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Calculation of dielectric susceptibility for complex ionic systems: 
Application to a predicted superlattice 

J. L. Feldman, L. L. Boyer, and P. J. Edwardson 
Condensed Matter Physics Branch, Condensed Matter and Radiation Science Division, Naval Research Laboratory, 

Washington, D. C. 203 75-5000 

J. R. Hardy 
University of Nebraska-Lincoln, Lincoln, Nebraska 68588-011 I 

(Received 9 May 1988; revised manuscript received 23 March 1989) 

The Gordon-Kim theory of interionic interactions between closed-shell ions, which has had con- 
siderable success for existing alkali halide systems, has been applied to the determination of the 
structure, phonon dispersion, and room-temperature dielectric properties of a proposed superlat- 
tice, RbF(NaC1)2, of alkali halides. The dielectric properties of such a hypothetical material can 
have an unusually strong low-frequency dependence because of the presence of Brillouin-zone- 
folded "infraredw-active modes. In evaluating the standard expressions for the dielectric properties, 
in the rigid-ion approximation, we make use of standard cubic and quartic anharmonic terms in ad- 
dition to the instantaneous-phonon cubic anharmonic term, which is needed because of the lack of a 
center of inversion. Our procedure for numerically calculating the absorption for complex materi- 
als is described in detail. Effects of off-diagonal terms in the Green's function and of the long-range 
ionic Coulomb interactions are examined. In particular, an absorption peak at 30 cm-' is found to 
be especially sensitive to these contributions. This paper demonstrates (a) the theoretical existence 
of metastable phases of an alkali halide superlattice and (b) the application of anharmonic perturba- 
tion theory to determine the dielectric response in the infrared and millimeter-wave region for such 
complex materials. The particular structure studied is just one of many possibilities in this class of 
materials, which offers the opportunity for joint theoretical and experimental research to fabricate 
structures with properties tailored for specific applications. 

I. INTRODUCTION 

The infrared properties of alkali halides have been of 
interest as a testing ground for anharmonic theory and 
for technological applications, e.g., laser windows. Ma- 
terials and/or devices with high sensitivity to electromag- 
netic radiation are important for technology. For in- 
frared and higher frequencies specific applications can be 
tailored from materials with intrinsic excitations at the 
desired frequencies. Applications at microwave and 
lower frequencies become a matter of tailoring structures 
on a macroscopic scale. The region of transition between 
microwave and infrared is clearly more difficult. The 
purpose of these studies is (a) to explore, theoretically, 
the possibility of forming a superlattice of alkali halides, 
in particular, RbF(NaCl),, and (b) to rigorously calculate 
the associated dielectric\properties given such a superlat- 
tice. Superlattices of the sort reported here offer the pos- 
sibility of tailoring at  the microscopic level over selected 
distances, making such structures potentially useful for 
applications in this transition region. I t  would also be 
worthwhile to attempt to fabricate such materials for 
their use as a new testing ground for interionic potentials 
and perhaps to shed light on the supermodulus effect seen 
in intermetallic superlattices and not thoroughly under- 
stood.' Other somewhat related exploratory types of cal- 
culations, but for simpler structures, have been per- 
formed by Hardy and c o - w o r k e r ~ . ~ ~ ~  

Both (a) and (b) depend crucially on the interionic po- 
tential. For this we use the Gordon-Kim (GK)  theory 
which is an  ab initio theory for the interionic potential in 
closed-shell systemsa4 It  has been modified recently5 to 
allow for possible changes in ionic electron densities from 
those of free ions due to the presence of surrounding ions, 
but we base our work on the earlier theory in which one 
overlapped free-ion electron densities to obtain the elec- 
tron density for any configuration of ions, and used the 
local-density approximation (LDA) including the 
Thomas-Fermi approximation for the kinetic energy term 
in the energy functional to obtain overlap interionic po- 
tentials. Within the G K  theory, to a good approximation 
the interionic interactions are represented by two-body- 
central potentials, described by overlap and long-range 
interionic Coulomb terms. Numerical results for the 
overlap term are, of course, parametrized for the purpose 
of obtaining radial derivatives, but that parametrization 
can be done quite accurately. 

The major~computat~onal effort is in the application of 
anharmonic perturbation theory (APT). APT lattice dy- 
namics has been known for a long time, but its implemen- 
tation has generally been restricted to rather simple sys- 
tems. In  most applications on simple systems, like alkali 
halides, only nearest-neighbor central forces are assumed 
for the explicit anharmonic potential derivatives, despite 
the fact that ionic Coulomb interactions are present. 
Plausibility arguments for the neglect of Coulomb in- 
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teractions in anharmonic terms had been given in the 
literature and perhaps their importance in anharmonic 
terms for alkali halides is still not widely appreciated, al- 
though their importance was discussed in a recent review 
a r t i ~ l e . ~  Indeed, we are aware of only three articles 
where Coulomb-interaction anharmonic contributions in 
ionic materials appear to have been rigorously taken into 

The crystal structures treated are also gen- 
erally of such simplicity that off-diagonal elements of the 
Green's function are ingorable if not zero and that the 
standard self-energy diagrams suffice. We mention that 
Maradudin and ~ e i n ' '  presented an argument for 
neglecting off-diagonal self-energy terms within perturba- 
tion theory. On the other hand, it has been pointed out 
to  usi1 that off-diagonal terms cannot be neglected if 
differences in the corresponding harmonic frequencies are 
small, i.e., roughly of the order of the off-diagonal self- 
energy terms. Furthermore, we shall see that if there is a 
disparity among values of normal-mode electric polariza- 
tion values then off-diagonal Green's-function elements 
are important even though they themselves may be small. 
This latter observation has also been made previously'2 in 
the context of phenomenological treatments. Only Cow- 
leyi3 has treated a system (SrTi03) in which off-diagonal 
elements in the phonon self-energy have been numerically 
evaluated and in which their effect on infrared properties 
has been displayed. Cowley's work was also unusual in 
the sense that the range of neighbors considered for 
evaluating anharmonic coefficients was not restricted to 
nearest neighbors. For structures in which every atom is 
a center of inversion the cubic anharmonic 
instantaneous-phonon self-energy term1' has been found 
to vanish; also, perhaps suggestive of a more general 
theorem, Haro et al. l 4  found that it vanishes in the case 
of a simple potential model for Si, for which there are in- 
version sites, although not at  the atomic positions. On 
the other hand, when the point group does not contain an 
inversion center this term clearly needs to be evaluated. 

Maradudin and  atov ova'^ and ~ i r m a n ' ~  have discussed 
the application of group representation theory to the 
phonon Green's function and, in particular, have shown 
that off-diagonal elements vanish unless the two polariza- 
tion vectors involved correspond to the same partner of 
the same irreducible representation of the crystal point 
group in the case of zone-center modes. Earlier, Wallis 
et a1.I7 had also examined symmetry effects in Green's 
functions for zone-center optical modes, but they restrict- 
ed their discussion to the rocksalt structure and did not 
make use of group representations. Wallis et al. proved 
that (a)  no off-diagonal elements occur, (b) due to LO-TO 
splitting the LO- and TO-associated r( 0) functions differ 
from one another, but only by a multiplicative constant, 
which is dependent on the ratio of LO and T O  frequen- 
cies, and (c) the TO-mode degeneracy is not affected by 
anharmonicity, i.e., the H ( R )  functions for both T O  
modes are the same. [We denote the complex self-energy 
function of frequency (fi/2rr) as H( f i )=A(R) - i I ' ( f i ) . ]  

Formal aspects which we shall discuss, largely in Ap- 
pendixes, are (a) the derivation of the expression for the 
phonon self-energy matrix corresponding to zone-center 
modes in terms of an average over an irreducible volume 

element of the first Brillouin zone (IBZ) and (b) the na- 
ture of the cubic anharmonic instantaneous-phonon self- 
energy expression. In the appendixes and the following 
section, which gives the formulas to be evaluated, we will 
make brief use of the fact that the system of interest to us 
is trigonal, with point group C3", and that its point and 
site-symmetry groups are identical. Section I11 contains 
a further development of the formulas and procedures of 
evaluation when two-body forces are assumed. (See Sec. 
IV mainly for further details of the structure which we 
have obtained.) Sections V and VI contain detailed 
checks on our numerical procedures and results for the 
phonon self-energies and dielectric properties. Section 
VII contains a summary. 

11. REVIEW OF THEORY 

Infrared properties are usually describable by the 
frequency-dependent complex dielectric susceptibility 
tensor X, (a). Following the theoretical development of 
Cowley,''Maradudin and ~ a l l i s , ' *  and vinogradov2' we 
write, in the rigid-ion approximation, 

where 

and where w(q,j)  and e ( ~ ; q , j )  ( ~ = 1 , 2 , .  . . , n )  are the 
normal-mode frequency and polarization vector for a 
general wave vector q, z K  and M ,  are the ionic charge 
and mass of the ~ t h  basis ion, and n is the number of 
basis ions. G is the one-phonon frequency-dependent 
Green's function given by the Dyson equation, 

and n ( q ,  j,  j'; R ) is the self-energy function (in frequency 
units). We restrict ourselves to the quantity 
n,j,=lI(O,j,j ' ;R). We will assume that in Eq. (1) q has 
approached zero along the trigonal (2) direction and we 
will consider x,, only, which gives the dielectric response 
to radiation incident along the trigonal axis. The main 
difficulty of these calculations is the evaluation of the 
phonon self-energy diagram of Fig. I(a) and we shall dis- 
cuss its evaluation in detail. The other diagrams of im- 
portance are given in Figs. l(b) and l(c) but of these only 
the former, which is the instantaneous-phonon diagram, 
will be discussed in any detail. 
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A. Standard cubic anharmonic contribution 

Corresponding to the diagram of Fig. l(a) we have the expression 

where we write, symbolically, 

where n E (efiwlkT- 1 and N is the number of unit cells. A major consideration of this calculation is the treatment of 
the cubic anharmonic coefficients, 

where Cartesian indices.) Finally, expressions in terms of sum- 
mations over the IBZ, rather than the full BZ, are de- 
rived in Appendix A. 

I J 
B. Theory of instantaneous-phonon cubic 

is a cubic anharmonic coupling coefficient. (The Einstein anharmonic contribution 
summation convention over repeated indices is used for 

The diagram in Fig. 1 (b) is expressed as 

(b) 
n'3,b'= 

(a) 
, 2 ~ ( ~ ~ ' ( w ) @ ( ~ , j ; O , j ~ ; O , j ' )  

q 2 J l  ,j2 

- ,  q2 x @ ( O , j ~ ; q , , j ~ ;  -q2,j2) , (8) 
- 9112 where 

TG tij 1 ~ ' " b ' ( ~ ) ,  7- 1 - 
Oj' 16nN [ d o ,  j )o (0 ,  j ' )]1/2 

- 2n (q2 , j2  )+ 1 
qljl x d o ,  j, )2w(q2,j2 1 ' (9 )  

As is known (e.g., Ref. 61, both with respect to its realness 
and independence of Sl, n'3b' is similar to the ordinary 
quartic anharmonic contribution and dissimilar to the or- - dinary cubic anharmonic contribution. a We observe that the q =O internal phonon line in Fig. 
l(b) appears to render the results dependent on the direc- 
tion of q used in taking that q =O limit, since the 
Coulomb term in the dynamical matrix is irregular at - - 

0 j ojr 
small q. In fact, for any finite crystal, momentum conser- 
vation at each interaction vertex is not required and an 

FIG. 1 .  Lowest-order anharmonic self-energy diagrams. (a) average [of Eq. (811 over wave-vector directions, depen- 
Standard cubic anharmonic diagram; (b) instantaneous-phonon dent on sample shape, is appropriate. On the other hand, 
cubic anharmonic diagram; (c) standard quartic anharmonic di- when retardation effects of the electromagnetic interac- 
agram. tion between ions are taken into account there exist 
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unambiguous q = O  frequencies and polarization vectors, 
i.e., ones which do not depend on the limiting process, as 
proven in the case of a diatomic system by ~ o u d o n . "  
These modes have polarization either parallel or perpen- 
dicular to the trigonal axis, and they have LO-mode fre- 
quencies. In Appendix B we use group theory to prove 
that only the modes which have polarization parallel to 
the trigonal axis contribute to Eq. (8). It is also demon- 
strated in Appendix B that in Eq. (8) the summation over 
the BZ can simply be replaced by a summation over the 
IBZ. 

111. PAIR-POTENTIAL SIMPLIFICATIONS 
AND DETAILS OF PROCEDURES 

Next we assume that the potential energy, @, can be 
written as the sum of pair potentials. We may write, for 
example, l ,1,2) as the contribution to @,fly( 1,1,2 ) 
from the pair potential, 4( r ) ,  between atoms at sites 1 and 
2. Following Leibfried and ~ u d w i ~ "  we obtain 

where x 2 l = x ( 2 ) - x (  1 )  and 

Other anharmonic coefficients derived from 4 ( r )  that 
enter the sums in Eq. (7) are l , l ,  11, @Papy( l ,2 ,1) ,  

and @P,py ( 1,2,2 ) assuming atom 1 is in the cell 1 = O  and 
atom 2 is not. Otherwise, if both atoms are in cell 1 =0, 
terms of the form @ipy(2, 1,1), etc., contribute to the sum 
as well. However, it is necessary to evaluate expression 
(10) only once for each ion pair since we can make use of 
the simple relations:22 

etc., derived on the assumption of a central potential. 
Rather than obtaining algebraic expressions that are 
applicable to a specified structure and range of interac- 
tions, our general computational procedure is to search 
for all pairs of atoms of separation less than some max- 
imum distance, with one atom of each pair restricted to 
1 =0, and to numerically evaluate the various contribu- 
tions to the sum in Eq. (7) for each pair. Furthermore, it 
may be advisable to make use of Fourier transforms of 

Similar transforms, but written expressly for central 
forces, were defined in Refs. 6 and 7. 

The anharmonic coupling coefficients appearing in ex- 
pression (5) can be written as 

where 

The sum over p goes over ion pairs. The I t ,  I" summations in the latter expression reduce to at most a single nonvanish- 
ing term for each p. For example the pair p = 1, say, corresponding to sites (:) and ($1  gives a nonvanishing contribu- 
tion to q1 ) of 

KK'K 

The use of such Fourier transforms is economical because t h e p  summation can be performed independently of the j , ,  j2 
summations in Eq. ( 5 ) .  Also, it is known that if +( r )  is chosen as the ionic Coulomb potential, the summations defining 
these Fourier transforms are absolutely convergent, unlike the harmonic-approximation case. Hence, a real-space sum 
is sufficient, although it is possible to make use of theta transformations as done in previous work.' 

Furthermore, if the range of the interatomic potential is not large compared to the size of the unit cell it may not be 
beneficial to utilize Fourier transformations. In that case it is useful to write expression (5) as 

where 



40 CALCULATION OF DIELECTRIC SUSCEPTIBILITY FOR . . 

iq, .(XI, -XI,, 1 

p /',K' I",K" 

and where the prime on the summation sign denotes that 
the sum is restricted to ion pairs for which one of the 
sites is (i); the others are denoted (top)). In the above ex- 

pressions we have also used the definition 
iq,X, 

e 
E(~;q,j)?-----e(~;q,j) 

(M,)"~ 

and expressions (1 1). To reduce computational time, use 
can be made of the fact that the j,, j, sums in Eq. ( 5 )  can 
be replaced by sums for which j, > j,, as can easily be 
shown. This replacement depends on the fact that in the 
ql  sum ql runs over -q as well as q; one can still make 
use of it when the sum is restricted to the IBZ (as in Ap- 
pendix A), and one must still consider only the real part 
of the product following the F ' ~ " '  factor. 

Finally, we note that similar arguments to those 
presented for cubic anharmonicity also hold true for the 
quartic case, which will therefore not be discussed in any 
detail. Suffice it to say that the quartic case is an easier 
computational problem, because it involves single, rather 
than double, summations over polarization indices [see 
Fig. l(c)] and is il independent. 

IV. MATERIAL STRUCTURAL CONSTANTS 
AND PHONON DISPERSION CURVES 

The calculations of infrared properties to be presented 
are based on a structure of a material which to our 
knowledge does not presently exist in nature but one 
which we have found to be metastable on the basis of the 
GK theory. In particular the theoretical compound 
which we study is RbRNaCl),. This material was chosen 
because the GK theory has been found to yield reason- 
ably good thermal and structural equilibrium properties 
of NaCl and RbF, and because the lattice parameters of 
NaCl and RbF are similar which we presumed to be a 
favorable circumstance for stability of the combined com- 
pound. The two-to-one chemical ratio is a rather arbi- 
trary choice, however. The structure which we anticipat- 
ed was basically the rocksalt structure, i.e., planes of 
identical ions stacked along the 111 axis, identically to 
rocksalt, in the sequence N~+-cI - -N~+-c~--R~+-  
F--Na+, etc. However, this (trigonal) structure was 
found to be dynamically unstable. On the other hand, a 
metastable trigonal structure of point group, C3", with 
the same ionic stacking sequence as above was obtained 
through a fortunate choice of stacking-perhaps one of 
several uossible ones. This latter structure is dis- 
tinguish& from the rocksalt stacking by a displacement 

of the F-  ions from their "rocksalt" positions to the 
same in-plane sites as those of the adjacent Na+ layer. 
We found this stacking to lead to an anomalously low- 
lying transverse acoustic-phonon branch along the trigo- 
nal direction of propagation. The structural parameters 
were found through a minimization of @, with respect to 
the interplanar distances and basal plane lattice parame- 
ter, i.e., the above stacking sequence and intraplanar ar- 
rangement of ions was assumed fixed. The results of this 
evaluation are the following: The hexagonal ~ n i t ~ c e l l  lat- 
tice parameters are a =4.041 A and c = 10.223 A; the c- 
axis components of the basis-i?n positions are 0, 2.237, 
3.610, 5.428, 6.813, and 8.856 A corresponding to ~ b + ,  
C1-, ~ a ' ,  C1-, ~ a + ,  and F+, respectively. Through a 
molecular-dynamics (MD) calculation, this structure was 
also found to be stable with respect to a temperature of at 
least 100 K, and indeed an MD pressure23 was necessary 
to cause the structure to transform to a more stable 
[AQ=0.04 eV/(ion pair)] triclinic one. We also note that 
the structure upon which we shall base our calculations, 
i.e., the above dynamically stable trigonal one, has a 
higher energy by 0.07 eV/ion-pair than the above- 
mentioned "rocksalt" structure (with ion positions for 
which the energy was a minimum). Since this "rocksalt" 
structure is dyiamically unstable there must exist an even 
lower energy structure for our compound than those con- 
sidered here. Therefore, it appears that although the 
structure of our choice is indeed metastable it might re- 
quire a great deal of ingenuity to synthesize it. On the 
other hand, our results suggest that a rich assortment of 
phases are possible within this system, especially if the 
relative amounts of NaCl and RbF were varied. 

Phonon dispersion curves are displayed in Fig. 2. The 
low-lying A direction transverse acoustic branch 
represents rigid-layer motion and is characteristic of the 
unusual structural property described in the previous 
paragraph. The discontinuities at the r point of the Bril- 
louin zone are "LO-TO" splitting effects and are known 
to occur in ionic materials with complex structures. Ar- 
rows in the figure show two of those splittings. Away 
from the I- point, in the A direction, only the dotted lines 
represent purely transverse modes as the other lines 
represent partially transverse and longitudinal modes. It 
is also evident that substantially lower TO frequencies 
occur for the compound than for individual alkali 
halides. For a consistent comparison with the results in 
Fig. 2 we have used the GK theory to obtain the values, 
163, 21 1, 132, and 181 cm-' for NaCl, NaF, RbC1, and 
RbF, respectively. These are determined at the theoreti- 
cal room-temperature equilibrium volumes24 and are seen 
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FIG. 2. Dispersion curves along I: and A. Modes along A 
are purely longitudinal (solid) and transverse (dotted). Modes 
along Z are both purely basal-plane polarized transverse (dot- 
ted) and mixed: solid (dashed) lines correspond to pure longitu- 
dinal (transverse) modes only in the vicinity of the r point. 

to be substantially above the mixed compound's lowest 
T O  frequency. The former values can also be seen to be 
in reasonable agreement with the respective experimen- 
ta125 values of 164, 239, 116, and 156 cm-'. LO-TO split- 
tings similarly obtained by theory are 160, 262, 89, and 
145 cm-' to be compared with the experimental25 values 
of 100, 175, 57, and 130 cm-' for NaC1, NaF, RbCl, and 
RbF, respectively. The too large overall theoretical LO- 
T O  splittings are not surprising since we use a rigid-ion 
model. While a detailed calculation is necessary to ob- 
tain the infrared properties one can obtain a preliminary 
estimate for the relative strengths of the absorption by 
considering the quantity M, [defined in Eq. (2)] for the 
various T O  zone-center modes. For T O  modes in order 
of increasing frequency these are - 1.30, 0.30, 4.27, 
- 1.83, and 5.02 in units of lo-" esu cm. Given the fact 
that the two lowest-lying modes are essentially zone- 
folded modes it is not surprising that they have weaker 
absorption strengths than the remaining ones. 

V. CALCULATIONAL DETAILS AND RESULTS 
FOR r AND A 

A. Preparation of the zone-center modes 

The polarization vectors were calculated for small q 
with q approximately parallel to the c axis (we set 
q, / q  =0.99 for technical reasons). A t  q = O  it is valid 

and somewhat simplifying to choose the polarization vec- 
tors to be real, as we have done in the above expressions. 
However, because of an arbitrariness in the overall phase 
factor a particular diagonalization routine will not neces- 
sarily yield real q =O polarization vectors. In our case it 
was necessary to multiply the polarization vectors result- 
ing from the diagonalization by a different phase factor 
for each 3n-dimensional polarization vector. Small resid- 
ual imaginary components are present in our results be- 
cause of the above procedures. Additionally, we need to 
work with polarization vectors of different sets of degen- 
erate modes that transform amongst each other identical- 
ly under point-group operations. Again, this transforma- 
tion property must be invoked subsequent to the diago- 
nalization. In our case this was accomplished by rota- 
tions in the basal plane, a valid procedure because all of 
the degenerate modes have polarization in that plane. Fi- 
nally, we made checks to ensure that our final results 
were reasonably independent of the particular small value 
of q chosen for our "zone-center" modes. We estimate 
that these numerical approximations lead to negligible 
( 5 1 %) errors in the results for M, and the self-energies. 

B. Discussion of grids in q space 

We have used the Brillouin-zone sampling method for 
performing all summations within the IBZ. Two uniform 
grids of points, defined as follows, were primarily used: 

where a* and c* are (hexagonal) reciprocal-lattice vec- 
tors, ni are non-negative integers, and N and M were 
chosen to be 6 and 2 for one grid ( A )  and 12 and 4 for 
the other ( B )  thus yielding approximately cubic grids 
consisting of 47 and 357 points in the IBZ, respectively. 
Contributions from IBZ boundary points were weighted 
appropriately. The above grids contain no points on the 
q, axis, in order to exclude disproportionately large 
effects of the anomalously low A TA phonons. We have 
justified the use of these grids through a few calculations 
with the use of very fine (9,-qy ) grids in a small region of 
9,-q, space in the vicinity of the q, axis. Specifically, the 
anomalous branch was found to yield negligible contribu- 
tions due to the small amount of q space over which the 
anomaly extends. Nevertheless, we also present brief re- 
sults for a grid.(C) of the same fineness as grid B but for 
which the term, .rra */2N, in the expression for q, is ab- 
sent. The difference in results between grid C and either 
grids A  or B (for which results are generally in excellent 
agreement) represents an overestimate of the uncertainty 
in the results since the effects of the anomalous phonon 
branch are exaggerated by the use of grid C. 

C.  Discussion of effects of numerical approximations 
and results for r and 

It  is important to examine the sensitivity of the results 
for the real and imaginary parts, and r, of the phonon 
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FIG. 3. Effect of cutoff in range of interionic potential on A)p'(R) at R/2a=26 cm-I. Based on ~ = 3 . 3 3  cm-'.  Diagonal ele- 
ments are in (a) and off-diagonal elements in (b) and (c). Lines merely connect calculated points. Note differences of frequency scales 
among (a), (b), and (c). 
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TABLE I. Diagonal components of R-independent contributions to self-energy. 

I,, A;)(A~;)  (cm-') 
Grid ( d 2 a )  j=1 j =2 j=3 j =4 j =5 

a Ionic Coulomb contributions were excluded from the anharmonic coefficients in obtaining the values 
in this row. 

self-energy, to various numerical constants that deter- 
mine the accuracy of the calculations. In addition to the 
grid-size parameters defined previously we need to con- 
sider the sensitivity to the value of E,  which is used to 
represent26 both the Dirac delta function and principal- 
value function entering ~ ( ~ ' ' ( f i , w )  [Eq. ( 5 ) ] ,  and to the 
value of r,,,, the maximum interionic distance for which 
anharmonic potential derivatives are evaluated. In addi- 
tion, we shall also consider the effect on our results of the 
neglect of the interionic Coulomb interaction in the 
anharmonic coefficients. Selected results will be present- 
ed in order to illustrate the various dependencies and 
only T = 300 K, T O  mode self-energies are considered. 

I .  Convergence and ionic Coulomb effects 

First we consider the effect of cutting off the interatom- 
ic potential at  a finite interatomic distance, r,,,. Figure 
3 shows the r,,, dependencies of standard-cubic- 
anharmonic (SCA) A at f i / 2 ~ = 2 6  cm-' and ~ = 3 . 3 3  
cm-'. (The T O  mode indices, j and k, are ordered ac- 
cording to frequency.) I t  appears that convergence has 
been achieved to within a few percent. We note that the 
elements of most interest to us are those for which one of 
the indices corresponds to the lowest frequency mode 

since we are primarily interested in obtaining low- 
frequency absorption properties. Cutoff effects in quartic 
and instantaneous-phonon cubic anharmonic contribu- 
tions are given in Tables I and 11. The effects of neglect- 
ing the Coulomb interaction in SCA A are given in Fig. 4. 
It should be mentioned that to within the accuracies of 
the tabulated values and the scales of the figures all r,,, 
effects in these results arise from the ionic Coulomb in- 
teractions. I t  is seen from these results that the r,,, 
effect is less in the quartic contributions than in the cubic 
ones, as expected since the quartic terms involve a higher 
radial derivative and hence are more "short-ranged" than 
the cubic terms. Also, the lowest frequency mode ( j  = 1 ) 
is seen to be the one most affected by both the value of 
r,,, and the inclusion of the Coulomb interaction. 
Indeed, if the Coulomb potential is not included then the 
net j = 1 frequency shift is sufficient to yield an instability 
in the sense that the imaginary part of the susceptibility 
function becomes peaked at  R=0.0.  Obviously, there 
also is a corresponding large effect in r, ,( R ) .  

2. Grid and Lorentzian-broadening effects 

I t  is known that there is a close connection between ( q  
space) grid and E dependencies. In particular, for a given 

TABLE 11. Off-diagonal components of R-independent contributions to self-energy. 

rm3x A:?'( A;! ) (cm-' ) 
Grid (V'2a) jk=21 jk =31 jk =32 jk =41 jk =42 

B 0.65 - 1.76 - 5.93 0.63 1.73 0.8 1 
A 0.65 - 1.74(0.75) - 5.83(2.77) 0.62(-0.47) 1.70( - 1.00) 0.81(-0.0) 
A 0.90 (0.99) (3.53) (-0.59) ( - 1.26) (0.01) 
A 1.20 - 1.88(0.95) - 5.98(3.44) 0.66(-0.54) 1.71(- 1.21) 0.90(-0.01) 
A 0.65" - 3.60(2.67) - 13.67( 10.89) 1.90(- 1.69) 4.63(- 3.86) 0.35(-0.04) 

r E x  A::'( A:kb ) (cm-' ) 
Grid ( d 2 a )  jk =43 jk =51 jk = 52 jk =53 jk = 54 

B 0.65 - 1.09 0.49 - 1.95 0.67 -0.97 
A 0.65 - 1.06(0.54) 0.5 l(O.0) - 1.95(0.0) 0.66(0.0) -0.97(0.0) 
A 0.90 (0.66) (0.0) (0.0) (0.0) (0.0) 
A 1.20 - 1.12(0.67) 0.49(0.0) - 1.94(0.0) 0.65(0.0) -0.94(0.0) 
A 0.65" -2.95(2.30) -0.94( -0.02) - 1.66(0.02) 1.55(-0.01) - 1.22(-0.01) 

a See footnote in Table I. 
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TABLE 111. Diagonal components of SCA contribution to 
A i i ( o i  ). Based on results for grid A and E =  3.33 cm-I. 

mj  / 2 ~  A Total [A,j( mj  ) = Aga) (mj  )+ h$jb)+ At'] 
(cm-') (cm-') (cm-') 

grid, sensible results can be obtained only for a finite 
range of values of E. Ideally, for infinitely large crystals 
and a narrow frequency resolution, we desire results for 
the limits of an infinitely fine grid and E = O  with the lim- 
its taken in that order. Results in Figs. 5(a) and 5(b) 
show that, for our range of grid parameters and values of 
E (a) merely larger amplitude oscillations are introduced 
into l?, ,( 0) as one goes to smaller E (for fixed grid param- 
eters), and (b) larger-amplitude, longer-period, oscilla- 
tions are introduced into rll(i2) as one goes to a cruder 
grid (for a fixed value of E). Grid effects in other quanti- 
ties are shown in Tables I and I1 and Fig. 4. As previous- 
ly discussed, we believe that the difference in results be- 
tween grid A and grid C (shown in Fig. 4) is greater than 
uncertainties resulting from the use of finite grids because 
of the anomalously large contribution from the low- 
frequency TA modes, contributing for grid C and not for 
grid A. Instead we believe that the grid-A-to-grid-B 
differences shown in Fig. 5(b) and Tables I and I1 are 
representative of our uncertainties. 

3. SCA results 

Complete results for SCA contributions to and r are 
presented for particular values of E (3.33 cm-') and r,,, 

50.0 
(a) i (b) (c) 

n 1 2 ~  (cm- I )  

FIG. 4. Effects in A:ja'(fl) of ionic Coulomb interaction and 
of use of q-space grid C. (a) Grid A results; (b) grid A results 
for which explicit ionic Coulomb contributions to the anhar- 
monic potential energy coefficients were excluded; (c) same as 
(b) except that grid C was employed. 

0.0 I /  , 
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 

n12n (cm - ') 

FIG. 5. Effects in T l l ( n )  of E and q-space grid size. Results 
in (a) are based on grid B: Solid and dotted lines correspond, re- 
spectively, to ~ ~ 3 . 3 3  and 1.66 cm-'. Results in (b) are based 
on c=3 .33  cm-I: Solid and dotted lines correspond, respective- 
ly, to grids B and A. In both (a) and (b), r,,, /v% = 1.2. 
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2 0  l 0 0 . 0 ' 2 ~ 0 . 0 ' 3 0 0 . 0 ' 4 0 0 . 0  50b.0 600.0 760.0 6dO.O 
012a (cm - ') 

FIG. 7.  r,,(n), j i k .  

( 1.22/2a) and for grid A (Figs. 6-9). We expect the re- 
sults for r(Cl) to be qualitatively similar to the two- 
phonon density of states (not given), and indeed several of 
the peaks in E(Q) can be identified with pairs of normal- 
mode branches upon inspecting Fig. 2. Matrix element 
effects are also evident in the spectra, especially the lack 
of an observable peak on the scale of the figure near and 
somewhat above (not shown) a frequency of 800 cm-'. 
In Table 111, we give the diagonal components A:;"' eval- 

FIG. 8. A:jn'(n). 

FIG. 9. A:p'(n), j f  k. 

uated at the corresponding harmonic frequencies, and we 
also include values for the total A j j ,  which incor- 
porate the results of Table I. 

VI. RESULTS FOR SUSCEPTIBILITY 

The frequency dependence of the real ixLX and imagi- 
nary (x:) parts of the lattice dielectric susceptibility is 

012a (cm - ') 

FIG. 10. x:,(n). Dotted and broken lines correspond, re- 
spectively, to the omission, in the calculation of X, of the off- 
diagonal elements and of the real part of the self-energy matrix. 
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012s (cm- ') 

FIG. 11. x>(CL). Dotted and broken lines correspond, re- 
spectively, to the omission, in the calculation of x_, of the off- 
diagonal elements and of the real part of the self-energy matrix. 

shown in Figs. 10 and 11. It is noteworthy that a large 
off-diagonal Green's-function effect is present in the 30 
cm- ' feature in x,, . (The results correspond to particu- 
lar values of the numerical parameters, given in the previ- 
ous section, and we believe them to be sufficiently accu- 
rate.) Two effects in the susceptibility of off-diagonal ele- 

FIG. 12. One-phonon Green's-function components. The 
imaginary components of (a) an off-diagonal element, and, for 
comparison, (b) a diagonal element. 

ments in the self-energy function are possible: One is a 
shift of peak positions and breadths, which can arise if 
differences in harmonic levels are of the order of the self- 
energy contributions; the other is the contribution to Eq. 
(1) from the terms involving the off-diagonal components 
of the Green's function. It is this latter polarization mix- 
ing effect which is apparent in our results. As an illustra- 
tion of the origin of this effect we plot the off-diagonal 
Green's-function element which couples the lowest-lying 
mode to one of the other modes in Fig. 12. Although the 
ratios of the off-diagonal to the diagonal Green's-function 
elements are proportional to the ratios of self-energies to 
phonon energies and are therefore small, it is evident 
from Eq. (1) that if a large disparity exists among the 
values of M, then a significant off-diagonal effect can 
arise, which has been pointed out previously through 
empirical data analyses. lo 

VII. SUMMARY AND CONCLUSIONS 

We made us of the Gordon-Kim ab initio theory (for 
representing the interionic potential) and anharmonic 
perturbation theory in order to obtain static equilibrium 
structural parameters and room-temperature infrared ab- 
sorption properties of a hypothetical superlattice of alkali 
halides, particularly (NaCl),RbF. No additional uncon- 
trolled mathematically simplifying approximations were 
made. This was done to demonstrate that such calcula- 
tions are feasible, and because we believe that a study of 
superlattices of alkali halides, if they could be fabricated, 
would be of interest for several reasons. In particular (a) 
they might have some use for their dielectric properties 
which could be varied by varying the superlattice periodi- 
city or the constituents, (b) they would provide an addi- 
tional class of materials for testing theory such as that of 
Gordon and Kim, and (c) they might shed some light on 
the origin of the supermodulus effect seen in intermetallic 
superlattices. We have also given our results in great de- 
tail because they are the first such results for a superlat- 
tice of alkali halides, the first rigorous anharmonic calcu- 
lations including Coulomb effects without the use of the 
Ewald method in the cubic anharmonic coefficients and 
the first anharmonic calculations for which the noncen- 
trosymmetric structural aspect is of some importance. 

To summarize our results briefly, a metastable trigonal 
superlattice structure was obtained although the struc- 
ture which we had anticipated, based on the rocksalt 
stacking, was found to be unstable. The structure ob- 
tained yielded an infrared-active mode of 30 cmP'--in 
the far-infrared to submillimeter region-perhaps some- 
what lower than could have been expected from zone 
folding alone because of the unusual structural property 
of our material, as described in Sec. IV. This mode also 
contributed significantly to the susceptibility, contrary to 
the result for a higher-frequency Brillouin-zone-folded 
mode which gave a much smaller contribution to the sus- 
ceptibility. In addition, strong peaks in the susceptibility 
associated with ordinary alkali-halide absorption are ap- 
parent in our results. 
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e(K,A(R)qI)=Ae(K,ql) 
APPENDIX A: APPLICATION OF GROUP 

THEORY TO THE ORDINARY to introduce two factors of A ( R )  into Eq. ( 5 )  from each 
CUBIC ANHARMONIC CONTRIBUTION factor of @. Three factors of A ( R )  are also introduced 

into Eq. ( 5 )  from each factor of @ upon expressing 
Starting with expression ( 5 )  of Sec. I1 we wish to derive 

an expression for a in terms of a sum over the IBZ rather 
than the full BZ. In this appendix we shall also rederive 
certain results of Ref. 15. We first replace q1 by A ( R ) q ,  
in the summand and xql by xbl 2, where the prime in- as 

where A ( R  -' )(Xl,,,-XoK) -XLcK, -XOK and A( R -' ) ( X l p ~ K ~ , - X o K ) = X L , I ( K K K - X O K .  Upon making use of the unitary 
property of A and the fact that the vectors ~ (K;O ,  j) are basis vectors for irreducible representations of the point group, 
we obtain 

0 I' 1" iq l . (Xi fK,  - x , , , ~ ~  
= K,K' ,K",  2 2 Q a f l y  j" IK K r  K,,]ea(~;0,j11)eD(~1;ql,jl)ey(~f1;-ql,j2)e D j  (All 

l', l" 

and 

= 2 2 Q a ~ y  
K, K', K", j"' 

where D is a block-diagonal 3n-dimensional representation of the point group and is defined by the expressions 

Finally, using the definition of @(ql,  j l ;q2,  j,;q3, j3 ) and combining the above two expressions we may write 

Expressing the mode indices in terms of those corresponding to irreducible representations we replace j by ( t ,n ,y)  
where t and y denote the basis partner and the irreducible representation, respectively, and n denotes the order of the 
appearance of that representation, say, according to frequency. Thus, we rewrite the above expression as 

where the Zip( R ) matrices form the yth irreducible representation, and where it is presumed that the polarization vec- 
tors are chosen such that those corresponding to different values of n but the same y yield identical contributions to D. 
The latter is a necessary consideration because in practice those equivalent contributions to Q could be related by a 
similarity transformation. Employing the orthogonality theorem for irreducible representation matrices2* we finally ob- 
tain 
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where g is the order of the point group, e.g., 6 in our case 
and d, is the dimensionality of the pth irreducible repre- 
sentation. The implications of this result are that degen- 
eracies are not broken by anharmonic effects, expressed 
by the S,, dependence, and that one may perform the q,  
summation of the original expression for d3" over the 
IBZ, provided that the results are averaged over ap- 
propriate degenerate modes or pairs of degenerate modes 
in the case of diagonal and off-diagonal components, re- 
spectively. Furthermore, we wish to stress that the essen- 
tial feature of this proof was that the zone-center polar- 
ization vectors transformed as partner basis functions of 
the irreducible representations of the point group. In the 
case of the rocksalt structure for example the optical 
zone-center modes transform as partners of a three- 
dimensional irreducible representation of the cubic point 

group despite the fact that the triple degeneracy of the 
modes is broken by the macroscopic electric field. 
Hence, with some care it is possible to restrict the q sum 
to the IBZ in that case as well. 

APPENDIX B: APPLICATION OF GROUP THEORY 
TO THE INSTANTANEOUS PHONON CUBIC 

ANHARMONIC CONTRIBUTION 

We consider the effects of the C3, point-group symme- 
try on expression 8. We replace q2 by A(R)q2  and 
rewrite the q2 summation as xi2 z R ,  where the prime 
denotes a sum over twice the IBZ.~' Using the fact that 
w(Aq,j)=w(q, j )  we next carry out the R summation 
over relevant terms in Eq. (8). In particular, we need to 
evaluate 

1', I" 

Using the unitarity of A ( R )  and the transformation properties, e(K;A(R )q, j ) = A ( R  ) e ( ~ ; q ,  j) and 

where lattice sites L '  and L" are defined as in Appendix A, one can show that 

l ' ,  l1' 

The quantity A,.,(R - l )e , (~;O,  j, can be written in terms of the irreducible representations of the point group only if 
we define the internal-line zone-center modes in Fig. l(b) to correspond to polarization vectors that are basis vectors of 
the irreducible representations of the point group. Making that definition, which indeed is justifiable from the discus- 
sion in the text we obtain 

We consider the six point-group operations of C,, and three irreducible representations.28929 The only nonzero contri- 
bution to the R summation is seen to arise from the identity representation, which corresponds to modes with trigonal 
axis polarization. For j, corresponding to any one of these LO (see text) modes we obtain 

Thus 
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which signifies that Eq. (8) may be evaluated by restrict- 
ing the q2 summation to the IBZ and the jl summation to 
LO modes for q-0 along the trigonal axis. That j l  cor- 
responds to the identity representation can be used to 
prove the fact that j and j' must, for nonzero II,,,, corre- 
spond to the same row of the same irreducible representa- 
tion: On the other hand we could have used this more 
generally derived fact15 to obtain that jl corresponds to 
the identity representation. 

In our numerical evaluation we simply employed Eqs. 

(8) and (9) except for the fact that the q 2  sum was per- 
formed over the IBZ. [Of course, in Eq. (9), N is essen- 
tially the number of points in the grid-appropriate frac- 
tional weighing is given for points on the boundary of the 
IBZ.] Hence, no further possible reduction of Eq. (8) will 
be discussed. We caution that in the numerical evalua- 
tion of Eq. (8) it is important to insure that the polariza- 
tion vectors of modes corresponding to the same irreduc- 
ible representation, but to different frequencies, yield 
identical portions of the Q matrix. 
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