows the single crystal second- and third-order

elastic constants for pure iron [31]. Table 8.2 lists the numerical values of K0, K1

and K2 with respect to covariance tensors Ξ1111
1111, and Ξ3333

3333 for pure iron given by

Eq. (8.5) [39]. Several observations can be made from the results [39]. First, the

positive value of K2 will increase the scattering under either compressive or tensile

stress. Second, the negative values of K1 will increase the backscatter amplitude

under compressive stress for the L-L Ξ1111
1111 mode, while for the L-L Ξ3333

3333 mode, the

positive value will decrease the backscatter amplitude under a compressive stress.

Lastly, because the ratio of K1 to K2 is so large the scattering is expected to be

nearly linear under low load (<500 MPa).

Table 8.1: Single crystal second - and third-order elastic constants (GPa) for pure
iron.

Material C11 C12 C44 C111 C112 C123 C144 C166 C456

Iron 229.3 134.1 116.7 -2720 -608 -578 -836 -530 -720

Table 8.2: Theoretical backscatter coefficients of pure iron [39].

Mode K0(GPa2) K1(GPa) K2

Ξ1111
1111 582.1 -341.4 80.76

Ξ3333
3333 582.1 159.1 27.86
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8.2 Experiments

8.2.1 Uniaxial Stress on a 1018 Steel Block

The backscatter experiments were performed in a water immersion tank using a

10 MHz transducer (V327-SU; 9.53 mm diameter; 50 mm focal depth; Olympus NDT,

Newton, MA) focused 9.0 mm in a block (3 inch × 4 inch × 12 inch) of annealed 1018

steel. Fig. 8.1 shows the experimental setup of the backscatter measurement under

a uniaxial load with the L-L Ξ3333
3333 mode. The ultrasonic propagation direction was

normal to the steel block but perpendicular to the loading direction. The scattered

signals were obtained from the waveforms by observing the energy between the front

and back surface reflections. The spatial variance was determined from the collection

of backscatter signals obtained at 400 different locations (within a 60 mm × 60 mm

area) while keeping a fixed distance between the transducer and the material.

Figure 8.1: Experimental setup for the backscatter measurement under a uniaxial
load.
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To investigate the dependence of ultrasonic backscatter signals on applied load,

the sample was loaded uniaxially at a constant loading rate of 178 kN/min to a

maximum load of 1780 kN. At each increment of 222.4 kN for the loading step, the

load was held constant. A 60 mm × 60 mm area on the side surface of the loaded

steel sample was scanned at a constant speed during each holding period. The scan

was performed with a step size of 3 mm to ensure the independence of individual

measurements. Then the spatial variance of the waveforms was calculated using a

collection of 400 waveforms. The loading process was repeated over a set of three

loading trials performed on separate days to observe the experimental repeatability.

Each spatial variance response was fit using Eq. (8.1) to extract the spatial variance

peak as a function of stress. Fig. 8.2 shows the dependence of the spatial variance

peak on applied load for the three trials. The experimental results show a decreasing
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Figure 8.2: The measured spatial variance peaks versus applied loads.
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trend with increasing compressive stress as predicted from the theory.

This backscatter technique has many applications in the area of nondestructive

stress measurement techniques. Compared with previous ultrasonic stress measure-

ment techniques based on wave propagation speed, this technique is much more sen-

sitive to applied load, the results shown in Fig. 8.2 change by 12.6 %, while the

waves speed perpendicular to a compression load in rail steel was found to change

by 0.32 % over a similar loading of about -260 MPa. This approach can potentially

overcome some of the experimental hindrances inherent in wave speed measurements

(e.g., grain texture/microstructural effects, material geometry, residual stresses), such

that an absolute stress measurement may be possible. In the next subsection, the

estimation of residual stress in a wheel steel sample is performed using this approach.

8.2.2 Effects of Residual Stress on Ultrasonic Backscatter

The residual stress generated via heat treatment such as water quenching plays an

important role in determining the service lifetime of railroad wheels. A compressive

residual stress can stop initiation and propagation of minor cracks, while a tensile

residual stress could speed up the growth of cracks, which could result in the splitting

of the rim vertically from wheels. Therefore, determining the residual stress in railroad

wheels is crucial for ensuring that the manufacturing processes were all optimal.

A 50 mm thick wheel slice was cut from a new wheel, and both the rim surface and

cross section surfaces were polished to reduce the wave distortion from the surface

roughness. Due to the complexity of the residual stress state in the railroad wheel,

several assumptions regarding the stress based on the quenching process are made.

First, it is assumed that there is no shear stress, only normal compressive stress. Sec-

ond, it is assumed that the residual stress in the hoop direction (normal to the cross
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section surface) is completely released by cutting and polishing the cross section sur-

faces, such that only the residual stress in the cross section plane remains. Third, the

residual stress in the axial direction is much higher than the residual stress along the

radial direction. The primary residual stress in the railroad wheel is marked with red

arrows shown in Fig. 8.3a. Both the cross section and rim surface were scanned us-

ing the ultrasonic L-L mode using a 10 MHz focused transducer (Panametrics V327,

2-inch focal length, Olympus panametrics, Inc., Waltham, MA) with a focal depth in

the material of 9.0 mm (scan step size = 1.0 mm and 0.25 mm for measurement of the

(a)

(b)

Figure 8.3: (a) Cross section and (b) rim surface images of a 50 mm thick wheel
sample.
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rim surface and the cross section, respectively; scan speed = 3.0 mm/s). Figs. 8.3a

and 8.3b show the scan areas on the polished cross section and rim surface, respec-

tively. The spatial variance curves were calculated by using the collected ultrasonic

signals measured from the rim surface and the cross section surface. Next the whole

wheel sample was annealed to remove the residual stress. The annealing procedure

included heating the sample to 550 ◦C, maintaining the temperature for 3 hours, then

switching off the heat and cooling the sample slowly to room temperature within the

oven. Here only the residual stress was removed completely while the grain sizes and

microstructure did not change during annealing. The cross section and rim surfaces

were rescanned with the same experimental settings, and the spatial variance curves

were recalculated after annealing.

Fig. 8.4 shows the spatial variance curves measured from the rim surface of the

wheel sample before and after annealing along with the theoretical curve fits given

by Eq. (8.1). The solid lines are the experimental variance curves, while the dashed

lines are the theoretical response. It can be seen that the variance curve profile does

not change, only the variance amplitude decreases by around 12.0 % after releasing

the residual stress, a result that implies that the grain size and microstructure did

not change during annealing. The result also agrees well with the expectation for

iron that the release of the compressive residual stress will result in a decrease of the

variance amplitudes for the L-L Ξ1111
1111 mode.

The whole cross section shown in Fig. 8.3 was scanned and the spatial variance

curve for each 5 mm × 5 mm subarea containing about 400 waveforms was calculated

before and after removing residual stress. The variance curves were fit with Eq. (8.1).

Figs. 8.5a and 8.5b show the spatial variance maxima with colors before and after

annealing. By comparing these two images, it can be observed that releasing the

residual stress does not change the distribution pattern of variance amplitudes, an
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Figure 8.4: The variation of spatial variance amplitudes after annealing from the rim
surface.

outcome that indicates that the microstructure does not change by annealing. The

progressive increase of variance amplitudes from the quenched surface (tread and rim

surfaces) to deeper locations shown in Fig. 8.5 is attributed to the increase of lamellar

spacing instead of residual stress.

To quantify the changes of the variance amplitudes after removing the residual

stress, three locations (about 15 mm, 20 mm and 25 mm away from the rim surface,

respectively) marked with red dashed lines in Fig. 8.5b were chosen for comparison.

Fig. 8.6 shows the change of spatial variance amplitudes for three locations with and

without residual stress. It can be seen that the increase of variance amplitudes appears

at almost all the positions. The result indicates that the primary residual stress is

compressive according to the stress-dependent backscatter model given by Eq. (8.5)
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Figure 8.5: Variance amplitude distribution on the cross section of the wheel slice,(a)
before annealing, (b) after annealing.

for the L-L (Ξ3333
3333) mode. The point marked with a red circle in Fig. 8.6 indicates

a decrease of the spatial variance amplitude, a result that might be attributed to

tensile residual stress at this location. The average variance amplitude increases by

about 8.0 % after removing residual stress. In contrast to that measured from the

rim surface using the L-L (Ξ1111
1111) mode, the result demonstrates an opposite trend.

The experimental results match the theoretical predictions given by the Eq. (8.5)

that a compressive residual stress will increase the variance amplitudes for which the

ultrasound propagates parallel to the residual stress (Ξ1111
1111), while it will decrease the

variance amplitudes if the propagation direction of ultrasound is perpendicular to the

residual stress (Ξ3333
3333).
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Figure 8.6: Comparison of spatial variance curves before and after annealing measured
from the cross section.

The residual stress along the axial direction is estimated based on the variation

of spatial variance amplitudes and the stress-dependent backscatter model. The nu-

merical value of the residual stress along the axial direction is around -200 MPa at

the depth of 9 mm from the rim surface. Lonsdale et al. [73] measured the axial

residual stress in the wheel sample with the X-ray diffraction system. The measured

value is about -130 MPa at about 50 mm depth from the rim surface. The mis-

match between X-ray measurement and ultrasonic measurement might be attributed

to several reasons: First, both wheel samples are not from the same quenched wheel.

Second, the measurement positions are not identical. The residual stress near the rim

surface should be much larger than that at a deeper location. Third, the second and

third order elastic constants of single crystal of pure iron are utilized for estimating
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residual stress. Lastly, the real residual stress status in a quenched wheel is more

complicated than the assumptions used here. More studies are required on residual

stress measurements in quenched wheels.

8.2.3 Water Quenching

In this subsection, water quenching is used to study residual stress. A 1080 steel

block was quenched unidirectionally with running water to generate residual stress.

The measurement of residual stress was realized by quantifying the variation of spatial

variance amplitudes using the L-L mode after releasing residual stress via annealing.

The quenched surface of the 1080 steel block was scanned before and after relieving

residual stress. The residual stress in the 1080 steel block along the quenching di-

rection was estimated according to the change of spatial variance amplitude and the

developed stress-dependent backscatter coefficients of pure iron.

The surface of a 1080 steel sample was prepared by polishing with fine sand

paper before diffuse backscatter experiments. Fig. 8.7 shows an image of the polished

quench surface of the block. The polished quench surface was scanned using a 10

MHz focused transducer with a focal depth in the material of 9.0 mm (scan step size

= 0.25 mm; scan speed = 3.0 mm/s). The scan area was 40 mm × 40 mm. The

spatial variance of the collected backscatter signals was calculated with a collection

of over 5000 waveforms. The red solid line in Fig. 8.9 represents the spatial variance

curve for the whole scan area shown in Fig. 8.7.

Fig. 8.8 shows the experimental setup for the water quench. The 1080 steel sam-

ple was heated up to 850 ◦C and held at that temperature for 3 hours in an oven.

Then it was placed on the bridge and water was used to quench the sample surface.

The area shown in Fig. 8.7 was rescanned with the same experimental settings after
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Figure 8.7: Image of a 1080 steel block (2 inch × 2 inch × 3 inch).

Figure 8.8: Experimental setup for quench with running water.
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the water quench and the spatial variance curve of ultrasonic backscatter signals was

recalculated. The green dashed line in Fig. 8.9 shows the spatial variance curve after

quenching. It can be seen that the amplitude drops dramatically after quenching, an

outcome that is attributed to the creation of lamellar duplex microstructure (pearlite

phase) within grains that has been discussed in chapter 4 along with residual stress

introduced via quenching. Here the dependence of ultrasonic scattering on residual
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Figure 8.9: Comparison of spatial variance curves before and after water quenching.

stress is targeted. Several assumptions on the status of residual stress in the quenched

sample are made: there is no shear stress in the sample and the residual stress is com-

pressive in all directions. To separate the effects of residual stress microstructure, the

quenched sample was annealed to remove the residual stress. The annealing process

involved heating up the sample to 550 ◦C, holding the temperature for three hours,

then switching off the oven to let the sample cool down slowly to room tempera-
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ture within the oven. The residual stress is removed completely by annealing, while

the grain sizes and the duplex microstructure are assumed unchanged during anneal-

ing. The quenched surface was rescanned with the same experimental settings after

annealing.

Fig. 8.10 shows the spatial variance curves measured at normal incidence for the

whole scan area shown in Fig. 8.7 as well as the curve fits given by Eq. (5.2). The solid

green and blue lines represent the spatial variance curves measured from the quench

surface before and after annealing, respectively, while the dished lines are the curve

fits using the depth-dependent SSR model given by Eq. (5.2). It can be seen that

the SSR model that includes the gradation of lamellar spacing along the propagation

path fits well with the variance curve measured from the quenched surface. The solid
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Figure 8.10: Spatial variance curves measured from the whole quenched surface after
quenching and after annealing with the normal incidence ultrasound.
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green and blue lines represent the spatial variance curves measured from the quench

surface before and after annealing, respectively, while the dished lines are the curve

fits using the depth-dependent SSR model given by Eq. (5.2). It can be seen that the

SSR model that includes the gradation of lamellar spacing along the propagation path

fits well with the variance curve measured from the quenched surface. By comparing

these two curves, it can be observed that the profiles are very similar, a result which

implies that the grain size and microstructure do not change as anticipated. The

spatial variance amplitudes are determined after fitting the curves with Eq. (5.2),

such that the change of variance amplitudes is quantified. This amplitude decreases

by 11.89 %, a result that can be used to estimate the residual stress according to the

developed stress-dependent backscatter model.

Fig. 8.11 demonstrates the estimated residual stress state in the quenched steel

block. Here several specific cases of residual stress states are considered, and the

stress-dependent backscatter coefficients K0, K1 and K2 shown in Eq. (8.5) are cal-

culated for each case. Table 8.3 shows the calculated stress-dependent backscatter

Figure 8.11: The residual stress state in the quenched steel block, the normal direction
of the quenched surface is parallel to T11.
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Table 8.3: Theoretical backscatter coefficients of pure iron under five residual stress
states, respectively [39].

Cases K0(GPa2) K1(GPa) K2 Residual Stress (MPa)

1. (T22 = T33 = 0) 582.1 -341.4 80.76 T11 = −208.3

2. (T11 = 4T22 = 4T33) 582.1 -250 31 T11 = −275, T22 = T33 = −68.75

3. (T11 = 2T22 = 2T33) 582.1 -175.1 5.9 T11 = −404, T22 = T33 = −202

4. (T11 = T22 = T33) 582.1 -10.3 -16.6 T11 = T22 = T33 = −6674

5. (T11 = 0, T22 = T33) 582.1 320.1 74 T22 = T33 = 214.8

coefficients of pure iron for each case and the estimated residual stress subject to the

change of variance amplitude. It can be seen that the calculated residual stress is

significantly dependent on the residual stress state. If the residual stress state is as-

sumed hydrostatic (case 4), the value of the estimated residual stress is so large that

it does not make sense. If it is assumed that there is no residual stress in the normal

direction, the obtained residual stress in the quenched plane is tensile stress, a result

that does not match the experimental observations. The average compressive residual

stress along the quench direction is estimated around -208 MPa if no residual stress

(T22 = T33 = 0) in the plane is considered. Thus, for the following discussion, the

residual stress state is assumed such that there is only residual stress in the quench

direction, no residual stress in the quench plane (T22 = T33 = 0).

To examine the distribution of residual stress on the whole quench surface, the scan

area (40 mm × 40 mm) shown in Fig. 8.7 is divided into 4 × 4 subareas for calculating

the spatial variance curves, respectively. About 400 collected waveforms were included

in calculating the spatial variance curve for each subarea. Then the SSR model given

by Eq. (5.2) is used to fit the variance curves to extract the variance maximum before

and after annealing for each subarea, respectively. The change of variance maximum



137

is quantified for each subarea. Based on the developed stress-dependent backscatter

model, the changes of variance peaks are transferred to the estimated residual stress

along the quenching direction by applying the elastic constants of the pure iron for

the 1080 steel.

Fig. 8.12 shows the distribution of the calculated residual stress along the quench-

ing direction with different colors. It can be seen that the calculated compressive

residual stress along the quenching direction appears among the whole scanning area.

The results show that the compressive residual stress is distributed over the whole

quenched surface. The values of the estimated compressive residual stress range from

-105 MPa to -340 MPa, and increase along the Y direction in general. The calculated

maximum compressive residual stress appears at the bottom of the left column with

coordinates (5,35), while the minimum residual stress locates at the top of the left

Figure 8.12: Distribution of the estimated residual stress (MPa) along the quenching
direction based on the elastic constants of pure iron.
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column (5,5). The errors of the estimated residual stress might come from the curve

fitting as well as the application of the elastic constants of pure iron for the 1080

steel. Hossain el al. [74] presented results from an experimental and numerical study

on triaxial residual stresses generated by spray water quenching in solid cylinders

and spheres samples made from type 316H stainless steel. The results showed that

highly compressive residual stresses occurred around the surfaces of the cylinders and

spheres and tensile residual stresses occurred near the center. The compressive resid-

ual stress value is similar to the estimate of residual stress in the quenched 1080 steel

block given here.

Figs. 8.13 and 8.14 demonstrate the spatial variance curves before and after an-

nealing for the subareas that exhibit the minimum and maximum changes of the

variance peaks after removing the residual stress, respectively. It can be seen that

17 18 19 20 21 22 23 24 25 26 27 28
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

t (µs)

Φ
 (

t)

 

 

After Quenching

After Annealing

Curve Fit with Eq. (5.2)

Curve Fit with Eq. (5.2)

Figure 8.13: Variance curves before and after annealing at the subarea with minimum
amplitude change as shown in Fig. 8.12.
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the profiles of variance curves scarcely change after annealing, only the amplitudes

decrease after removing the residual stress for both two subareas, results that further

verify that the changes of variance curves are attributed to the removal of the resid-

ual stress rather than the change of the grain size or the duplex microstructure. The

curve fits given by Eq. (5.2) match well with the variance curves near the peaks. The

changes of variance amplitudes are quantified of 6.47 % and 24.47 %, respectively.

The results demonstrate the significant dependence of ultrasonic scattering on resid-

ual stress. It may be possible to use this approach as a new nondestructive method

for measuring residual stress in the future.
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Figure 8.14: Variance curves before and after annealing at the subarea with maximum
amplitude change as shown in Fig. 8.12.
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8.3 Summary

In this chapter, the dependence of ultrasonic backscatter on stress was studied by

quantifying the variation of the spatial variance amplitudes under the applied unidi-

rectional load. Typical experiments were performed by acquiring waveforms with a

focused transducer in a pulse-echo configuration for which the ultrasonic propagation

direction is normal to the steel block but perpendicular to the loading direction. The

experimental results show a decreasing trend with increasing compressive stress as

predicted from the theory.

Based on the experimental observation, residual stress in the railroad wheel sample

was estimated by quantifying the variation of variance amplitudes after removing

residual stress via annealing. Both the rim surface and the cross section surface were

scanned with a focused transducer in a pulse-echo configuration. The experimental

results show that the variance amplitudes decrease about 12 % and increase about

8.0 % for the measurement from the rim surface and the cross section surface after

annealing, respectively, a result that matches the predicted results from the theory.

The estimated residual stress in the axial direction of a new wheel sample at a depth

of 9 mm from the rim surface is around -200 MPa with respect to an assumption that

the primary residual stress is parallel to the quenching direction.

A 1080 steel block was quenched unidirectionally with running water to introduce

residual stress along the quench direction. It was observed that the ultrasonic scatter-

ing response decreased dramatically after quenching. The effect of residual stress on

ultrasonic scattering was quantified by evaluating the change of the spatial variance

amplitudes after removing the residual stress via annealing. The experimental results

show that the average variance amplitude decreases by about 11.89 % based on nor-

mal incidence measurement. The average residual stress along the quench direction
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was estimated with respect to different assumptions of the residual stress state. The

value of residual stress along the quench direction was calculated to be around -230

MPa at a depth of 9 mm with an assumption that the primary residual stress was

parallel with the quench direction. The whole scan area was divided into 4×4 sub-

areas to map the residual stress in the quench direction. The result illustrated that

the compressive residual stress appears over the whole scanning area. The calculated

stress value ranges from about -105 MPa to -340 MPa. Diffuse ultrasonic backscat-

ter signals show a high sensitivity to residual stress so that this technique may be

developed into an non-destructive method of measuring residual stress in the future.
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Chapter 9

Conclusions and Future Work

In this dissertation, diffuse ultrasonic backscatter techniques were used to in-

spect railroad wheels. A new singly-scattered response (SSR) model that accounted

for pearlitic microstructure within grains was developed based on the previous SSR

model [24], [46] to evaluate lamellar duplex microstructure. The spatial variance am-

plitudes of the collected ultrasonic backscatter signals captured at many positions

dropped dramatically near the tread surface of a quenched wheel due to the creation

of the fine pearlite phase during quenching. The lamellar spacing was estimated us-

ing the developed SSR model, and the results showed a good agreement with optical

micrograph observations. A graded SSR model was also developed to investigate

the effects of the graded duplex microstructure within grains on ultrasonic scattering

along the propagation path. The quench depth was measured accurately by fitting

the variance curve measured from the tread surface with the graded SSR model using

the least squares error method. In addition, expressions of ultrasonic attenuation in

pearlitic steel were developed. The ultrasonic attenuation measured in a pearlitic

wheel steel showed a good agreement with theoretical predictions. The effects of

mode-converted (L-T) ultrasonic backscatter on pearlitic microstructure were also
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studied. The variance amplitudes measured in two directions on the cross section of

a wheel sample were different due to the different effective interaction lengths and/or

the preferred orientation of the duplex crystallites within grains.

Diffuse ultrasonic backscatter and ultrasonic attenuation demonstrate significant

sensitivities to lamellar duplex microstructure within grains (pearlite), such that they

can serve as non-destructive methods to evaluate pearlitic microstructure, to measure

grain elongation, texture and the quench depth, which can be used for quality control

in conjunction with other processes. However, there are still some problems and

limitations from both the SSR modeling and ultrasonic backscatter experiments that

need further investigation. First, the assumptions of the identically oriented duplex

crystallites within an individual grain and of the randomly oriented crystallites within

grains may be sources that cause the mismatch between the measured attenuation

and the theoretical predictions at deeper locations. The micrographs showed that

the duplex crystallites within an individual grain were often divided into multiple

domains with different orientations. Some preferred orientation or texture may exist

due to the non-uniform cooling rate, especially, at deeper locations. Second, the

simplification of duplex crystallites within an individual grain as circular plates with

the same diameter dimension (equal to the correlation length) and the same thickness

(equal to the lamellar spacing) may lead to errors in the evaluation of lamellar spacing.

The diameter dimension of a duplex crystallite was dependent on the location within

a grain. The dimension was much smaller near the grain boundaries compared with

that near the center of a grain. Therefore, the simplification that all the duplex

crystallites within a grain had the same geometries may influence the final results.

Lastly, the assumption that the inner product on the eighth-rank covariance tensor

for lamellar duplex microstructure within a grain was equal to the same quantity

when the lamellae were absent may also contribute to the mismatch and influence the
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final evaluation of lamellar spacing. The pure ferrite phase steel with a body-center

cubic crystal structure is soft and ductile, while the pure cementite phase steel with

a face-center cubic crystal is very hard and brittle. All these assumptions should be

reconsidered in the future.

In addition to theoretical limitations, there are also some limitations of the ultra-

sonic backscatter and attenuation measurements that are a concern. First, because

all the inspected samples were cut from only a single quenched wheel, more wheel

samples (including unquenched and quenched) from other wheel plants made with dif-

ferent manufacturing processes need to be inspected to investigate further the effects

of microstructural changes on ultrasonic backscatter due to the different manufactur-

ing processes. Second, the variance amplitude measured using a 10 MHz transducer

was much higher than that measured using a 15 MHz at the deeper locations, a result

which was very different from that measured near the tread surface. In addition, the

estimated lamellar spacings from the 10 MHz and 15 MHz measurements were not

identical. Therefore, more work is needed to investigate if there is some frequency

dependence and what is the most appropriate frequency range. Third, mismatches be-

tween the experimental attenuation, mode-converted backscatter and the theoretical

predictions were observed at deeper locations, outcomes that might be attributed to

the larger grains, much larger lamellar spacing, or the preferred orientation of duplex

crystallites. More measurements are needed to find the sources of these mismatches.

Finally, more ultrasonic measurements including those at multiple frequencies and/or

multiple modes are needed to estimate the factor M directly.

In this dissertation, the dependence of ultrasonic backscatter on stress was also

studied. The ultrasonic backscatter was measured on the side surface of a 1018 steel

block under a uniaxial stress load. The experimental results demonstrated a decreas-

ing trend of ultrasonic backscatter, an outcome that was similar to the theoretical
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prediction based on the stress-dependent covariance tensor of elastic moduli. The

average residual stress in a quenched steel sample was estimated to be -230 MPa at a

depth of 9 mm in the quench direction from the average 11.86 % change of variance

amplitudes with and without residual stress. Diffuse ultrasonic backscatter demon-

strates a high sensitivity to stress so that this technique may be developed potentially

as a non-destructive method for residual stress measurement. However, there are also

some limitations that need further examination. First, the slope of the measured

variance amplitudes versus uniaxial stress was very different from the theoretical pre-

diction, a result that might be attributed to the use of the elastic constants of steel

with that of pure iron. Second, the real residual stress state in a quenched sample was

more complicated than the assumption that there was not shear residual stress and

that the primary residual stress was parallel to the quench direction. All the residual

stress components can affect the ultrasonic backscatter, so that this assumption can

cause some errors in the estimate of residual stress. Finally, due to the limit of the

current experimental facilities, the residual stress in the quenched sample can not

be confirmed using other techniques, such as X-ray diffraction or neutron diffraction.

Therefore, more work is needed to show precisely how the backscatter depends on

stress.

The future work will target the limitations and problems as listed above. The

objectives of the future theoretical research will focus on the modification of the SSR

and attenuation models by including the different elastic properties of ferrite and

cementite phases, and by considering the preferred orientations of duplex microstruc-

ture at deeper locations due to the non-uniform cooling rate to make the theoretical

predictions match better with the experimental results. Other methods of simplifying

the duplex crystallites within a grain, such as circular plates with varying position-

dependent diameter dimensions within a grain, will also be applied for comparison
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with the current simplified approach. The major objectives of the future experimen-

tal research will focus on investigating the appropriate frequency range and applying

different frequencies to obtain the parameters that define the lamellar spacing. Then

multiple ultrasonic backscatter measurements will be made to extract the lamellar

spacing, the factor M , the correlation length and the residual stress simultaneously

using multiple frequencies (7.5 MHz, 10 MHz, 15 MHz and so on) and multiple modes

(including L-L, L-T and T-T). In addition, other techniques such as X-ray diffraction

or neutron diffraction will be used for measuring residual stress in quenched steel

samples to compare with ultrasonic backscatter measurements.
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