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Abstract
Since plant phosphoenolpyruvate carboxylase (PEPC) was last reviewed in the 
Annual Review of Plant Physiology over a decade ago (O’Leary 1982), significant 
advances have been made in our knowledge of this oligomeric, cytosolic en-
zyme. This review highlights this exciting progress in plant PEPC research by 
focusing on the three major areas of recent investigation: the enzymology of the 
protein; its posttranslational regulation by reversible protein phosphorylation 
and opposing metabolite effectors; and the structure, expression, and molecular 
evolution of the nuclear PEPC genes. It is hoped that the next ten years will be 
equally enlightening, especially with respect to the three-dimensional structure 
of the plant enzyme, the molecular analysis of its highly regulated protein-Ser/
Thr kinase, and the elucidation of its associated signal-transduction pathways in 
various plant cell types.

Keywords: PEP carboxylase (PEPC), catalytic reaction mechanism, regulatory 
protein phosphorylation, gene structure, expression, and evolution
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Introduction

Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is a ubiquitous cytosolic 
enzyme in higher plants and is also widely distributed in bacteria, cyanobac-
teria, and green algae (68, 114). It catalyzes the irreversible β-carboxylation 
of Phosphoenolpyruvate (PEP) in the presence of HCO3

− and Me2+ to yield 
oxaloacetate (OAA) and Pi and thus is involved intimately in C4-dicarboxylic 
acid metabolism in plants. Besides its cardinal roles in the initial fixation of at-
mospheric CO2 during C4 photosynthesis and Crassulacean acid metabolism 
(CAM), PEPC functions anaplerotically in a variety of nonphotosynthetic sys-
tems such as C/N partitioning in C3 leaves, seed formation and germination, 
and fruit ripening (66, 68). Nonphotosynthetic isoforms of PEPC also play spe-
cialized roles in guard-cell C metabolism during stomatal opening (90) and 
plant host–cell C4-acid formation in N2-fixing legume root nodules (19, 115).

Since 1982, when PEPC was reviewed last in the Annual Review of Plant 
Physiology (87), many new and significant findings about this oligomeric en-
zyme have been made. In addition to the further elucidation of its catalytic 
reaction mechanism and the initiation of structure-function analyses by site-
directed mutagenesis, there has been an explosion in research related to the 
posttranslational regulation of the enzyme’s activity and allosteric proper-
ties by reversible protein phosphorylation and to PEPC gene (Ppc) structure, 
expression, and molecular evolution. These exciting new advances in plant 
PEPC research are the primary focus of this review, while only limited refer-
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ence will be made to the microbial enzyme. The interested reader should con-
sult earlier reviews on PEPC for additional breadth and detail (3, 19, 35, 54, 
68, 84, 87, 90, 96, 104, 114, 117).

Enzymology of PEP Carboxylase

Comments on Isolation of PEPC 

It is now amply documented that native leaf and recombinant forms of PEPC 
are highly susceptible to limited proteolysis near the N-terminus during ex-
traction and subsequent purification (6, 9, 23, 77, 82, 121). While such modifi-
cation has no major influence on the enzyme’s electrophoretic mobility, Vmax, 
and carbon-isotope effects, removal of this plant-invariant N-terminal domain 
markedly decreases the in vitro phosphorylatability and sensitivity of PEPC 
to its negative allosteric effector l-malate. Thus, it is our view that many ear-
lier kinetic analyses of purified or commercial plant PEPC have probably been 
compromised by this N-terminal truncation (see comments in 23, 54, 68). More 
recent studies have preserved the enzyme’s integrity during isolation by the in-
clusion of glycerol, l-malate, and proteinase inhibitors (especially chymostatin) 
and by the use of rapid purification protocols that exploit fast-protein liquid 
chromatography, HPLC, or immunochromatography (4, 7, 9, 23, 58, 77, 82, 119, 
121, 136). With such strategies, preparations of intact, N-blocked leaf (C4, CAM, 
C3), nodule, and recombinant PEPC are readily obtained.

Carboxylation and Hydrolysis of PEP Analogs 

A variety of PEP analogs have been examined as substrates for C4 PEPC (see 
35 and Table 1). Although a number of compounds are processed by the en-

Table 1. Activity of PEP analogs with PEPCa

Compound  Vmax (rel)b  % Carboxylation  % Hydrolysis  References

PEP  100  97  3  6
(E)-3-fluoro-PEP  5  86  14  32, 50
(Z)-3-fluoro-PEP  5  3  97  32, 50
(Z)-3-chloro-PEP  25  25  75  71
Alleno-PEP  90  0  100  126
Thio-PEP  9  0  100  103
(Z)-3-methyl-PEP  4  0  100  31, 33, 34, 86
(Z)-3-bromo-PEP  25  0  100  21
3,3-dimethyl-PEP  2  0  100  31
a Values given are for the maize leaf enzyme in the presence of Mg2+.
b Carboxylation plus hydrolysis.



276   Ch o l l e t,  Vi d a l,  & o’le a r y i n An n Re v Pl A n t Ph y s & Pl A n t Mo l Bi o l  47 (1996)  

zyme, most are not carboxylated but instead are hydrolyzed to pyruvate de-
rivatives (Equation 1) by a mechanism that shares several steps with catalysis 
(see section on Catalytic Mechanism of PEPC). This phosphatase activity is 
probably not related to the much slower bicarbonate-independent hydrolysis 
of phosphoglycolate and phospholactate that is also catalyzed by the enzyme 
(48, 50). 

                                                                          

 (1)

PEP itself also undergoes a few percent of an HCO3
−-dependent pyruvate 

formation. This hydrolysis is a minor component of the overall reaction flux 
with Mg2+ under in vivo conditions (<5%), but it increases with other metal 
ions and constitutes over 50% of the total reaction flux when Ni2+ is used (6). 
Interestingly, the PEP analog in which the phosphate has been replaced by a 
sulfate is not a substrate for the enzyme and, in fact, this compound does not 
bind to the active site [but it is a substrate for pyruvate kinase (93)].

Functional analogs for CO2 and HCO3
− are rare in enzymatic reactions. In 

the case of PEPC, HCO2
− can replace HCO3

−, forming formyl-P and pyruvate 
at a rate that is about 1% of that for PEP carboxylation (48).

Kinetic and Isotopic Studies 

Early thinking about the catalytic mechanism was dominated by the seminal 
observation of Maruyama et al (72) [recently confirmed by O’Leary & Hermes 
(88)] that 18O-labeled HCO3

− gives products containing one equivalent of 18O 
in Pi and two in the γ-carboxyl of OAA. This isotope transfer persists with a 
number of other substrates, including those that undergo hydrolysis rather 
than carboxylation. (Z)-3-methyl-PEP gives more than one equivalent of 18O 
in Pi and also gives 18O incorporation into reisolated starting material after 
partial reaction (29, 86). A similar phenomenon is observed with 3-fluoro-
PEP; exchange is eight times faster than substrate consumption (50). These 
observations indicate that the initial steps in the carboxylation mechanism are 
reversible (see section on Catalytic Mechanism of PEPC).

PEPC has been subjected to a variety of kinetic studies over the years, but 
these have generally been qualitative in nature because investigators failed to 
rigorously control HCO3

− concentrations and to account for the presence of 
PEP-metal complexes. Recent studies of initial velocity patterns varying the 
two substrates and Me2+ indicate that there is a high level of synergism in the 
binding of substrates (49). Mg2+ binds first, and this binding is at equilibrium; 
PEP binds second; HCO3

− binds third; and all three have to be present before 
the reaction begins.
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The small carbon-isotope effect (k12/k13 = 1.003) that accompanies the car-
boxylation of PEP by PEPC has been of interest in connection with studies of 
isotope fractionation in plants (28). The carbon-isotope fractionation by PEPC 
is independent of the phosphorylation state of the enzyme and the presence 
or absence of the N-terminal phosphorylation domain, and nearly indepen-
dent of pH (50, 89, 124; P Paneth & S Madhavan, unpublished data). This 
fractionation is small compared to what would be expected if C-C bond for-
mation were simply rate determining. Instead, some step prior to C-C bond 
formation must be rate limiting.

The oxygen-isotope effect for the bridging oxygen of PEP is large (k16/k18 
= 1.0056) when the HCO3

− concentration is low, but the value decreases to 
0.994 at high [HCO3

−], consistent with the ordered stepwise mechanism given 
below (30). Deuterium-isotope effects for PEP-3,3-d2 are 0.94 on V and 0.95 on 
V/K, also consistent with the stepwise mechanism (D Arnelle & MH O’Leary, 
unpublished data).

Carbon-isotope effects on the (E) and (Z) isomers of 3-fluoro-PEP provide 
an interesting contrast (50). The (E) isomer has a small carbon-isotope effect 
(1.009), consistent with rate-determination phosphate transfer. However, the 
(Z) isomer [which mostly gives hydrolysis rather than carboxylation (Table 
1)] shows a large isotope effect (1.049), which is apparently associated with 
the loss of CO2 from the complex during catalysis.

Several stereochemical probes have been used to define PEPC catalysis. 
Early work by Rose et al (97) demonstrated that carboxylation of PEP occurs 
on the si face of the substrate, and carboxylation of the two isomers of 3-flu-
oro-PEP occurs on the same face (50). When (Z)-3-methyl-PEP is hydrolyzed 
by PEPC in D2O, the 3-d-α-ketobutyrate that is produced is racemic, which 
indicates that protonation of the enolate occurs in solution rather than on the 
surface of the enzyme (33). The stereochemistry of substitution at phosphorus 
can be determined by using PEP containing S, 16O, and 17O in nonbridging 
positions of the phosphate ester. Carboxylation in H2

18O produces a chiral 
thiophosphate with inversion of configuration at phosphorus (39). Thus, sub-
stitution at phosphorus occurs by an in-line mechanism.

Active-Site Structure 

Mn-EPR studies of PEPC with PEP and various substrate analogs suggest 
that PEP itself is bidentate coordinated to the metal. Metal coordination in 
the enolate intermediate is to the enolate oxygen, the carboxyl oxygen, and a 
phosphate oxygen (5).

Results of chemical modification studies on various plant PEPCs with 
group-selective reagents have suggested that Cys, His, Arg, and Lys are es-
sential for activity (3, 96, 104). To date, only one such residue has been iden-
tified in the plant primary structure—Lys-606 in maize PEPC (57). Further-
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more, the complete absence of Cys in PEPC from Thermus sp., a thermophilic 
bacterium, excludes the direct involvement of these residues in catalysis 
(79A). Site-directed mutagenesis studies of the active-site domain of PEPC 
have thus far been performed only with the enzyme from Escherichia coli. His-
138 (E. coli numbering) is required for carboxylation, but the mutant H138N 
is able to catalyze PEP hydrolysis to pyruvate in the presence of HCO3

− (109, 
112). His-579 is not obligatory for catalysis, in spite of the fact that it is spe-
cies- invariant (111). Replacement of conserved Arg-587 by Ser also gives an 
enzyme that catalyzes hydrolysis, but not carboxylation (112, 134). Figure 1 
indicates these targeted, species-invariant Lys, His, and Arg residues in the 
deduced primary structure of Sorghum C4 PEPC.

Along with site-directed mutagenesis, X-ray crystallography has become 
the sine qua non of enzymology. Alas, PEPC does not yet seem to have 
yielded to the efforts of crystallographers. The E. coli enzyme has been re-
ported to give crystals that diffract X-rays (46). We are also aware of attempts 
in other laboratories to obtain diffraction-quality crystals of recombinant 
PEPC from various plant sources, but no substantial progress in this area has 
been reported.

Catalytic Mechanism of PEPC 

The information cited above permits presentation of a relatively convincing 
mechanism for action of PEPC (Figure 2). Substrates and Me2+ bind in the pre-
ferred order metal, PEP, HCO3

−. The first chemical step is phosphate transfer to 
form carboxyphosphate and the enolate of pyruvate, as perhaps first suggested 
by Walsh (118). Stereochemical studies require that the transition state for this 
step is linear at phosphorus; thus, the carbonyl carbon in the intermediate car-
boxyphosphate following transfer is quite far from carbon-3 of the enolate, and 
a conformational change is required to place the two carbons near each other. 
The most parsimonious way to accomplish this is to have an enzyme base de-
protonate the carboxyl group of carboxyphosphate, after which carboxyphos-
phate decomposes to form enzyme-bound CO2 and Pi. Earlier mechanisms 
(87) did not recognize this aspect. This step brings CO2 above the plane of the 
enolate and within bonding distance of its carbon-3. CO2 in this intermediate is 
sequestered so that under optimum catalytic conditions it seldom escapes [3% 
(6)], but under other circumstances CO2 is lost easily, as when the metal ion is 
changed in such a way as to lower the reactivity of the enolate. In the case of a 
variety of PEP analogs, loss of CO2 competes effectively with carboxylation (cf 
Table 1). In some cases, the formation of enzyme-bound CO2 must be revers-
ible. Isotope exchange studies on (Z)-3-methyl-PEP (29, 86) and 3-fluoro-PEP 
(50) require that CO2 is formed reversibly and can scramble isotopes and return 
to starting material. It is not clear whether CO2 formation is reversible in the 
case of PEP. Isotope-effect results suggest that it is not.
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In the final chemical step of the overall reaction, CO2 combines with the 
metal-stabilized enolate. It is interesting to note that there is no evidence that 
this step is reversible, even though the reverse reaction (decarboxylation of 
metal-chelated OAA) is well known in other systems. Finally, Pi and OAA 
are released.

Figure 1. Deduced amino-acid sequence of the C4-PEPC isoform from Sorghum (67). 
The plant-invariant phosphorylation domain, with its target Ser (*), is underlined 
twice, whereas the species-invariant functional regions identified to date are under-
lined singly. The specific His, Lys, and Arg residues targeted by site-directed muta-
genesis or chemical modification (see text) are indicated within these three domains 
(•). C (1–5), plant-invariant Cys residues.
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Posttranslational Regulation of PEP-Carboxylase Activity

It is well documented that the activity of the various isoforms of plant PEPC 
are subject to allosteric control by a variety of positive [e.g. glucose 6-P (G6P), 
triose-P] and negative (e.g. l-malate, Asp) metabolite effectors, especially 
when assayed at suboptimal pH values that approximate that of the cytosol 
(e.g. 3, 23, 65, 66, 68, 90, 100, 101, 104). For example, the Ki(l-malate) of the 
intact recombinant C4 enzyme from Sorghum is decreased about 25-fold at 
pH 7.3 compared with pH 8.0 (23). Although changes in the cytosolic levels 
of these opposing allosteric effectors and H+ likely contribute to the overall 
regulation of PEPC activity in vivo (22, 26, 54, 66, 90), research over the past 
decade has focused primarily on the reversible phosphorylation of the en-
zyme. In fact, cytosolic PEPC and sucrose-P synthase presently represent the 
two best-defined examples of in vivo regulatory enzyme phosphorylation in 
plants (40A, 41).

Figure 2. Mechanism of carboxylation and hydrolysis of PEP by PEPC. PYR, 
pyruvate.
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Regulatory Phosphorylation of Photosynthetic PEPC 

The regulatory phosphorylation of photosynthetic PEPC has been inten-
sively studied and recently reviewed (41, 54, 68, 84, 96, 117) since the initial 
observations were published about ten years ago on the CAM and C4 iso-
forms (10, 38, 51, 80, 81, 82). As an important prelude to these protein-phos-
phorylation studies, several reports had appeared that indicated that both 
photosynthetic PEPC isoforms were subject to a striking diel regulation in 
vivo that altered the enzyme’s activity and/or sensitivity to l-malate un-
der near-physiological assay conditions, without accompanying changes in 
Vmax or PEPC amount (e.g. 42, 60, 81, 125). It thus became evident that the 
CAM enzyme was upregulated at night and downregulated during the day, 
thereby paralleling the classical changes in CAM physiology (e.g. leaf at-
mospheric CO2 fixation and titratable acidity) (66). Related investigations of 
several CAM plants under continuous night or day conditions indicated that 
CAM physiology, as well as the l-malate sensitivity of PEPC, was controlled 
by an endogenous circadian rhythm rather than by light or dark signals per 
se (83, 125). In marked contrast, C4 PEPC was shown to be reversibly light 
activated in vivo by a mechanism that was dependent, either directly or in-
directly, on photosynthesis and modulated by the incident photosynthetic 
photon flux density above a minimum threshold of about 300 μmol m−2 s−1 
(7, 36, 55, 60, 78, 98).

It is now established unequivocally by a wealth of in vivo and in vitro 
data that this striking diel regulation is caused by changes in the phos-
phorylation state of a single serine residue near the ~110-kDa subunit’s 
N-terminus (e.g. Ser-8 and Ser-15 in the Sorghum and maizee C4 enzymes, 
respectively, and Ser-11 in PEPC from the facultative CAM plant Mesem-
bryanthemum crystallinum) (9, 23, 53, 58, 110, 121). Upregulation/phosphory-
lation of the target enzyme is catalyzed by a highly regulated (see below) 
protein kinase and downregulation/dephosphorylation by a typical mam-
malian-type protein phosphatase 2A (7, 11, 12, 12A, 27, 52, 53, 55, 56, 78). It 
is notable that this target Ser resides in a plant-invariant motif [E/DR/Kxx-
SIDAQL/MR (see Figure 1)] that is absent in the bacterial and cyanobacte-
rial primary structures deduced to date (67, 68, 79A, 96A, 114). Moreover, 
in vitro studies with the intact, recombinant Sorghum C4 enzyme have es-
tablished that phosphorylation of this N-terminal domain not only renders 
PEPC considerably less sensitive to inhibition by l-malate under near-phys-
iological assay conditions (~sevenfold increase in Ki) but, conversely, both 
more active and more sensitive to activation by G6P (~fivefold decrease in 
Ka) (23, 26). Thus, this reversible means of fine tuning the activity and allo-
steric properties of PEPC is unique to the plant enzyme.

The molecular mechanism by which protein phosphorylation regulates 
C4 PEPC has recently been addressed by site-directed mutagenesis and 
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chemical modification. The introduction of a monoanionic residue at posi-
tion 8 in the recombinant Sorghum enzyme by directed mutagenesis (S8D) or 
sequential mutagenesis (S8C) and S-carboxymethylation functionally mim-
ics the specific effects of regulatory phosphorylation on the target enzyme. 
In contrast, various neutral substitutions (S8T, S8Y, S8C, S-carboxamido-
methylated S8C) are without major influence (23, 25, 121; GB Maralihalli, 
V Pacquit, B Li, JA Jiao, G Sarath, et al, unpublished data). Consequently, 
addition of negative charge to this N-terminal domain by reversible phos-
phorylation appears crucial to this regulatory mechanism, but the exact de-
tails must await the high-resolution crystal structures of the dephospho and 
phospho (or S8D) enzyme-forms.

Recent research on the phosphorylation of C4 and CAM PEPC has focused 
on the physiologically relevant protein kinase and its requisite signal-trans-
duction chain. This work took on special significance with the near-simulta-
neous discoveries that the C4 and CAM PEPC kinases were both activated 
reversibly in vivo by some mechanism involving cytosolic protein turnover, 
thereby resulting in the upregulation of the kinase and, thus, its target en-
zyme in the light (C4) or at night (CAM) (7, 12, 27, 55, 56, 78). Not only is the 
CAM kinase activated at night under the control of a circadian rhythm, but it 
is also coinduced with its protein-substrate during C3 to CAM switching in 
the facultative CAM species M. crystallinum (12, 12A, 70). In contrast, the ac-
tivity state of the type 2A PEPC-phosphatase catalytic subunit appears to be 
relatively constant during light-dark (C4) or day-night (CAM) transitions (12, 
56, 78), further underscoring the critical role of the kinase in the PEPC-phos-
phorylation cycle.

Following the initial report by Jiao & Chollet (52), the extremely low-
abundance PEPC kinase has been partially purified about 4000-fold. It is 
likely to be a monomer of ~37/30-kDa (C4) or ~39/32-kDa (CAM) polypep-
tides (69, 70, 120). As isolated, this protein kinase catalyzes neither auto-
phosphorylation nor the phosphorylation of heterologous substrates (e.g. 
casein, histone III-S, BSA, leaf sucrose-P synthase). Similarly, position-8 Sor-
ghum C4-PEPC mutants (e.g. S8Y, S8D, S8C) are not phosphorylated except 
for the Thr substitution (70, 120, 121; GB Maralihalli, V Pacquit, B Li, JA 
Jiao, G Sarath, et al, unpublished data). In contrast, all plant PEPC isoforms 
examined to date (C4, CAM, C3-leaf, root nodule) serve as substrates in vi-
tro (70, 119, 120), but with a distinct preference for the corresponding PEPC 
kinase (B Li, XQ Zhang & R Chollet, unpublished data). Considerable effort 
has been expended to (re)investigate the Ca2+-dependency of this protein ki-
nase. It is our view that although a variety of other protein-Ser/Thr kinases, 
including C4-leaf calmodulin-like domain protein kinase (CDPK) and mam-
malian protein kinase A, specifically phosphorylate the single target Ser in 
plant PEPC in vitro (7, 53, 69, 85, 110), only the Ca2+-independent, 30- to 39-
kDa PEPC kinase has been shown to be light-dark (C4) or day-night (CAM) 
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regulated in vivo (69, 70). Notably, these differential activity states of the 
kinase are maintained throughout chromatography on various matrices and 
even following SDS-PAGE and subsequent renaturation (69; B Li & R Chol-
let, unpublished data). Thus, PEPC kinase is likely up/downregulated in 
vivo by some mechanism that modulates its amount (7, 12, 56, 69) or else by 
covalent modification rather than by some noncovalent means (e.g. regula-
tory subunit, tight-binding effector). Repeated attempts to demonstrate an 
effect of in vitro dephosphorylation by alkaline phosphatase on the activity 
states of the light (active) and dark (inactive) C4 kinase and its component 
~37/30-kDa polypeptides have proven unsuccessful (B Li & R Chollet, un-
published data).

The signal-transduction chains that impinge upon the highly regulated 
PEPC kinases are also a focus of current research. Initial studies using a 
chemical inhibitor-based approach with detached leaves (7, 12, 55, 56, 69, 78) 
have been supplanted by in situ analyses with isolated C4 mesophyll cells 
and protoplasts and cell biology techniques (24A, 30A, 94, 117). It is now es-
tablished that the light-induced C4 transduction cascade is initiated in the il-
luminated chloroplast by photosynthesis and likely involves some “signal” 
from the light-activated Calvin cycle in the neighboring bundle sheath, pos-
sibly 3-P-glycerate (Figure 3). In addition, there is mounting in situ evidence 
for the involvement of increases in mesophyll-cytosol pH and [Ca2+], the lat-
ter perhaps modulating an upstream protein kinase (24A, 30A, 94, 117), to-
gether with the inhibitor-based data that implicate a key role for a cytosolic 
protein-synthesis event (7, 8, 30A, 56, 69, 94). In contrast, not much is known 
about the CAM PEPC kinase signal-transduction pathway other than its light 
independency and the involvement of a circadian rhythm and cytosolic pro-
tein turnover (Figure 3) (12, 12A, 83, 84). Clearly, this area would benefit from 
detailed in situ analyses of intact mesophyll protoplasts isolated from night 
and day leaves performing CAM.

Finally, the results from leaf CO2-exchange studies have underscored the 
impact of the PEPC regulatory-phosphorylation cycle on C4 photosynthe-
sis and dark CO2 fixation during CAM (8, 12, 12A). For example, when the 
activity states of PEPC kinase and, thus, its target enzyme were downreg-
ulated in vivo by short-term pretreatment with cytosolic protein-synthesis 
inhibitors in the light (C4) or prior to the night period (CAM), net leaf CO2 
uptake was diminished markedly. In contrast, no effects were observed on 
the activation states of other nuclear-encoded, photosynthesis-related en-
zymes, stomatal conductance, or CO2 uptake by a C3 leaf (7, 8, 56). Thus, the 
phosphorylation of photosynthetic PEPC is a cardinal regulatory event that 
influences atmospheric CO2 fixation; this mechanism enables this primary 
carboxylase to function in the leaf cytosol even in the presence of the mil-
limolar levels of C4 acids (e.g. l-malate) required for C4 photosynthesis and 
CAM.
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Regulatory Phosphorylation of Nonphotosynthetic PEPC Isoforms 

There is now convincing evidence that the reversible phosphorylation of 
the N-terminal domain of plant PEPC is widespread, if not ubiquitous. In 
vivo studies with 32Pi have demonstrated the reversible phosphorylation of 
nonphotosynthetic PEPC in soybean root nodules (136) and in wheat leaves 
excised from N-deficient seedlings (24, 116). Complementary measurements 
of in vivo changes in PEPC activity and/or malate sensitivity under near-
physiological assay conditions (i.e. low pH, low [PEP] relative to Km) have 
underscored the regulatory nature of this covalent modification in nodules 
(136), illuminated C3 leaves (24, 116; B Li, XQ Zhang & R Chollet, unpub-
lished data), and Vicia faba guard cells microdissected from opening stomata 

Figure 3. Proposed molecular mechanism for the light-dark (C4) or night-day (CAM) 
regulation of the effector sensitivity [l-malate (negative), G6P (positive)] and activity 
of photosynthetic PEPC in the leaf mesophyll cell by reversible phosphorylation of 
a single target serine near the subunit’s N-terminus [e.g. Ser-8 in Sorghum (see Fig-
ure 1)]. Chlpt. *, illuminated chloroplast; pHc and [Ca2+]c, mesophyll cytosolic pH and 
[Ca2+], respectively; 3-PGA, 3-P-glycerate; PP, protein phosphatase. [Updated from 
Jiao & Chollet (54).]
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(135). Furthermore, related in vitro studies have established that PEPC ki-
nase activity is present in soybean and alfalfa root nodules (102, 115), wheat 
and tobacco leaves (24, 119), and Sorghum roots (91), and have demonstrated 
this kinase’s similarity to the C4 and CAM enzymes with respect to its Ca2+ 
independency, chromatographic properties, and catalytic subunit(s) (24, 91, 
119). The activity state of this PEPC kinase is modulated reversibly in vivo 
by a complex interaction between photosynthesis and N (C3 leaves) or pho-
tosynthate supply to N2-fixing root nodules (24; B Li, XQ Zhang & R Chollet, 
unpublished data). Thus, the phosphorylation of cytosolic PEPC by a highly 
regulated protein-Ser/Thr kinase is likely the major posttranslational mecha-
nism for altering the allosteric properties and activity of this “multifaceted” 
plant enzyme in vivo.

Other Proposed Regulatory Mechanisms 

Two other mechanisms have been proposed for the diel regulation of C4 and 
CAM PEPC activity and/or sensitivity to l-malate based wholly on in vitro 
observations.

Dimer-Tetramer Interconversion  — The Wedding laboratory found that CAM 
PEPC purified from day- and night-adapted Crassula argentea leaves exists 
as kinetically distinct but interconvertible oligomers (128). The day enzyme 
was mainly a malate-sensitive homodimer (α2) and the night form a malate-
“insensitive” homotetramer (α4), with about a twofold higher Ki. PEP, G6P, 
Mg2+, or a higher [PEPC] favors conversion of α2 to α4, whereas l-malate 
or a lower [PEPC] shifts the equilibrium toward the dimeric form (79, 128, 
129). Similar in vitro association/dissociation properties have been reported 
for the active C4 homotetramer from maize (123, 127). There is no evidence, 
however, to support the involvement of these aggregation-state changes in 
the diel regulation of the CAM and C4 isoforms in vivo. On the contrary, sev-
eral reports document that the phospho and dephospho C4 and CAM enzyme 
forms are isolated in the same aggregation state while retaining the character-
istic differential sensitivity to l-malate (4, 63, 77, 82, 122). Thus, it is our opin-
ion that there is not a significant regulation of photosynthetic PEPC in vivo 
by changes in its aggregation state.

Redox Regulation — Even more speculative in our view is the proposal that 
the regulation of cytosolic C4 PEPC may be primarily under the control of 
the redox state of certain critical cysteines (13, 45). While there are, indeed, 
five plant-invariant Cys residues in the various PEPC isoforms that are ab-
sent in the microbial enzymes (Figure 1) (67, 68, 79A, 114), none of them have 
been shown specifically to be involved in regulation of activity or l-malate 
sensitivity. On the contrary, related observations with the dephospho maize 
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enzyme indicate no effect of reduced cytosolic thioredoxin h on the properties 
of C4 PEPC in vitro (52).

PEPC Gene Structure, Expression, and Molecular Evolution

Multigene Families 

PEPC isoforms have been characterized in both photosynthetic and nonpho-
tosynthetic tissues of various plants (reviewed in 68, 114). Consistent with the 
enzyme’s functional diversity, small multigene families have been found. For 
example, three PEPC nuclear genes—SvC3, SvC3RI, and SvC4—have been char-
acterized in Sorghum that encode the C3-like housekeeping and root forms and 
the C4-photosynthetic isoform, respectively (67). The maize family possesses at 
least five genes (37) that can be classified into three distinct groups (99). The 
C4-PEPC gene is unique and is located near the centromere of chromosome 9. 
Three other genes have been mapped to different loci on chromosomes 4L, 5, 
and 7 (37, 47, 61). Both C3 and C4 species in the dicot genus Flaveria contain 
very similar families of distinct Ppc subgroups (40, 95). The C4 isoform in Flave-
ria trinervia is encoded by the PpcA subgroup of the family. Homologous PpcA 
genes are found in the C3 species Flaveria pringlei; however, they are weakly ex-
pressed, and their transcripts do not show the strict leaf-specific accumulation 
pattern found in the related C4 species (40). In the facultative CAM plant M. 
crystallinum, two isogenes (Ppc1, Ppc2) have been described, and another dis-
tinct member might exist (17, 18); the transcriptional activity of Ppc1 is strongly 
and selectively enhanced during C3 to CAM switching induced by salt stress 
(18). The Brassica napus genome contains more than four highly similar PEPC 
genes, but some of them lack specific introns (133). PEPC gene families have 
also been found or suggested to exist in sugarcane, Amaranthus, tobacco, alfalfa, 
rice, wheat (reviewed in 68), and Arabidopsis (79B).

Ppc and PEPC Sequence Comparisons 

The plant PEPC genes contain nine introns (with the exception reported in 
133) of variable length but identical location with respect to the coding re-
gions. Consensus intron/exon splice sites (aGGTaag—tgcAGg) are conserved. 
Generally, a classical gene organization is observed, although in some C4- and 
C3-type Ppc genes there is no typical TATA box, and multiple polyadenyl-
ation sites are found in the 3′-untranslated region (15, 43, 74, 132).

In alignments of all the deduced PEPC amino acid sequences reported, 
several highly conserved residues and motifs are found, and these likely con-
tribute to the domains involved in the active site and/or regulation of the en-
zyme (see sections on Active-Site Structure and Regulatory Phosphorylation) 
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(67, 68, 79A, 96A, 114). Figure 1 exemplifies these structural features in the 
deduced sequence of the C4-isoform from Sorghum (SvC4). The phosphoryla-
tion motif near the N-terminus (E/DR/KxxSIDAQL/MR), including the tar-
get Ser, and five cysteine residues, some of which have been proposed to be 
involved in redox regulation and/or stabilization of the tetrameric structure 
of the holoenzyme (13, 45), are specific to plant PEPC (68, 79A, 114). In addi-
tion, there are several species-invariant motifs in all PEPCs examined to date 
(TAHPT, VMxGYSDSxKDxG, FHGRGxxxxRGxxP) that contain specific His, 
Lys, and Arg residues implicated in the active-site domain (see section on Ac-
tive-Site Structure; 3, 57, 79A, 96, 96A, 112). In general, the C-terminal half of 
the ~110-kDa PEPC polypeptide contains most of these presumed active-site 
determinants, whereas the N-terminal half appears to include the motifs that 
are regulatory in nature (53, 57, 110, 114). Further insight into the structure/
function relationships of PEPC must await continued mutagenesis of these 
and other (114) highly conserved domains and, most importantly, high-reso-
lution crystallographic analysis of the plant and microbial proteins.

Ppc Promoter Analysis and Transcription 

The C4-PEPC gene is expressed in photosynthetic tissues during greening 
via a phytochrome-mediated response (113). Expression of this gene is not 
necessarily coupled to the development of Kranz leaf anatomy because, in 
maize, it also occurs in such tissues as the inner leaf sheaths and tassels (43). 
In addition to light, cytokinins upregulate the transcriptional activity of the 
C4-PEPC gene in maize leaves recovering from N deficiency (106), whereas 
in Sorghum abscisic acid (ABA) stimulates specific Ppc mRNA accumulation 
(2). In M. crystallinum, CAM-PEPC gene expression is induced by salt stress 
and/or ABA during C3 to CAM switching, and these effects are moderated 
by light (76). In the CAM plant Kalanchoë blossfeldiana, changes in photoperiod 
and ABA are also involved in the induction of the photosynthetic PEPC gene 
(108). Lastly, C3-type PEPC mRNAs are accumulated during the development 
of alfalfa root nodules (92, 115) and in recovering roots of N-deficient Sorghum 
(P Gadal, L Lepiniec & S Santi, unpublished data).

Light-responsive elements corresponding to those in the nuclear genes 
encoding the small subunit of Rubisco are lacking in the C4-Ppc promoters 
of maize and Sorghum. Other conserved, direct repeated sequences (TTAC-
CACTAGCTA), or the light-responsive element (CCTTATCCT) characterized 
previously in the promoter of light-inducible phytochrome genes, could play 
such a role, at least in part (15, 68, 74). The maize nuclear factor (MNF) (see 
below; 131) and SV40 Sp1 (15, 68, 74) binding sites—(AAGG) and (CCGCCC), 
respectively—are also found in C4-Ppc promoters. In addition, the presence of 
CpG islands (68) is consistent with the possible regulation of specific sites in 
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the promoters of both C4 and C3 PEPC genes by changes in DNA methylation 
status (64). In the Sorghum SvC3 and SvC3RI Ppc promoters, sequences ho-
mologous to the light-responsive element AT-1 (AATATTTTTATA) and nod- 
(TCTACGTAGA) and G-boxes (CCACGTGG) are found (68). Both C4 and C3 
species of Flaveria have orthologous C4 genes (PpcA subgroup), the 5′-flanking 
regions of which are essentially homologous and share CCAAT, AT-1, and 
GT-1 III/IIIα boxes and an octameric motif known to confer cell-type speci-
ficity (40). It has been suggested that certain specific features of the C4-PEPC 
gene promoter in F. trinervia could account for the much higher expression 
level in this C4 species, including a light-responsive box II element, the mi-
croheterogeneity of the sequence around the TATA box, and the presence of 
a putative scaffold attachment region near the promoter that is often associ-
ated with highly expressed genes (40). Recent experiments using transgenic 
tobacco plants have shown that the sequences responsible for the enhanced, 
leaf-specific expression of C4 Ppc in F. trinervia are located between positions 
−2118 and −500 relative to the transcription start site in the PpcA promoter 
(105); whether these sequences involve the above-mentioned proximal ele-
ments is not known.

Three leaf-specific DNA-binding proteins (MNF1, MNF2a, MNF2b) have 
been shown to interact specifically with the promoter of the maize C4-PEPC 
gene (130, 131). Among these nuclear factors, MNF2a is presumed to act as a 
negative transcriptional effector (130). Two cDNA clones (MNB1a, MNB1b) 
encoding proteins that bind to an AAGG motif at the MNF1 site have been 
identified (131). Two other clones (designated 281, 282) may encode PEP1, a 
light-dependent factor interacting with the promoter of the maize C4-PEPC 
gene (59). In M. crystallinum, salt stress causes three protein factors (PCAT-1, -
2, and -3) to differentially recognize two AT-rich regions in the Ppc1 promoter 
(16). Recently, several salt-responsive enhancer regions and one silencer re-
gion have been identified in this promoter (98A).

From the above, it is clear that data on nuclear trans-acting factors and the 
corresponding regulatory cis-acting DNA sequences of the Ppc promoters are 
still relatively scarce. Thus, no clear picture has emerged concerning the regu-
latory mechanisms that control the transcription rate of the different classes 
of PEPC genes in plants.

Transgenic Plants 

In transgenic tobacco transformed with maize C4-Ppc1 genes containing the 
upstream regulatory region (about 2 kb), a low level of PEPC transcripts was 
produced; although their size was aberrantly large, accumulation still re-
quired light (44). These transformants possessed a twofold increase in PEPC 
activity that was correlated with the appearance of a high-Km(PEP) C4 form of 
the enzyme and an elevated level of leaf malate. However, these biochemical 
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changes did not result in any detectable physiological effects with respect to 
the rate of leaf net photosynthesis in air and to the CO2 compensation con-
centration. In a related study, the maize C4-PEPC gene was placed under the 
control of a CaMV 35S promoter (62). Although the transgenic tobacco plants 
contained Ppc transcripts of the correct size and about twice as much PEPC 
protein, their growth rate was retarded relative to that of the nontransformed 
plants. Transgenic tobacco plants transformed with either the C4-PEPC gene 
from Sorghum or chimeric constructs containing the promoter of the C4 gene 
from maize fused to the gusA reporter gene showed a high expression of tran-
scripts as well as leaf mesophyll-cell specificity (75, 107). Similar results have 
been reported recently in transgenic rice using the same experimental strategy 
(73). Transgenic tobacco plants also expressed constructs containing various 
parts of the 5′-flanking region of the PpcA1 (C4-type) genes from both C4 and 
C3 species of Flaveria (105). In this heterologous system, only the C4-Ppc pro-
moter from the C4 species conferred a high level of reporter gene expression, 
thus showing that it contains regulatory cis-elements responsible for abundant 
expression. In addition, a leaf palisade mesophyll-cell specificity was partially 
maintained in these transgenic tobacco plants. Hence, it appears that most of 
the regulatory elements that control the light-inducible expression of Ppc in 
C4 leaves are also present in C3 plants. On the other hand, although the CAM-
specific Ppc promoter from the M. crystallinum gene is highly active in trans-
genic tobacco, it directs transcript synthesis in most cell types and lacks the 
salt inducibility found in its natural cellular environment (17). Finally, in ho-
mologous transient-expression systems using leaf-, stem-, and root-derived 
protoplasts from maize, a cell-specific expression pattern is largely dependent 
on the specific Ppc promoter used (99). In this system, transcript accumula-
tion is not immediate but rather is related to light-dependent developmental 
changes, in contrast with other photosynthetic genes. This latter observation 
has led to the suggestion that distinct transduction pathways operate for the 
coordination of light-dependent genes encoding photosynthetic enzymes (99).

Molecular Evolution 

Phylogenetic trees have been constructed using unambiguously aligned 
sites from the available PEPC amino acid sequences as well as on the basis 
of parsimony or distance analyses (1, 47, 61, 67, 68, 114). The cyanobacterial 
and bacterial PEPCs consistently group with prokaryotic phylogenetic re-
lationships (68). As for the plant enzymes, phylogenetic relationships have 
been studied with particular emphasis on the molecular mechanisms that 
have shaped the expression characteristics and kinetic properties of PEPC 
during the evolutionary transition from C3 into CAM and C4 plants. The 
acquisition of these new photosynthetic strategies by a wide variety of plant 
species indicates that they have originated independently and on many 
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separate occasions during the evolution of flowering plants, with CAM be-
ing the antecedent of C4 (47, 61, 67). Thus, an obvious question is how to 
account for the polyphyletic evolution of C4 plants. From the various in-
dependently derived trees it can be inferred that all plant PEPC sequences 
diverged from a single common ancestral gene. On the other hand, the pres-
ence of different genes could have preceded angiosperm diversification and 
perhaps also that of higher plants. C4-PEPC genes could have arisen from a 
duplication event long before the monocot-dicot divergence and thus prior 

Figure 4  Consensus phylogenetic tree of 19 microbial and plant PEPCs. Branch 
lengths have no significance (see 67, 68 for details). SvC4, SvC3RI, and SvC3 are the 
photosynthetic, root, and housekeeping isoforms of Sorghum vulgare PEPC, respec-
tively; Zea mays C4, RC3, and C3 are the corresponding isoforms in maize. (Redrawn 
from Lepiniec et al (68), with permission from Elsevier Science Ireland Ltd.)
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to the appearance of C4 plants. In this manner, the PEPC gene for C4 pho-
tosynthesis could have evolved in a limited number of species while disap-
pearing in others (47, 61, 67). In the consensus tree depicted in Figure 4, 
C4-PEPCs from the monocots Sorghum and maize are clearly distinguishable 
from the various C3 and CAM isoforms and also from their indigenous C3 
counterparts (e.g. SvC3RI, SvC3). In contrast, the photosynthetic enzyme in 
the C4-dicot F. trinervia is more closely related to the various isoforms in 
C3 and CAM dicots (40, 95) than to the two monocot C4-PEPCs (68). Fur-
thermore, because the promoters of the C4-PEPC gene in F. trinervia and the 
orthologous gene in F. pringlei (C3) are very similar, it has been suggested 
that a C3 promoter could have been “tuned” to meet the special demands of 
C4 photosynthesis (40). The possibility that an alternative evolution has led 
to the formation of C4 enzymes in the various genera containing C4 species 
could account for the observed divergence between monocots and dicots 
(40). Finally, it is not clear why a homologous form of C4-PEPC is not found 
in dicots because, as mentioned above, a primordial PEPC form could have 
arisen before the divergence of monocots and dicots (68). Further investiga-
tions involving PEPC sequences from different genera are required to refine 
the phylogenetic relationships of the microbial and plant enzymes, includ-
ing sequence analysis of green algal PEPCs and additional gymnosperm 
species (Picea abies) (96A).

Conclusions and Future Prospects

While the past decade has seen a number of truly impressive revelations 
concerning PEPC, future research awaits the results of three-dimensional 
structure studies that will provide another important chapter in PEPC 
mechanism, regulation, allosteric effects, and other areas. In addition, the 
emerging pictures of the highly regulated PEPC kinase, together with its 
requisite signal-transduction cascades, must be completed. Related work on 
the heteromeric intracellular form of the type 2A protein phosphatase that 
dephosphorylates plant PEPC in the cytosol will also be important (cf 122A). 
With the recent generation of the first C4 PEPC-deficient mutant in the dicot 
Amaranthus edulis (20) and the development of an efficient, Agrobacterium-
mediated transformation system for C4 dicots (14), the stage is finally set for 
the genetic manipulation of C4 photosynthesis in vivo by engineering the 
regulatory properties and amount of PEPC in the leaf cytosol. We anticipate 
that these and other fertile avenues for future research on PEPC will con-
tinue to deepen our understanding of this “multifaceted” enzyme in plants. 
Finally, we hope that this survey has reminded the reader that there is, in-
deed, another CO2-fixing enzyme in plants besides Rubisco that is worthy 
of detailed study.



292   Ch o l l e t,  Vi d a l,  & o’le a r y i n An n Re v Pl A n t Ph y s & Pl A n t Mo l Bi o l  47 (1996)  

Acknowledgments 

R. C. gratefully acknowledges the continued support of his laboratory’s re-
search on plant PEPC by NSF, USDA/NRI, and the Nebraska Agricultural 
Research Division (in which this article is published as Journal Series No. 11, 
284).

Literature Cited

1. Albert HA, Martin T, Sun SSM. 1992. Structure and expression of a sugarcane gene encoding a 
housekeeping phosphoenolpyruvate carboxylase. Plant Mol. Biol. 20:663–71 

2. Amzallag GN, Lerner HR, Poljakoff-Mayber A. 1990. Exogenous ABA as a modulator of the re-
sponse of Sorghum to high salinity. J. Exp. Bot. 41:1529–34 

3. Andreo CS, González DH, Iglesias AA. 1987. Higher plant Phosphoenolpyruvate carboxylase: 
structure and regulation. FEBS Lett. 213:1–8 

4. Arrio-Dupont M, Bakrim N, Echevarria C, Gadal P, Le Maréchal P, Vidal J. 1992. Compared prop-
erties of phosphoenolpyruvate carboxylase from dark- and light-adapted Sorghum leaves: use of a 
rapid purification technique by immunochromatography. Plant Sci. 81:37–46 

5. Ausenhus SL. 1993. Phosphoenolpyruvate carboxylase from maize: function of the divalent metal ion in 
binding and catalysis. PhD thesis. Univ. Wis., Madison. 160 pp. 

6. Ausenhus SL, O’Leary MH. 1992. Hydrolysis of phosphoenolpyruvate catalyzed by phosphoenol-
pyruvate carboxylase from Zea mays. Biochemistry 31:6427–31 

7. Bakrim N, Echevarria C, Crétin C, Arrio-Dupont M, Pierre JN, et al. 1992. Regulatory phosphory-
lation of Sorghum leaf Phosphoenolpyruvate carboxylase: identification of the protein-serine kinase 
and some elements of the signal-transduction cascade. Eur. J. Biochem. 204:821–30 

8. Bakrim N, Prioul JL, Deleens E, Rocher JP, Arrio-Dupont M, et al. 1993. Regulatory phosphoryla-
tion of C4 Phosphoenolpyruvate carboxylase: a cardinal event influencing the photosynthesis rate 
in Sorghum and maize. Plant Physiol. 101:891–97 

9. Baur B, Dietz KJ, Winter K. 1992. Regulatory protein phosphorylation of Phosphoenolpyruvate car-
boxylase in the facultative crassulacean-acid-metabolism plant Mesembryanthemum crystallinum L. 
Eur. J. Biochem. 209:95–101 

10. Budde RJA, Chollet R. 1986. In vitro phosphorylation of maize leaf phosphoenolpyruvate carbox-
ylase. Plant Physiol. 82:1107–14 

11. Carter PJ, Nimmo HG, Fewson CA, Wilkins MB. 1990. Bryophyllum fedtschenkoi protein phospha-
tase type 2A can dephosphorylate phosphoenolpyruvate carboxylase. FEBS Lett. 263:233–36 

12. Carter PJ, Nimmo HG, Fewson CA, Wilkins MB. 1991. Circadian rhythms in the activity of a plant 
protein kinase. EMBO J. 10:2063–68 

12A. Carter PJ, Wilkins MB, Nimmo HG, Fewson CA. 1995. Effects of temperature on the activity of 
phosphoenolpyruvate carboxylase and on the control of CO2 fixation in Bryophyllum fedtschenkoi. 
Planta 196:375–80

13. Chardot TP, Wedding RT. 1992. Role of cysteine in activation and allosteric regulation of maize 
Phosphoenolpyruvate carboxylase. Plant Physiol. 98:780–83 

14. Chitty JA, Furbank RT, Marshall JS, Chen Z, Taylor WC. 1994. Genetic transformation of the C4 
plant, Flaveria bidentis. Plant J. 6:949–56 

15. Crétin C, Santi S, Keryer E, Lepiniec L, Tagu D, et al. 1991. The phosphoenolpyruvate carboxyl-
ase gene family of Sorghum: promoter structures, amino acid sequences and expression of genes. 
Gene 99:87–94 

16. Cushman JC, Bohnert HJ. 1992. Salt stress alters A/T-rich DNA-binding factor interactions within 
the phosphoenolpyruvate carboxylase promoter from Mesembryanthemum crystallinum. Plant Mol. 
Biol. 20:411–24 

17. Cushman JC, Meiners MS, Bohnert HJ. 1993. Expression of a phosphoenolpyruvate carboxylase 



Ph o s P h o e n o l P y r u V a t e Ca r b o x y l a s e     293

promoter from Mesembryanthemum crystallinum is not salt-inducible in mature transgenic to-
bacco. Plant Mol. Biol. 21:561–66 

18. Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ. 1989. Salt stress leads to differ-
ential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid 
metabolism induction in the common ice plant. Plant Cell 1:715–25 

19. Deroche ME, Carrayol E. 1988. Nodule phosphoenolpyruvate carboxylase: a review. Physiol. 
Plant. 74:775–82 

20. Dever LV, Blackwell RD, Fullwood NJ, Lacuesta M, Leegood RC, et al. 1995. The isolation and 
characterization of mutants of the C4 photosynthetic pathway. J. Exp. Bot. 46:1363–76 

21. Díaz E, O’Laughlin JT, O’Leary MH. 1988. Reaction of phosphoenolpyruvate carboxylase with (Z)-
3-bromophosphoenolpyruvate and (Z)-3-fluorophosphoenolpyruvate. Biochemistry 27:1336–41 

22. Doncaster HD, Leegood RC. 1987. Regulation of phosphoenolpyruvate carboxylase activity in 
maize leaves. Plant Physiol. 84:82–87 

23. Duff SMG, Andreo CS, Pacquit V, Lepiniec L, Sarath G, et al. 1995. Kinetic analysis of the non-
phosphorylated, in vitro phosphorylated, and phosphorylation-site-mutant (Asp8) forms of in-
tact recombinant C4 Phosphoenolpyruvate carboxylase from sorghum. Eur. J. Biochem. 228:92–95 

24. Duff SMG, Chollet R. 1995. In vivo regulation of wheat-leaf Phosphoenolpyruvate carboxylase by 
reversible phosphorylation. Plant Physiol. 107:775–82 

24A. Duff SMG, Giglioli-Guivarc’h N, Pierre J-N, Vidal J, Condon SA, Chollet R. 1996. In situ evi-
dence for the involvement of calcium and bundle sheath–derived photosynthetic metabolites in 
the C4 Phosphoenolpyruvate-carboxylase kinase signal-transduction chain. Planta. In press 

25. Duff SMG, Lepiniec L, Crétin C, Andreo CS, Condon SA, et al. 1993. An engineered change in the 
l-malate sensitivity of a site-directed mutant of sorghum Phosphoenolpyruvate carboxylase: the 
effect of sequential mutagenesis and S-carboxymethylation at position 8. Arch. Biochem. Biophys. 
306:272–76 

26. Echevarria C, Pacquit V, Bakrim N, Osuna L, Delgado B, et al. 1994. The effect of pH on the co-
valent and metabolic control of C4 Phosphoenolpyruvate carboxylase from Sorghum leaf. Arch. 
Biochem. Biophys. 315:425–30 

27. Echevarría C, Vidal J, Jiao JA, Chollet R. 1990. Reversible light activation of the Phosphoenolpyru-
vate carboxylase protein-serine kinase in maize leaves. FEBS Lett. 275:25–28 

28. Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthe-
sis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:503–37 

29. Fujita N, Izui K, Nishino T, Katsuki H. 1984. Reaction mechanism of phosphoenolpyruvate car-
boxylase: bicarbonate-dependent dephosphorylation of phospho enol-α-ketobutyrate. Biochemis-
try 23:1774–79 

30. Gawlita E, Caldwell WS, O’Leary MH, Paneth P, Anderson VE. 1995. Kinetic isotope effects on 
substrate association: reactions of phosphoenolpyruvate with phosphoenolpyruvate carboxylase 
and pyruvate kinase. Biochemistry 32:2577–83 

30A. Giglioli-Guivarc’h N, Pierre J-N, Brown S, Chollet R, Vidal J, Gadal P. 1996. The light-depen-
dent transduction pathway controlling the regulatory phosphorylation of C4 Phosphoenolpyru-
vate carboxylase in protoplasts from Digitaria sanguinalis. Plant Cell 8:In press

31. González DH, Andreo CS. 1986. Phospho enolpyruvate carboxylase from maize leaves: studies 
using β-methylated phosphoenolpyruvate analogues as inhibitors and substrates. Z. Naturforsch. 
41C:1004–10 

32. González DH, Andreo CS. 1988. Carboxylation and dephosphorylation of phosphoenol-3-fluoro-
pyruvate by maize leaf phosphoenolpyruvate carboxylase. Biochem. J. 253:217–22 

33. González DH, Andreo CS. 1988. Identification of 2-enolbutyrate as the product of the reaction of 
maize leaf phosphoenolpyruvate carboxylase with (Z)- and (E)-2-phosphoenolbutyrate: evidence 
from NMR and kinetic measurements. Biochemistry 27:177–83 

34. Gonzalez DH, Andreo CS. 1988. Stereoselectivity of the interaction of E- and Z-2-Phosphoenolbu-
tyrate with maize leaf Phosphoenolpyruvate carboxylase. Eur. J. Biochem. 173:339–43 

35. González DH, Andreo CS. 1989. The use of substrate analogues to study the active-site structure 
and mechanism of PEP carboxylase. Trends Biochem. Sci. 14:24–27 



294   Ch o l l e t,  Vi d a l,  & o’le a r y i n An n Re v Pl A n t Ph y s & Pl A n t Mo l Bi o l  47 (1996)  

36. Grammatikopoulos G, Manetas Y. 1990. Diurnal changes in phosphoenolpyruvate carboxylase 
and pyruvate, orthophosphate dikinase properties in the natural environment: interplay of light 
and temperature in a C4 thermophile. Physiol. Plant. 80:593–97 

37. Grula JW, Hudspeth RL. 1987. The phosphoenolpyruvate carboxylase gene family of maize. In Plant 
Gene Systems and Their Biology, ed. JL Key, L McIntosh, pp. 207–16. New York: Liss 

38. Guidici-Orticoni MT, Vidal J, Le Maréchal P, Thomas M, Gadal P, Rémy R. 1988. In vivo phos-
phorylation of sorghum leaf Phosphoenolpyruvate carboxylase. Biochimie 70:769–72 

39. Hansen DE, Knowles JR. 1982. The stereochemical course at phosphorus of the reaction catalyzed 
by phosphoenolpyruvate carboxylase. J. Biol. Chem. 257:14795–98 

40. Hermans J, Westhoff P. 1992. Homologous genes for the C4 isoform of phosphoenolpyruvate car-
boxylase in a C3 and a C4Flaveria species. Mol. Gen. Genet. 234:275–84 

40A. Huber SC, Huber JL. 1996. Role and regulation of sucrose-phosphate synthase in higher plants 
Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:431–44 

41. Huber SC, Huber JL, McMichael RWJr . 1994. Control of plant enzyme activity by reversible pro-
tein phosphorylation. Int. Rev. Cytol. 149:47–98 

42. Huber SC, Sugiyama T. 1986. Changes in sensitivity to effectors of maize leaf phosphoenolpyru-
vate carboxylase during light/dark transitions. Plant Physiol. 81:674–77 

43. Hudspeth RL, Grula JW. 1989. Structure and expression of the maize gene encoding the phospho-
enolpyruvate carboxylase isozyme involved in C4 photosynthesis. Plant Mol. Biol. 12:579–89 

44. Hudspeth RL, Grula JW, Dai Z, Edwards GE, Ku MSB. 1992. Expression of maize Phospho-
enolpyruvate carboxylase in transgenic tobacco: effects on biochemistry and physiology. Plant 
Physiol. 98:458–64 

45. Iglesias AA, Andreo CS. 1984. On the molecular mechanism of maize phosphoenolpyruvate car-
boxylase activation by thiol compounds. Plant Physiol. 75:983–87 

46. Inoue M, Hayashi M, Sugimoto M, Harada S, Kai Y, et al. 1989. First crystallization of a phospho-
enolpyruvate carboxylase from Escherichia coli. J. Mol. Biol. 208:509–10 

47. Izui K, Kawamura T, Okumura S, Toh H. 1992. Molecular evolution of Phosphoenolpyruvate car-
boxylase for C4 photosynthesis in maize. In Research in Photosynthesis, ed. N Murata, 3:827–30. 
Dordrecht: Kluwer 

48. Janc JW, Cleland WW, O’Leary MH. 1992. Mechanistic studies of phosphoenolpyruvate car-
boxylase from Zea mays utilizing formate as an alternate substrate for bicarbonate. Biochemistry 
31:6441–46 

49. Janc JW, O’Leary MH, Cleland WW. 1992. A kinetic investigation of phosphoenolpyruvate car-
boxylase from Zea mays. Biochemistry 31:6421–26 

50. Janc JW, Urbauer JL, O’Leary MH, Cleland WW. 1992. Mechanistic studies of phosphoenolpyru-
vate carboxylase from Zea mays with (Z)- and (E)-3-fluorophosphoenolpyruvate as substrates. 
Biochemistry 31:6432–40 

51. Jiao JA, Chollet R. 1988. Light/dark regulation of maize leaf Phosphoenolpyruvate carboxylase by 
in vivo phosphorylation. Arch. Biochem. Biophys. 261:409–17 

52. Jiao JA, Chollet R. 1989. Regulatory seryl-phosphorylation of C4 Phosphoenolpyruvate carboxyl-
ase by a soluble protein kinase from maize leaves. Arch. Biochem. Biophys. 269:526–35

53. Jiao JA, Chollet R. 1990. Regulatory phosphorylation of serine-15 in maize Phosphoenolpyruvate 
carboxylase by a C4-leaf protein-serine kinase. Arch. Biochem. Biophys. 283:300–5

54. Jiao JA, Chollet R. 1991. Posttranslational regulation of Phosphoenolpyruvate carboxylase in C4 
and Crassulacean acid metabolism plants. Plant Physiol. 95:981–85 

55. Jiao JA, Chollet R. 1992. Light activation of maize Phosphoenolpyruvate carboxylase protein-ser-
ine kinase activity is inhibited by mesophyll and bundle sheath–directed photosynthesis inhibi-
tors. Plant Physiol. 98:152–56 

56. Jiao JA, Echevarría C, Vidal J, Chollet R. 1991. Protein turnover as a component in the light/dark 
regulation of Phosphoenolpyruvate carboxylase protein-serine kinase activity in C4 plants. Proc. 
Natl. Acad. Sci USA 88:2712–15 

57. Jiao JA, Podestá FE, Chollet R, O’Leary MH, Andreo CS. 1990. Isolation and sequence of an ac-
tive-site peptide from maize leaf Phosphoenolpyruvate carboxylase inactivated by pyridoxal 5′-



Ph o s P h o e n o l P y r u V a t e Ca r b o x y l a s e     295

phosphate. Biochim. Biophys. Acta 1041:291–95 
58. Jiao JA, Vidal J, Echevarría C, Chollet R. 1991. In vivo regulatory phosphorylation site in C4-leaf 

Phosphoenolpyruvate carboxylase from maize and sorghum. Plant Physiol. 96:297–301 
59. Kano-Murakami Y, Matsuoka M. 1992. Gene expression of PEP carboxylase gene. See Ref. 47, 

3:843–46 
60. Karabourniotis G, Manetas Y, Gavalas NA. 1983. Photoregulation of phosphoenolpyruvate car-

boxylase in Salsola soda L. and other C4 plants. Plant Physiol. 73:735–39 
61. Kawamura T, Shigesada K, Toh H, Okumura S, Yanagisawa S, Izui K. 1992. Molecular evolution 

of phosphoenolpyruvate carboxylase for C4 photosynthesis in maize: comparison of its cDNA 
sequence with a newly isolated cDNA encoding an isozyme involved in the anaplerotic function. 
J. Biochem. 112:147–54 

62. Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, et al. 1994. Molecular and physiological 
evaluation of transgenic tobacco plants expressing a maize Phosphoenolpyruvate carboxylase 
gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res. 3:287–96 

63. Krüger I, Kluge M. 1987. Diurnal changes in the regulatory properties of phosphoenolpyruvate 
carboxylase in plants: Are alterations in the quaternary structure involved? Bot. Acta 101:24–27 

64. Langdale JA, Taylor WC, Nelson T. 1991. Cell-specific accumulation of maize phosphoenolpyru-
vate carboxylase is correlated with demethylation at a specific site >3kb upstream of the gene. 
Mol. Gen. Genet. 225:49–55 

65. Law RD, Plaxton WC. 1995. Purification and characterization of a novel phosphoenolpyruvate 
carboxylase from banana fruit. Biochem. J. 307:807–16 

66. Leegood RC, Osmond CB. 1990. The flux of metabolites in C4 and CAM plants. In Plant Physiology, 
Biochemistry and Molecular Biology, ed. DT Dennis, DH Turpin, pp. 274–98. Essex: Longman Sci. 
Tech. 

67. Lepiniec L, Keryer E, Philippe H, Gadal P, Crétin C. 1993. Sorghum phosphoenolpyruvate carbox-
ylase gene family: structure, function and molecular evolution. Plant Mol. Biol. 21:487–502 

68. Lepiniec L, Vidal J, Chollet R, Gadal P, Crétin C. 1994. Phosphoenolpyruvate carboxylase: struc-
ture, regulation and evolution. Plant Sci. 99:111–24 

69. Li B, Chollet R. 1993. Resolution and identification of C4 Phosphoenolpyruvate-carboxylase pro-
tein-kinase polypeptides and their reversible light activation in maize leaves. Arch. Biochem. Bio-
phys. 307:416–19 

70. Li B, Chollet R. 1994. Salt induction and the partial purification/characterization of Phosphoenol-
pyruvate carboxylase protein-serine kinase from an inducible Crassulacean-acid-metabolism 
(CAM) plant, Mesembryanthemum crytallinum L. Arch. Biochem. Biophys. 314:247–54 

71. Liu J, Peliska JA, O’Leary MH. 1990. Synthesis and study of (Z)-3-chlorophosphoenolpyruvate. 
Arch. Biochem. Biophys. 277:143–48 

72. Maruyama H, Easterday RL, Chang HC, Lane MD. 1966. The enzymatic carboxylation of phos-
phoenolpyruvate. I. Purification and properties of phosphoenolpyruvate carboxylase. J. Biol. 
Chem. 241:2405–12 

73. Matsuoka M, Kyozuka J, Shimamoto K, Kano-Murakami Y. 1994. The promoters of two carboxyl-
ases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant 
J. 6:311–19 

74. Matsuoka M, Minami E. 1989. Complete structure of the gene for Phosphoenolpyruvate carboxyl-
ase from maize. Eur. J. Biochem. 181:593–98 

75. Matsuoka M, Sanada Y. 1991. Expression of photosynthetic genes from the C4 plant, maize, in 
tobacco. Mol. Gen. Genet. 225:411–19

76. McElwain EF, Bohnert HJ, Thomas JC. 1992. Light moderates the induction of Phosphoenolpyr-
uvate carboxylase by NaCl and abscisic acid in Mesembryanthemum crystallinum. Plant Physiol. 
99:1261–64 

77. McNaughton GAL, Fewson CA, Wilkins MB, Nimmo HG. 1989. Purification, oligomeriza-
tion state and malate sensitivity of maize leaf phosphoenolpyruvate carboxylase. Biochem. J. 
261:349–55 

78. McNaughton GAL, MacKintosh C, Fewson CA, Wilkins MB, Nimmo HG. 1991. Illumination in-



296   Ch o l l e t,  Vi d a l,  & o’le a r y i n An n Re v Pl A n t Ph y s & Pl A n t Mo l Bi o l  47 (1996)  

creases the phosphorylation state of maize leaf Phosphoenolpyruvate carboxylase by causing an 
increase in the activity of a protein kinase. Biochim. Biophys. Acta 1093:189–95 

79. Meyer CR, Willeford KO, Wedding RT. 1991. Regulation of Phosphoenolpyruvate carboxylase 
from Crassula argentea: effect of incubation with ligands and dilution on oligomeric state, activity, 
and allosteric properties. Arch. Biochem. Biophys. 288:343–49 

79A. Nakamura T, Yoshioka I, Takahashi M, Toh H, Izui K. 1995. Cloning and sequence analysis 
of the gene for phosphoenolpyruvate carboxylase from an extreme thermophile, Thermus sp. J. 
Biochem. 118:319–24 

79B. Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, et al. 1994. Genes galore: a summary 
of methods for accessing results from a large-scale partial sequencing of anonymous Arabidopsis 
cDNA clones. Plant Physiol. 106:1241–55 

80. Nimmo GA, McNaughton GAL, Fewson CA, Wilkins MB, Nimmo HG. 1987. Changes in the 
kinetic properties and phosphorylation state of Phosphoenolpyruvate carboxylase in Zea mays 
leaves in response to light and dark. FEBS Lett. 213:18–22 

81. Nimmo GA, Nimmo HG, Fewson CA, Wilkins MB. 1984. Diurnal changes in the properties of 
phosphoenolpyruvate carboxylase in Bryophyllum leaves: a possible covalent modification. FEBS 
Lett. 178:199–203 

82. Nimmo GA, Nimmo HG, Hamilton ID, Fewson CA, Wilkins MB. 1986. Purification of the phos-
phorylated night form and dephosphorylated day form of phosphoenolpyruvate carboxylase 
from Bryophyllum fedtschenkoi. Biochem. J. 239:213–20 

83. Nimmo GA, Wilkins MB, Fewson CA, Nimmo HG. 1987. Persistent circadian rhythms in the 
phosphorylation state of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves 
and in its sensitivity to inhibition by malate. Planta 170:408–15 

84. Nimmo HG. 1993. The regulation of phosphoenolpyruvate carboxylase by reversible phosphorylation. In 
Society for Experimental Biology Seminar Series 53: Post-translational Modifications in Plants, ed. NH 
Battey, HG Dickinson, AM Hetherington, pp. 161–70. London: Cambridge Univ. Press 

85. Ogawa N, Okumura S, Izui K. 1992. A Ca2+-dependent protein kinase phosphorylates phospho-
enolpyruvate carboxylase in maize. FEBS Lett. 302:86–88 

86. O’Laughlin JT. 1988. Mechanistic probes of the catalytic activity of the enzyme phosphoenolpyruvate car-
boxylase. PhD thesis. Univ. Wis., Madison. 135 pp. 

87. O’Leary MH. 1982. Phosphoenolpyruvate carboxylase: an enzymologist’s view. Annu. Rev. Plant 
Physiol. 33:297–315 

88. O’Leary MH, Hermes JD. 1987. Determination of substrate specificity of carboxylases by nuclear 
magnetic resonance. Anal. Biochem. 162:358–62 

89. O’Leary MH, Rife JE, Slater JD. 1981. Kinetic and isotope effect studies of maize phosphoenol-
pyruvate carboxylase. Biochemistry 20:7308–14 

90. Outlaw WHJr . 1990. Kinetic properties of guard-cell Phosphoenolpyruvate carboxylase. Biochem. 
Physiol. Pflanzen 186:317–25 

91. Pacquit V, Santi S, Crétin C, Bui VL, Vidal J, Gadal P. 1993. Production and properties of recom-
binant C3-type Phosphoenolpyruvate carboxylase from Sorghum vulgare: in vitro phosphorylation 
by leaf and root PyrPC protein serine kinases. Biochem. Biophys. Res. Commun. 197:1415–23 

92. Pathirana SM, Vance CP, Miller SS, Gantt JS. 1992. Alfalfa root nodule phosphoenolpyruvate car-
boxylase: characterization of the cDNA and expression in effective and plant-controlled ineffec-
tive nodules. Plant Mol. Biol. 20:437–50 

93. Peliska JA, O’Leary MH. 1989. Sulfuryl transfer catalyzed by pyruvate kinase. Biochemistry 
28:1604–11 

94. Pierre JN, Pacquit V, Vidal J, Gadal P. 1992. Regulatory phosphorylation of Phosphoenolpyruvate 
carboxylase in protoplasts from Sorghum mesophyll cells and the role of pH and Ca2+ as possible 
components of the light-transduction pathway. Eur. J. Biochem. 210:531–37 

95. Poetsch W, Hermans J, Westhoff P. 1991. Multiple cDNAs of phosphoenolpyruvate carboxylase 
in the C4 dicot Flaveria trinervia. FEBS Lett. 292:133–36 

96. Rajagopalan AV, Devi MT, Raghavendra AS. 1994. Molecular biology of C4 Phosphoenolpyruvate 
carboxylase: structure, regulation and genetic engineering. Photosynth. Res. 39:115–35 



Ph o s P h o e n o l P y r u V a t e Ca r b o x y l a s e     297

96A. Relle M, Wild A. 1994. EMBL/GenBank/DDBJ databases. Accession number X79090 
97. Rose IA, O’Connell EL, Noce P, Utter MF, Wood HG, et al. 1969. Stereochemistry of the enzy-

matic carboxylation of phosphoenolpyruvate. J. Biol. Chem. 244:6130–33 
98. Samaras Y, Manetas Y, Gavalas NA. 1988. Effects of temperature and photosynthetic inhibitors 

on light activation of C4-phosphoenolpyruvate carboxylase. Photosynth. Res. 16:233–42 
98A. Schaeffer HJ, Forsthoefel NR, Cushman JC. 1995. Identification of enhancer and silencer regions 

involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the fac-
ultative halophyte Mesembryanthemum crystallinum. Plant Mol. Biol. 28:205–18 

99. Schäffner AR, Sheen J. 1992. Maize C4 photosynthesis involves differential regulation of phospho-
enolpyruvate carboxylase genes. Plant J. 2:221–32 

100. Schuller KA, Plaxton WC, Turpin DH. 1990. Regulation of Phosphoenolpyruvate carboxylase 
from the green alga Selenastrum minutum: properties associated with replenishment of tricarbox-
ylic acid cycle intermediates during ammonium assimilation. Plant Physiol. 93:1303–11 

101. Schuller KA, Turpin DH, Plaxton WC. 1990. Metabolite regulation of partially purified soybean 
nodule Phosphoenolpyruvate carboxylase. Plant Physiol. 94:1429–35 

102. Schuller KA, Werner D. 1993. Phosphorylation of soybean (Glycine max L.) nodule Phospho-
enolpyruvate carboxylase in vitro decreases sensitivity to inhibition by l-malate. Plant Physiol. 
101:1267–73 

103. Sikkema KD, O’Leary MH. 1988. Synthesis and study of phosphoenolthiopyruvate. Biochemistry 
27:1342–47 

104. Stiborová M. 1988. Phosphoenolpyruvate carboxylase: the key enzyme of C4-photosynthesis. 
Photosynthetica 22:240–63 

105. Stockhaus J, Poetsch W, Steinmüller K, Westhoff P. 1994. Evolution of the C4 phosphoenolpyru-
vate carboxylase promoter of the C4 dicot Flaveria trinervia: an expression analysis in the C3 plant 
tobacco. Mol. Gen. Genet. 245:286–93 

106. Suzuki I, Crétin C, Omata T, Sugiyama T. 1994. Transcriptional and posttranscriptional regu-
lation of nitrogen-responding expression of Phosphoenolpyruvate carboxylase gene in maize. 
Plant Physiol. 105:1223–29 

107. Tagu D, Crétin C, Bergounioux C, Lepiniec L, Gadal P. 1991. Transcription of a Sorghum phos-
phoenolpyruvate carboxylase gene in transgenic tobacco leaves: maturation of monocot pre-
mRNA by dicot cells. Plant Cell Rep. 9:688–90 

108. Taybi T, Sotta B, Gehrig H, Guclu S, Kluge M, Brulfert J. 1995. Differential effects of abscisic acid 
on phosphoenolpyruvate carboxylase and CAM operation in Kalanchoë blossfeldiana. Bot. Acta 
108:240–46 

109. Terada K, Izui K. 1991. Site-directed mutagenesis of the conserved histidine residue of Phos-
phoenolpyruvate carboxylase. His138 is essential for the second partial reaction. Eur. J. Biochem. 
202:797–803 

110. Terada K, Kai T, Okuno S, Fujisawa H, Izui K. 1990. Maize leaf phosphoenolpyruvate carboxyl-
ase: phosphorylation of Ser15 with a mammalian cyclic AMP-dependent protein kinase dimin-
ishes sensitivity to inhibition by malate. FEBS Lett. 259:241–44 

111. Terada K, Murata T, Izui K. 1991. Site-directed mutagenesis of phosphoenolpyruvate carboxyl-
ase from E. coli: the role of His579 in the catalytic and regulatory functions. J. Biochem. 109:49–54 

112. Terada K, Yano M, Izui K. 1992. Functional analysis of PEP carboxylase by site-directed muta-
genesis. See Ref. 47, pp. 3:823–26 

113. Thomas M, Crétin C, Vidal J, Keryer E, Gadal P, Monsinger E. 1990. Light-regulation of phos-
phoenolpyruvate carboxylase mRNA in leaves of C4 plants: evidence for phytochrome control 
on transcription during greening and for rhythmicity. Plant Sci. 69:65–78 

114. Toh H, Kawamura T, Izui K. 1994. Molecular evolution of Phosphoenolpyruvate carboxylase. 
Plant Cell Environ. 17:31–43 

115. Vance CP, Gregerson RG, Robinson DL, Miller SS, Gantt JS. 1994. Primary assimilation of nitro-
gen in alfalfa nodules: molecular features of the enzymes involved. Plant Sci. 101:51–64 

116. Van Quy L, Foyer C, Champigny ML. 1991. Effect of light and NO3
− on wheat leaf Phosphoenol-

pyruvate carboxylase activity: evidence for covalent modulation of the C3 enzyme. Plant Physiol. 
97:1476–82 



298   Ch o l l e t,  Vi d a l,  & o’le a r y i n An n Re v Pl A n t Ph y s & Pl A n t Mo l Bi o l  47 (1996)  

117. Vidal J, Pierre J-N, Echevarria C. 1996. The regulatory phosphorylation of C4 Phosphoenolpyru-
vate carboxylase: a cardinal event in C4 photosynthesis. In Plant Gene Research, ed. ES Dennis, B 
Hohn, PJ King, J Schell, DPS Verma. New York: Springer-Verlag. In press 

118. Walsh C. 1979. Enzymatic Reaction Mechanisms, pp. 705–7. San Francisco: Freeman 
119. Wang YH, Chollet R. 1993. In vitro phosphorylation of purified tobacco-leaf Phosphoenolpyru-

vate carboxylase. FEBS Lett. 328:215–18 
120. Wang YH, Chollet R. 1993. Partial purification and characterization of Phosphoenolpyru-

vate carboxylase protein-serine kinase from illuminated maize leaves. Arch. Biochem. Biophys. 
304:496–502 

121. Wang YH, Duff SMG, Lepiniec L, Crétin C, Sarath G, et al. 1992. Site-directed mutagenesis of the 
phosphorylatable serine (Ser8) in C4 Phosphoenolpyruvate carboxylase from sorghum: the effect 
of negative charge at position 8. J. Biol. Chem. 267:16759–62 

122. Weigend M, Hincha DK. 1992. Quaternary structure of phosphoenolpyruvate carboxylase from 
CAM-C4-and C3-plants: no evidence for diurnal changes in oligomeric state. J. Plant Physiol. 
140:653–60 

122A. Wera S, Hemmings BA. 1995. Serine/threonine protein phosphatases. Biochem. J. 311:17–29 
123. Willeford KO, Wedding RT. 1992. Oligomerization and regulation of higher plant Phosphoenol-

pyruvate carboxylase. Plant Physiol. 99:755–58 
124. Winkler FJ, Schmidt H-L, Wirth E, Latzko E, Lenhart B, Ziegler H. 1983. Temperature, pH and 

enzyme-source dependence of the HCO3
− carbon isotope effect on the phosphoenolpyruvate 

carboxylase reaction. Physiol. Vég. 21:889–95 
125. Winter K. 1982. Properties of phosphoenolpyruvate carboxylase in rapidly prepared, desalted 

leaf extracts of the Crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Planta 
154:298–308 

126. Wirsching P, O’Leary MH. 1988. 1-Carboxyallenyl phosphate, an allenic analogue of phospho-
enolpyruvate. Biochemistry 27:1355–60 

127. Wu MX, Meyer CR, Willeford KO, Wedding RT. 1990. Regulation of the aggregation state of 
maize Phosphoenolpyruvate carboxylase: evidence from dynamic light-scattering measure-
ments. Arch. Biochem. Biophys. 281:324–29 

128. Wu MX, Wedding RT. 1985. Regulation of phosphoenolpyruvate carboxylase from Crassula by 
interconversion of oligomeric forms. Arch. Biochem. Biophys. 240:655–62 

129. Wu MX, Wedding RT. 1987. Regulation of phosphoenolpyruvate carboxylase from Crassula ar-
gentea: further evidence on the dimer-tetramer interconversion. Plant Physiol. 84:1080–83 

130. Yanagisawa S, Izui K. 1992. Maize nuclear factors interacting with the C4 photosynthetic phos-
phoenolpyruvate carboxylase gene promoter. See Reference # 47, 3:839–42 

131. Yanagisawa S, Izui K. 1993. Molecular cloning of two DNA-binding proteins of maize that are 
structurally different but interact with the same sequence motif. J. Biol. Chem. 268:16028–36 

132. Yanagisawa S, Izui K, Yamaguchi Y, Shigesada K, Katsuki H. 1988. Further analysis of cDNA 
clones for maize Phosphoenolpyruvate carboxylase involved in C4 photosynthesis: nucleotide 
sequence of entire open reading frame and evidence for polyadenylation of mRNA at multiple 
sites in vivo. FEBS Lett. 229:107–10 

133. Yanai Y, Okumura S, Shimada H. 1994. Structure of Brassica napus Phosphoenolpyruvate car-
boxylase genes: missing introns causing polymorphisms among gene family members. Biosci. 
Biotech. Biochem. 58:950–53 

134. Yano M, Terada K, Umiji K, Izui K. 1995. Catalytic role of an arginine residue in the highly con-
served and unique sequence of phosphoenolpyruvate carboxylase. J. Biochem. 117:1196–1200 

135. Zhang SQ, Outlaw WHJr , Chollet R. 1994. Lessened malate inhibition of guard-cell Phospho-
enolpyruvate carboxylase velocity during stomatal opening. FEBS Lett. 352:45–48 

136. Zhang XQ, Li B, Chollet R. 1995. In vivo regulatory phosphorylation of soybean nodule Phos-
phoenolpyruvate carboxylase. Plant Physiol. 108:1561–68 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-1996

	Phosphoenolpyruvate Carboxylase: A Ubiquitous, Highly Regulated Enzyme in Plants
	Raymond Chollet
	Jean Vidal
	Marion H. O'Leary


