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Figure 5. Analog analyses. Results of the salinity analog CCA analysis (see text) are indicated by the bars on the right side of the graph; those 
samples in the extreme 5% (very poor salinity analogs) and the extreme 10% (poor salinity analogs) are indicated. Bars indicate one sample 
unless indicated otherwise in parentheses. Analog analysis, measured by dissimilarity, is indicated by the column graph. Dissimilarity coefficient 
(DC) is based on a squared chord distance. The minimum distance of each fossil sample to a modern calibration sample is shown. The 50% and 
90% confidence interval (C.I.) lines shown indicate the 50% and 90% confidence limit for the calibration set (see text for details). 



A diatom-based reconstruction of drought from Moon Lake, ND: The last 2,300 years      173

In the second approach, every fossil sample was 
compared to the calibration set by using a squared 
chord distance as a dissimilarity measure (Prentice, 
1980; Overpeck et al., 1985) using the computer pro-
gram ANALOG (H. J. Birks & J. M. Line, unpub. pro-
gram). A critical value with which to compare the fossil 
samples was determined by calculating the mean min-
imum dissimilarity coefficient (DC), and the 50% and 
90% confidence intervals for the 53 modern samples 
(i.e. each sample in the calibration set was compared 
with all other modern samples to determine the sample 
to which it had a minimum DC). Any fossil samples 
with minimum DCs in the extreme 10% of the modern 
calibration set were deemed to have a very poor or no 
modern analog, and those samples with DCs between 
the 50% and 90% confidence intervals of the calibra-
tion set to have poor modern analogs. Only 2.8% of 
fossil samples have very poor or no analogs (DCs > 
1.0), whereas 7.1% have poor analogs (DCs between 
0.82 to 1.0) (Figure 5). Those samples with no mod-
ern analog that occur between ca. 1,850–2,100 yr B.P. 
are dominated by Nitzschia sp. 1, which is not pres-
ent in the calibration set. Samples with no analogs at 
ca. 450– 500 years B.P. have high percentages (ca. 25–
36%) of Cymbella cymbiformis var. nonpunctata and 
Achnanthes minutissima, which only reach a maximum 
abundance of 2.2 and 3.7% in the calibration set, re-
spectively. Some of these samples also have high per-
centages of Denticula elegans Kütz., Epithemia argus 
(Ehrenb.) Kütz., and Mastogloia smithii in comparison 
to the low abundance of these taxa in the modern sam-
ples. Samples with poor modern analogs (DCs between 
0.82– 1.0) contain taxa that occur at higher abun-
dances than in the modern samples. These include the 
taxa above and Entomoneis paludosa (W. Sm.) Reimer 
in Patr. & Reimer, Epithemia adnata (Kütz.) Rabenh., 
Cocconeis placentula var. euglypta, and Diatoma tenue 
var. elongatum. 

Both of the above methods are appropriate for dis-
tinguishing very “odd” fossil samples (such as those 
samples dominated by Nitzschia sp. 1) and thus poten-
tially unreliable salinity reconstructions (i.e. very poor 
salinity analogs) that also have very poor modern ana-
logs based on DCs. However, the two approaches differ 
greatly in distinguishing those samples that have some-
what unreliable salinity reconstructions (i.e. poor salin-
ity analogs) and poor modern analogs based on DCs. If 
one is purely interested in the reliability of a single envi-
ronmental reconstruction, the “salinity analog” approach 

may be more appropriate. If, however, more than one 
environmental variable is being considered concurrently 
or many fossil samples contain taxa not in the calibra-
tion set or in higher abundances than found in the cali-
bration set, then the analog method based on minimum 
DCs may be more appropriate. 

Moon Lake drought history 

We believe that the diatom-inferred salinity record from 
Moon Lake is a good proxy for drought intensity, du-
ration, and frequency over the past 2,300 years because 
of the highly significant correlation between salinity and 
drought occurrence over the past 100 years (Figure 2), 
the excellent stratigraphic reproducibility (Figure 3), and 
the fact that > 90% of the fossil samples have appropri-
ate modern analogs and reliable salinity reconstructions 
(Figure 5). Salinity reconstructions were calculated as in 
the short-core analysis. Mean bootstrap estimates of sa-
linity calculated from 1,000 cycles are highly correlated 
with the weighted-average salinity estimates (r = 0.99). 
For purposes of comparison to other calendar-year chro-
nologies, we switch from yr B.P. to A.D. for much of the 
discussion below. 

Evidence from the Moon Lake diatom record sug-
gests that extreme droughts of greater intensity than the 
1930s Dust Bowl years were more frequent prior to A.D. 
1200 (Figure 6a). Since A.D. 1200, conditions have 
been wetter with short episodes of drought conditions. 
This pronounced shift of mean salinity (Figure 6b) co-
incides with the end of the “MWP” (A.D. 1000–1300; 
Lamb, 1982) and the onset of the “LIA” in North Amer-
ica (A.D. 1300–1850; Porter, 1986). 

The distinct period of high salinity from A.D. 1000–
1200 provides evidence for an arid “MWP” in the NGP. 
The “MWP” is an interval of warmer temperatures 
whose geographic extent, timing, and climatic mani-
festation is debated. In North America, glacial evidence 
from the Canadian Rockies and tree-ring evidence from 
the Sierra Nevada suggest warmer conditions, whereas 
tree-ring evidence from the southeast USA suggests that 
this period is not climatically distinct (Hughes & Diaz, 
1994). Although the “MWP” at Moon Lake has some of 
the highest peaks in salinity of the past 2,300 years, a 
number of droughts of equal intensity occur prior to this 
period, including a high frequency of extreme drought 
from A.D. 200–370 and A.D. 700–850. Thus, although 
the “MWP” is a period in which extreme droughts are 



174   Laird, Fritz, & Cumming in Journal of Paleolimnology 19 (1998)

frequent, especially in comparison to the “LIA” interval 
(see below), it is not unusual in comparison to the previ-
ous thousand years of climatic history. 

The Moon Lake record provides evidence for a hy-
drologically complex “LIA” interval, with periods of 
wet conditions interspersed with short episodes of drier 
conditions at times comparable to the droughts of the 
1930s. The “LIA” is well documented by glacier ex-
pansion in the mountains of western North America and 
Europe (Grove, 1988) and has often been used to de-
scribe a continuously cold interval of global extent from 
300 (ca. A.D. 1550–1850) to 500 (ca. A.D. 1350–1850) 
years duration depending on the date of onset (cf. Luck-
man, 1993). Glacier evidence from the Northern Hemi-
sphere suggests an earlier onset (Porter, 1986). Recent 
syntheses indicate that the “LIA” was much more com-
plex and varied among regions, and was composed of 
decade-long cold episodes separated by warmer inter-

vals (Bradley & Jones, 1993). The Moon Lake record 
supports this pattern. Although the “LIA” was not a 
continuously cold or wet period, at Moon Lake this in-
terval was generally wetter in comparison to the pre-
vious 1500 years (Figure 6b), with salinities reaching 
lows not recorded in the diatom record since the early 
Holocene (Laird et al., 1996a). 

Regional comparisons 

Northern Great Plains and Midwest regions 

Inferred climate at Moon Lake over the past 750 years 
indicates that, although at times the intensity and dura-
tion of drought was somewhat greater than in the 1930s, 
the frequency of drought has not been appreciably dif-
ferent over the past seven centuries. Similarly in Alberta 
on the western edge of the NGP, tree-ring data suggest 

Figure 6. (A) Dotted line is diatom-inferred salinity (g l–1), and solid line is a Fast Fourier transformation (Press et al., 1988) of 5-year equal-
interval interpolated data using a 10-point smoothing window. Average resolution between samples is 5.3 years. Data are presented on a log scale 
due to the log-based transfer function. (B) Deviation from the mean log salinity of the past 2,300 years. The 92-year gap from 240 to 332 yr B.P. 
is due to desiccation of the top 16-cm of core section two. 
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that the frequency of droughts has been similar during 
the past five centuries, yet several droughts more in-
tense than those recorded in the last century occur (Case 
& MacDonald, 1995). Although these records have a 
broadly similar pattern, with synchronous droughts dur-
ing periods such as the 1610s and 1790s, there is also in-
coherence in the timing and intensity of drought events. 
Other tree-ring records (Meko, 1992) and climatic anal-
yses of the past century (Oladipo, 1986) indicate that 
droughts are often asynchronous within the vast Great 
Plains region. On the periphery of the USA Great 
Plains, tree-ring records from A.D. 1700–1977 indi-
cate droughts clustered around the late 1750s and 1860s 
(Stockton & Meko, 1983), which correspond to periods 
of only moderate aridity at Moon Lake, and the interval 
from A.D. 1825–1838, in which no droughts occurred, 
corresponds to an extreme fresh interval at Moon Lake. 
This latter period corresponds to an interval of abruptly 
cold temperature that is frequent in many records in the 
early to mid-1800s (e.g. Jacoby et al., 1988). The Al-
berta tree-ring record (Case & MacDonald, 1995) also 
indicates that much of the early to mid-1800s was rela-
tively moist. 

Correlation of climatic conditions at Moon Lake dur-
ing the past 750 years with conditions 230-km east in 
northwest Minnesota provides support for a regionally 
complex “LIA”. The two major freshwater periods (sa-
linity < 3 g l–1) at Moon Lake are contemporaneous with 
two periods of reduced fire frequency (A.D. 1240–1440 
and since A.D. 1600), inferred from charcoal accumula-
tion (Clark, 1988, 1990), with an intervening period of 
greater fire frequency (A.D. 1440–1600), which coin-
cides with more saline conditions at Moon Lake. Other 
sites in the NGP suggest wetter conditions during the 
“LIA” interval, such as Chappice Lake, Alberta, which 
has a high-lake stand from ~A.D. 1330–1890 (600–100 
14C yr B.P., Vance et al., 1993). Some sites, however, in-
dicate an arid climate, such as Devils Lake, North Da-
kota from ~A.D. 1430–1890 (500–100 14C yr B.P., Fritz 
et al., 1994) and Redberry Lake, Saskatchewan from 
~A.D. 1430–1780 (500–200 14C yr B.P., Stempvoort et 
al., 1993). However, these latter studies are not of high 
enough resolution to discern the apparent complexity 
typified by the Moon Lake record. 

Evidence of an arid “MWP” in the NGP exists from 
paleorecords of low lake level in several sites, including 
Chappice Lake from ~A.D. 1020–1330 (1000–600 14C 
yr B.P., Vance et al., 1993), Waldsea Lake from ~A.D. 
1020–1290 (1000–700 14C yr B.P., Last & Slezak, 1988), 

Redberry Lake from ~A.D. 1020–1170 (1000–900 14C 
yr B.P., Stempvoort et al., 1993), and Deadmoose Lake 
(Last & Slezak, 1986, 1988). These low-lake stands 
roughly correspond to the “MWP”, A.D. 1000–1300. In 
contrast Ceylon Lake, Saskatchewan, indicates a high 
lake level at this time (Teller & Last, 1990). 

The degree of resolution and time frame examined 
is particularly critical for assessing the “MWP” and the 
climatically complex “LIA” interval, which spans sev-
eral centuries. Both of these events are evident in the 
century-scale diatom analysis of Moon Lake (Laird et 
al., 1996a), but they were based on only a few points, 
and at this resolution provide little information on cli-
matic variability within those periods. Clearly, more 
well-dated paleoclimatic records at a high resolution are 
needed to confidently characterize regional patterns dur-
ing the “MWP” and “LIA” intervals. 

Western and Southwest USA 

Extreme drought reconstructed from giant sequoia (Se-
quoiadendron giganteum (Lindley) Buchholz) tree rings 
in the San Joaquin Valley, California, occurred from 
A.D. 700–850, A.D. 250–350, and A.D. 1480–1580, in 
general order of decreasing intensity (Hughes & Brown, 
1992). The first two intervals correspond to periods of 
extreme drought at Moon Lake, and the latter to a period 
within the “LIA” interval that had more arid conditions. 
Although the “MWP” does not stand out distinctly in the 
sequoia record, there are indications of extreme drought, 
although drought is not as frequent as in the previously 
mentioned periods. In contrast, the fire history recon-
structed from giant sequoia groves in the Sierra Nevada 
indicates that the period from ca. A.D. 1000–1300 had 
the highest frequency of multi-grove fire events, which 
tend to occur during dry years (Swetnam, 1993). This 
period overlaps with the arid “MWP” of Moon Lake, but 
periods of cooler climate and lower fire frequency from 
A.D. 500 to 1000 and after A.D. 1300 do not consistently 
correlate with periods of higher moisture at Moon Lake. 
Other evidence for extended periods of drought during 
Medieval times in the Sierra Nevada exist from drowned 
tree stumps, with drought events between ca. A.D. 900–
1100 and A.D. 1200–1350 separated by a very wet in-
terval (Stine, 1994). Although the earlier drought period 
overlaps with the onset of “MWP” conditions at Moon 
Lake, the apparent wet interval occurs during maximum 
aridity of the “MWP” at Moon Lake, and the second 
drought period occurs when conditions were generally 
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becoming wetter at Moon Lake. However, the interval 
A.D. 1200–1350 is highly variable at Moon Lake, with 
generally increasing precipitation interspersed with ex-
treme short-lived droughts. Tree-ring data from subal-
pine conifers in the southern Sierra Nevada support the 
occurrence of extended drought in the Sierra from A.D. 
1200–1220 and A.D. 1250–1350 (Graumlich, 1993) but 
indicate a much shorter interval of drought from A.D. 
1020–1070. 

A record of extreme floods during the past 1,000 years 
from the Southwest USA (Ely et al., 1993) is broadly 
synchronous with moisture changes at Moon Lake but 
of opposite sign. Frequent high-magnitude floods oc-
cur between A.D. 1000–1200, with a sharp drop of large 
floods from A.D. 1200–1400, then increasing floods, es-
pecially from A.D. 1550–1750. Extreme negative pre-
cipitation anomalies in the North Central USA, concur-
rent with extreme positive precipitation anomalies in 
the Southwest USA are analogous to episodes during 
the 1930s and late 1980s (Riebsame et al., 1991; Tren-
berth et al., 1988), when southerly airflow enhanced the 
effects of the early summer monsoon in the Southwest 
USA and high pressure over the Central USA displaced 
the jet stream northward. 

The broad coherence among these sites suggests that 
general circulation patterns are a dominant forcing fac-
tor, whereas the specific timing, duration, and magni-
tude of precipitation patterns within and among regions 
may be controlled by more regional and local processes. 
This may explain the asynchrony among records. Alter-
natively, the asynchrony could be a result of the differ-
ing response of the various proxies to climatic forcings 
or differences in chronological control. Nonetheless, the 
period from ca. A.D. 900–1400 is a period of extremes 
not seen in recent history, with spatial variability sug-
gesting an interplay of large-scale circulation anomalies, 
regional climatic forcings, and amplification by more lo-
cal land-surface processes. 

General discussion and implications 

Spatial patterns of droughts are usually ascribed to the 
placement of high-pressure ridges, the northward dis-
placement of the jet stream, and the zonal or meridio-
nal character of the circulation (Trenberth et al., 1988; 
Borchert, 1950, 1971; Namias, 1983). However, the un-
derlying processes that cause variations in the general at-
mospheric circulation and decadal to centuries-long pre-
cipitation anomalies are difficult to understand. The 

extreme 1930s drought covered approximately 65% of 
the continental USA in August of 1936 (Riebsame et al., 
1991). However, even within this driest decade of the 
20th century, drought was not continuously persistent but 
rather consisted of several phases that affected different 
regions of the country at different times (Skaggs, 1975). 

Various mechanisms for drought in the Great Plains 
have been proposed, including an association with anom-
alous sea-surface temperatures (Palmer & Branković, 
1989; Trenberth et al., 1988; Namias, 1983), shifts in the 
general circulation pattern of the atmosphere (Borchert, 
1950, 1971; Namias, 1983), and association with the 22-
year Hale solar magnetic cycle, although considerable 
variability in the period length from 15 to 25 years oc-
curs (Stockton & Meko, 1983). Spectral analysis of the 
Moon Lake salinity also suggests that the recurrence of 
drought may be associated with solar and lunar cycles 
(Laird et al., 1996b). Several explanations of decadal- to 
centennial-scale climatic variability have been hypothe-
sized, including inherent variability of the linked atmo-
spheric-oceanic system, solar variability, volcanic erup-
tions, and variability of “greenhouse” gases (Rind & 
Overpeck, 1993). The occurrence of drought and the as-
sociated circulation patterns is likely a combination of 
such forcings. 

The present-day Great Plains is one of the most 
drought-prone regions of the USA (Karl & Kosielny, 
1982), which has been both socially and economically 
devastated by historical droughts (Borchert, 1971). Ev-
idence presented here suggests that the past 750 years 
have been relatively wetter than the previous 1550 years, 
when recurring severe droughts were more the norm. 
The high frequency of extreme and persistent droughts 
recorded in Moon Lake from A.D. 200–370, A.D. 700–
850, and A.D. 1000–1200 have no modern equivalents. 
These drought events were of much greater intensity 
and duration than any in the 20th century, suggesting 
that the circulation anomalies that produce widespread 
drought were more persistent. Considering the impacts 
of the relatively short-lived 20th-century droughts, a 
high frequency of extreme drought persisting for centu-
ries would be devastating, and could not be alleviated 
by irrigation or other current agricultural practices. The 
potential impacts of changes in precipitation patterns in 
the future are of particular importance to agricultural re-
gions, which are vitally dependent upon water resources. 
High-resolution records of drought over the past 2,000 
years, such as presented here, provide a longer-term per-
spective of effective moisture patterns, from which deci-
sions on water-resource management may be made. 
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