4-2016

DRAG REDUCTION USING FEMTOSECOND LASER SURFACE PROCESSING: EXPERIMENTAL SETUP

Derek Wallin
University of Nebraska - Lincoln, dmwallin12@gmail.com

Henry Ems
University of Nebraska-Lincoln, s-hems1@unl.edu

Craig Zuhlke
University of Nebraska-Lincoln, czuhlke@unl.edu

Dennis R. Alexander
University of Nebraska-Lincoln, dalexander1@unl.edu

George Gogos
University of Nebraska - Lincoln, ggogos1@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch

Part of the Applied Mechanics Commons

Wallin, Derek; Ems, Henry; Zuhlke, Craig; Alexander, Dennis R.; Gogos, George; and Ndao, Sidy, "DRAG REDUCTION USING FEMTOSECOND LASER SURFACE PROCESSING: EXPERIMENTAL SETUP" (2016). UCARE Research Products. 38.
http://digitalcommons.unl.edu/ucareresearch/38

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Derek Wallin, Henry Ems, Craig Zuhlke, Dennis R. Alexander, George Gogos, and Sidy Ndao
DRAG REDUCTION USING FEMTOSECOND LASER SURFACE PROCESSING: EXPERIMENTAL SETUP

Derek Wallin, Henry Ems, Dr. Craig Zuhlke, Dr. Dennis Alexander, Dr. George Gogos, and Dr. Sidy Ndao

MOTIVATION

- Fluid drag reduction is important in many applications such as reducing the power requirement to pump a fluid through a channel or pipe.

- The Center for Electro-Optics and Functionalized Surfaces (CEFS) at the University of Nebraska – Lincoln uses a femtosecond laser to functionalize 304 stainless steel to become superhydrophilic or superhydrophobic.

- The Processing produces microscale and nanoscale surface roughness that when treated with siloxanes becomes superhydrophobic.

- Small vortices form on the surface when microstructures are introduced.

- This lifts the main fluid vortex away from the wall forming a slip condition at the wall.

EQUIPMENT AND PURPOSE

4. Filter: Filters out impurities in water to provide accurate fluid flow measurements.
5. Sabre Turbine Flow Meter: Measures the fluid flow rate.
6. Omega Differential Pressure Transducer: Measures the pressure drop across the test section.
7. Lab View Data Acquisition: Collects data and calculates actual values measured by the different measurement systems. The Lab View setup is shown below.

Actual Experimental Setup

- Test section is annular flow.
- Test rod is loaded into test section.
 - The rod is functionalized throughout the test section.
 - Prior testing is done to determine the degree of surface hydrophobicity/hydrophilicity.
 - A range of flow rates of de-ionized water is forced through the test section.
 - The pressure drop across the test section is recorded and used to determine the fluid friction factor for the testing conditions.
 - The pressure drop and friction factor is compared between processed surfaces to determine the drag reduction characteristics with respect to surface hydrophobicity/hydrophilicity.
 - The research goal for this project is to modify the fluid friction factor chart (Moody Chart) to account for surface hydrophobicity/hydrophilicity.

Part Location

This work has been supported by:
- The UCARE program at the University of Nebraska-Lincoln
- The Woollam Foundation and the Woollam Summer Internship Program
- Nebraska Center for Energy Sciences Research (NCESR) with funds provided by Nebraska Public Power District (NPPD) to the University of Nebraska-Lincoln (UNL) No. 4200000844
- NASA Nebraska EPSCoR Grant # - NNX13AB17A.